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Abstract

Stability is among the most important concepts in dynamical systems. Local stability is well-studied, whereas deter-
mining the ‘global stability” of a nonlinear system is very challenging. Over the last few decades, many different
ideas have been developed to address this issue, primarily driven by concrete applications. In particular, several
disciplines suggested a web of concepts under the headline ‘resilience’. Unfortunately, there are many different
variants and explanations of resilience, and often, the definitions are left relatively vague, sometimes even delib-
erately. Yet, to allow for a structural development of a mathematical theory of resilience that can be used across
different areas, one has to ensure precise starting definitions and provide a mathematical comparison of different
resilience measures. In this work, we provide a systematic review of the most relevant indicators of resilience in
the context of continuous dynamical systems, grouped according to their mathematical features. The indicators are
also generalised to be applicable to any attractor. These steps are important to ensure a more reliable, quantita-
tively comparable and reproducible study of resilience in dynamical systems. Furthermore, we also develop a new
concept of resilience against certain nonautonomous perturbations to demonstrate how one can naturally extend
our framework. All the indicators are finally compared via the analysis of a classic scalar model from popula-
tion dynamics to show that direct quantitative application-based comparisons are an immediate consequence of a
detailed mathematical analysis.

1. Introduction

In 1973, Holling [40] prompted the mathematical community in ecology to investigate a new concept
of ‘nonlocal’ stability to capture the ‘persistence of relationships within a system, [...] the ability to
absorb changes of state variables, driving variables, and parameters, and still persist’, and by doing so,
complement the classic Lyapunov stability. He named this property resilience. The theory of dynamical
systems still proved to be the most promising theoretical framework to treat the question rigorously
(see Gruemm [34]). Nevertheless, the newly introduced concept elicited a tremendous, and yet mostly
disorganised, research effort in several areas of applied science. The result is a plethora of different
indicators of resilience, in setups which are often not directly comparable (see Baggio et al. [6], Brand
and Jax [11], Carpenter et al. [14], Donohue et al. [26], Grimm and Wissel [33], Kéfi et al. [46], Meyer
[68], Van Meerbeek et al. [100] and Walker and Salt [104]).

It is possible to categorise most of the available indicators within two main branches: engineering
resilience and ecological resilience (Peterson [78]). The former aims at answering the question ‘how
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Table 1. Summary of the indicators reviewed in this work according to the ample categories of
engineering and ecological resilience (see Peterson [78])

Engineering resilience Ecological resilience
Characteristic return time® Tx 3.1 Latitude in width® L, 4.1
Reactivity* Ry 3.3 Distance to threshold® DT 4.3
Max amplification® Prmax 3.6 Precariousness ¥ P4 4.7
Max amplification time® Fmax 3.6 Latitude in volume® L, 4.9
Stochastic invariability T 3.8 Basin stability* Si 4.11
Deterministic invariability’ I 3.10 Resistance (potential)® w 5.3
Average return time® TR 5.1 Flow-kick resilience’ - 5.5
Maximal return time* TR" 5.1 Intensity of attraction® T 5.6
Resistance (Harrison)™ R 6.2 Expected escape times’ T 5.7
Elasticity™ E 6.3 Distance to bifurcation* Dyt 6.1

Persistence™ P 6.5
Rate-induced tipping™ D.ye 6.7

The presentation in the paper privileges a subdivision based on the mathematical techniques which they entail. The notation and number of definitions are
displayed next to the name of each indicator. The superscripts indicate the type of perturbation for which each indicator is designed: (§) perturbations of initial
conditions, (f) time-dependent perturbations and () perturbations of parameters.

long will it take for a system that suffers a perturbation to readjust to its original state?” and can be
traced back to Maynard Smith [94] and to May [64]. The latter aims at answering the question ‘which
are the features of the maximal perturbations that a system can endeavour and still return to its original
state?’, and it is directly related to Holling [40]. The indicators treated in this paper are listed in Table 1
according to this classical subdivision.

In this paper, we have three main objectives. Firstly, we carry out an extensive review of indicators of
resilience within the framework of continuous dynamical systems theory. While doing so, we provide
a systematic organisation based on the mathematical techniques which they entail. To our knowledge,
such a comprehensive effort does not exist in the literature, nor for dimension, nor in the organisational
spirit. As an immediate effect, this paper provides an easier access to a very vast and fragmented liter-
ature. Secondly, we aim at increasing the applicability of this theory by generalising these definitions
(wherever possible) to general attractors, whereas they are usually designed only for stable equilibria
and sometimes periodic orbits. However, equilibria and periodic orbits, while playing a fundamental
role in the understanding of many phenomena, are far from exhausting the dynamical possibilities in
higher dimensional and complex systems. In particular, this applies to the local theory based on the first
order approximation of the dynamics near a hyperbolic trajectory. In this context, it is natural to use
the notion of exponential dichotomy from the theory of nonautonomous linear systems. Incidentally, we
note that this fact encourages the investigation of resilience also in nonautonomous nonlinear dynamical
systems, although, for the sake of simplicity, we limit our presentation to the autonomous case. Lastly, we
enrich the discussion by bringing together recent accomplishments in the theory of nonautonomous/rate-
induced tipping phenomena, where the time-dependent variation of parameters of some systems has to
be generalised beyond classical autonomous bifurcations to the nonautonomous setting.

The paper is organised as follows. In Section 2, we set the notation and recall some notions on contin-
uous dynamical systems. Each of the following four sections addresses a class of indicators of resilience
grouped according to the most relevant mathematical technique upon which they are based: Section 3
contains the local indicators obtained via the linearisation in the neighbourhood of a hyperbolic trajec-
tory. Section 4 deals with the indicators focusing on geometric features of the basins of attraction. In
Section 5, we present all the indicators related to the transient behaviour of a system during and after
a perturbation. The variation of parameters and the consequent indicators are treated in Section 6. In
Section 7, we carry out an analysis of resilience of a model from population dynamics, using and com-
paring the indicators introduced in the previous sections. We close the paper with a final discussion in
Section 8.
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2. Notation, assumptions and preliminary definitions

Although the content of this paper applies to any metric space (X, d), for the sake of clarity and accessi-
bility for applications, we will restrict to the N-dimensional Euclidean space RY with norm | - |. When
N =1, we will simply write R and the symbol R* will denote the set of nonnegative real numbers.
The symbol RY*™ represents the set of matrices with N rows and M columns, and given A € RV*™ AT
will denote its transpose. Moreover, the symbol [|A]|,, will represent the operator norm (induced by the
Euclidean norm) of the matrix A. As a rule, a singleton {x} in R" will be identified with the element x
itself, and, given E C R, the symbol E will denote the closure of E with respect to the topology induced
by the Euclidean norm. Moreover, by B,(p), we denote the open ball of R" centred at p and with radius
r. If p is the origin of R, we simplify the notation to B,. On the other hand, given any set E C R", B,(E)
will denote the set of points x € R such that x € B,(p) for some p € E. Furthermore, for any U C R¥
and any W C R¥, C(U, W) will denote the space of continuous functions from U to W endowed with the
usual supremum norm || - ||cw.w).

Unless otherwise stated, we will deal with a continuous dynamical system on RY which we will
identify with its continuous (local) flow

¢ UCRXRY = RY,  (1,x)— ¢(t, x).
Moreover, given E C RY and > 0, we use ¢(z, E) to denote the set
¢(1,E)={y e R" | y = ¢(t, x) for some x € E}.

In particular, we recall that a set E C R is called forward invariant under the flow ¢ if ¢(z, E) C E for
all ¢ > 0 and invariant if ¢(¢t, E) = E for all r € R.

Where necessary, we will assume that the continuous flow ¢ is induced by an autonomous ordinary
differential equation of the form

i=f(kx), xeRY, 2.1)

where f : RV — R" is regular enough so that the initial value problem x(0) = x, € RY admits a unique
solution x(-, xo) € C(Z,,, R"), with I,, being its maximal interval of definition. It is well-known that (2.1)
induces a continuous (local) flow on R” via the relation

¢(t9 -xO) = X(t, xO)'

We will also assume that the considered dynamical system has a local attractor A C R in the sense
of the definition below (which is taken from Kloeden and Rasmussen [50]).

Definition 2.1 (Local attractor and basin of attraction). A compact set A C R" invariant under a flow
¢ on RY is called a local attractor if there exists n > 0 such that for all x, € B,(A), x(-, x,) is defined for
allt>0and

lim dist(¢(z, B,(A)), A) =0,
where for all A, B C RY, dist(A, B) denotes the Hausdorff semi-distance between A and B. We call the
basin of attraction of A the set
B(A) = {xo € RY : 0 # w(xo) C AJ.

where, given E C R", w(E) represents the omega limit set of E under the flow ¢, that is the set

o(E): = o6 E).

>0 s>t

Remark 2.2. Several alternative definitions of local attractor are available in the literature. For exam-
ple, the above definition is sometimes completed by the condition of minimality: ‘there is no proper
subset of A which satisfies the properties in Definition 2.1°. In order to understand the implication of
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Figure 1. Sketch of the phase space for (2.2). According to Definition 2.1, one can choose either the
whole closed ball of radius one, the origin and the periodic orbit of radius one, or just the latter as a
local attractor for the induced dynamical system. Under the minimality condition in Remark 2.2, only the
periodic orbit of radius one qualifies for being a local attractor and the origin belongs to the boundary
of the basin of attraction.

such condition, consider the two-dimensional differential system in polar coordinates (r, ¢) € [0, 00) X
[0, 27r) where O is identified with 2,

F=rr—Dr—3), ¢=1. (2.2)

It is easy to show that (2.2) has an unstable equilibrium at the origin and two hyperbolic periodic
orbits of radius r =1 (stable) and radius r =3 (unstable), respectively (see Figure 1 for a sketch of
the phase space). If one employs the minimality condition, the local attractor of the system consists of
the points in the periodic orbit of radius r =1 and its basin of attraction is the open ball of radius
r =3 with the exception of the origin. In spite of belonging to the boundary of the basin of attraction,
the origin is merely an isolated point. Every solution starting in a sufficiently small ball centred at the
origin, except for the origin itself, will eventually converge to the periodic orbit of radius r = 1. If the
minimality condition is not taken into account, we are allowed to choose as a local attractor the subset
of R? made of the points in the periodic orbit of radius r = 1 and also the origin. Its basin of attraction
is now the whole open ball of radius r = 3. It is worth noting that an alternative approach is given by
the Milnor’s definition of local attractor [72], where the asymptotic behaviour of solutions starting in
negligible sets (with respect to the Lebesgue measure in this context) is disregarded. In this case, the
local attractor would be made of the points in the sole periodic orbit of radius r = 1. In order to avoid
measure theoretic arguments as much as possible, and in view of the nonlocal nature of the concept of
ecological resilience, in this work we privilege the flexibility provided by Definition 2.1. Note also that,
although in this example the boundary of the basin is an unstable periodic orbit, this is not always the
case (see Figure 2).

Definition 2.3 (Global Attractor). A compact set A C RY invariant under the flow ¢ induced by (2.1)
is called a global attractor if A attracts each bounded subset of RY.

It is easy to show that the global attractor for ¢ is the minimal compact set that attracts each bounded
subset of RY and also that it is the maximal closed and bounded invariant set (see Lemma 1.6 in [15]).
As a matter of fact, the global attractor is composed of all the points of RY which belong to a bounded
global solution for (2.1) (see Theorem 1.7 in [15]).
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Figure 2. The unforced Duffing oscillator is a classic example given by the equations x=y,
y=x—x>— 8y, where § > 0. The system has three equilibria, namely (0,0) and (£ 1,0). Easy cal-
culations show that for § > 0, the origin is a saddle and the fixed points at (£ 1, 0) are asymptotically
stable. In particular, the boundary of the basin of attraction of each one of the latter is given by the
stable manifold of the saddle at the origin.

We also recall that, under the considered definitions and assumptions, the basin of attraction of a local
attractor is an open set. The proof is a consequence of simple topological arguments and it is therefore
omitted.

Proposition 2.4. Assume the evolution operator ¢ is continuous. The basin of attraction B(A) of a local
attractor A is an open set.

Throughout the document, we will sometimes need to use nonautonomous differential equations, that
is problems of the type

x=f@x), teR,xeRY,

where f : R x RY — RY is regular enough so that the initial value problem x(#,) = x, € R", 1, € R, admits
aunique solution x(-, fy, Xo) € C(I;, ,» RV), with /., being its maximal interval of definition and #, € I, .
In order to carry out a dynamical analysis of a nonautonomous differential equation, one can either
construct a two-parameter semigroup — also known as process — or a skew-product flow, that is an
autonomous flow on an extended phase space where the base is a functional space parametrised on
time and the fibre is R". For a concise introduction to these and further techniques in nonautonomos
dynamical systems theory, we point the reader to the first chapter of the book by Kloeden and P&tzsche
[49] (the following chapters contain also several applications of the theory to life sciences); for a more
extended presentation, we recommend for example the book by Kloeden and Rasmussen [50]. Both
techniques are frequently used in more theoretical aspects of nonautonomous dynamics. Yet, the use of
these methods is relatively technical, so we decided to focus on the key notions necessary. In particular,
we now recall two important notions from nonautonomous dynamical systems theory which will play
an important role throughout the work: the one of exponential dichotomy and of hyperbolic solution.
An exponential dichotomy consists of a splitting of the phase space of a nonautonomous linear differ-
ential equation into solutions that decay exponentially fast to zero either ast — cooras ¢t — —o0[18, 49,
50]. For autonomous systems, such splitting is obtained through the real parts of the eigenvalues (when
they are nonzero) of the matrix defining the system and the associated eigenspaces. However, classical
examples show that the eigenvalues are generally of no use when the matrix depends on time [18].

Definition 2.5 (Exponential dichotomy). Given a locally integrable function A : R — RM*N| the linear
system

y=A(@®)y (23)
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is said to have an exponential dichotomy on an interval I C R if there are a projection P (i.e. a matrix
P € RM*V satisfying P* = P), and constants a > 0, K > 1 such that

[Y(OPY™'(s)| <Ke ™™, forallt,sel, t>s,and
|Y(O)(Id — P)Y"'(s)| < Ke"™, forallt,sel, t<s,
where Y : R — RV is a fundamental matrix solution of (2.3), and Id is the identity matrix on RV,

The exponential dichotomy on R fulfils the role that eigenvalues with nonzero real part play in the
study of stability of hyperbolic equilibria or periodic orbits. However, it also allows to treat nontrivial
time-dependent solutions (if they exist) which have the equivalent role of determining the asymptotic
behaviour of solutions in their vicinity. For the sake of consistency and to avoid introducing further
notation, we will present the notion of hyperbolic solutions only for autonomous ordinary differential
equations although it is defined for general nonautonomous systems [50].

Definition 2.6 (Hyperbolic solution). A globally defined solution X : R — RY of a nonautonomous dif-
ferential equation x = f(t, x), withf : R x RN — R, (¢, x) — f(t, x) continuously differentiable in x for
almost every t € R, is called hyperbolic if the variational equation y = Df (t, ’)?(t))y has an exponential
dichotomy on R. In particular, we will call an hyperbolic solution X locally attractive if the exponential
dichotomy has projector the identity P = Id.

Remark 2.7. The recalled notion of hyperbolicity generalises the one for equilibria and periodic orbits
to arbitrary time-dependent solutions. One of the important reasons for presenting it is that hyperbolicity
in the sense of Definition 2.6 is a robust property, in that a differential equation with a hyperbolic solution
can be perturbed (within a certain class of perturbations) and the hyperbolic solution persists [82].
For example, classic hyperbolic equilibria can be perturbed into hyperbolic nonstationary trajectories.
This fact is of key importance in the study of resilience which in fact aims to capture the persistence of
certain properties of attractivity as we shall see in due time. The reader who is interested in a deeper
understanding of the extent of such generalisation can refer for example to [[44], Section 1.4] and the
references cited therein (see e.g. the combined role of [[44], Proposition 1.56] and [[36], Theorem
111.2.4]). On the other hand, the reader who deals with attractors made of equilibria and/or periodic
orbits can intend the term hyperbolic in the classic sense.

3. Local indicators

Linear stability analysis is one of the classic tools in the study of dynamical systems. It allows to infer
the asymptotic dynamics of a system in the surrounding of a reference trajectory by looking at its linear
approximation and the dominant Lyapunov exponent of a fundamental matrix solution. If the dominant
Lyapunov exponent’s real part is nonzero, the sign qualifies the reference trajectory as stable or unstable.
Its absolute value measures the asymptotic speed of convergence or divergence after a small perturbation.
When the reference trajectory is a stationary state or a periodic orbit, this reduces to the calculation of
the eigenvalues of the Jacobian of the initial vector field evaluated on such orbits.

Such ideas have been used to determine the resilience of an attractor via the rate of convergence
of the nearby solutions. Due to the inherent local nature of linear stability analysis, these indicators of
resilience overlook the topological structure of the phase space away from the considered attractor and
are not designed to determine the highest possible perturbation which a system can absorb before tipping
to a different state.

The section contains five subsections and six indicators. In subsection 3.1, we present the classic
characteristic return time which relates the resilience of a system in the nearby of an attractor to the
asymptotic rate of convergence of the solutions. Subsections 3.2 and 3.3 address respectively the ques-
tion of local resilience in the short-term horizon and in the transient after a perturbation of the initial
conditions. The former contains the indicator reactivity, whereas the latter the indicators maximal ampli-
fication and maximal amplification time. Subsection 3.4 addresses the question of local resilience against
time-dependent (random or deterministic) perturbations and contains the indicators intrinsic stochastic
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variability and intrinsic deterministic variability. Finally, subsection 3.5 contains a short discussion of
the relations among the previously introduced indicators.
Besides the assumptions in Section 2, we shall also consider the following assumption.

1. The functionf : R¥ — R in (2.1) is assumed to be continuously differentiable and, for every x € RY,
Df (x) will denote the Jacobian of f calculated at x. Moreover, assume that A = {X(¢) | € R}, and X
is a locally attractive hyperbolic solution for x = f(x).

3.1. Characteristic return time

The notion of characteristic return time in the context of resilience for ecological systems already dates
back to May [64]. A very commonly used version is due to Beddington et al. [8] for discrete dynamical
systems and then to Pimm and Lawton [80] for the continuous case. It is indistinctly used under different
names, for example, return time [80], characteristic return time [79], engineering resilience [35, 41, 95]
and resilience [75]. A qualitative description of the underlying idea is provided by Pimm [79] as ‘how
fast the variables return towards their equilibrium following a perturbation’, or, more specifically, as the
‘time taken for a perturbation to return to 1/e of its initial value’. The definition is motivated by the fact
that a trajectory starting in the nearby of a locally stable equilibrium x* will approach it in a time which
is proportional to the reciprocal of the eigenvalue with largest real part for the system linearisation at
x*. The presentation below is however given for the more general case of a locally attractive hyperbolic
solution (see Definition 2.6).

Definition 3.1 (Characteristic return time). Consider f : RY — RY satisfying assumption 1. The charac-
teristic return time T of the system x = f(x) for the attractor A is defined as

1
Tr(A) = =,
a
where
@: =inf {oz >0 | |YOY ') <Ke™™, forallt> s},

and Y : R — RN is a fundamental matrix solution of y = Df (X(1))y.

Remark 3.2. If the considered local attractor A=x* is an attractive hyperbolic fixed point, then
o coincides with the opposite of the real part of the dominant eigenvalue of Df(x*), that is @ =

—Re ()\-dom (Df(X*))) .

The definition of characteristic return time motivated the introduction of the following indicator of
resilience for a stable hyperbolic equilibrium as the rate of decay

EV(A)=a.

This indicator has been widely used and studied for both continuous and discrete systems in the case
that A =x* is hyperbolic and attracting (see e.g. Arnoldi et al. [4], DeAngelis et al. [22, 23], Harwell
and Ragsdale [39], Pimm and Lawton [81], Rooney et al. [85], Van Nes and Scheffer [101], Vincent and
Anderson [102]).

Invariance with respect to change of coordinates

The characteristic return time is invariant with respect to change of basis z = Qy, with Q non-singular.
Indeed, considering the principal matrix solutions U(z, s) and V(t, s) of y = A(f)y and z = QA(H)Q™ 'y,
respectively, and y, € R", we have that Q' V (¢, 5)Qy, = U(t, 5)y,. Therefore, if y = A(#)y has an expo-
nential dichotomy on R with projector the identity and constants o > 0 and K > 1, then we have that

V(2 5)| = |QU(t, 5)Q7'| < Ke .

For autonomous systems, this fact becomes even more evident because A and QAQ ™" have the same set
of eigenvalues.

https://doi.org/10.1017/5S0956792523000141 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792523000141

162 H. Krakovska et al.

3.2. Reactivity

Neubert and Caswell [75] proposed and studied different indicators with the aim of capturing the
transient behaviour of a trajectory starting in the neighbourhood of a stable equilibrium as it may
substantially differ from the asymptotic one. Specifically, the reactivity corresponds to the maximum
instantaneous rate at which an asymptotically stable linear homogeneous system responds if the initial
condition is taken outside the origin. The reactivity of a nonlinear system x = f(x) in the neighbourhood
of a stable hyperbolic equilibrium x* is obtained through its linearisation at x*.

Definition 3.3 (Reactivity). Let y = A(¢)y, with A : R — RYN [ocally integrable, be an asymptotically
stable linear homogeneous system, and denote by y(-, t,, o) its unique solution satisfying y(ty, ty, ¥o) = Yo.
We shall call the reactivity of the system at time ty € R, the quantity

R 1 d|y(t, to, yo)l
0= max
bol20 \ |y(t, fo, Yo)] dt

3.1

t=tg

The system y = A(t)y is called reactive if there is t, € R such that R,, > 0 and nonreactive otherwise. A
nonlinear system x = f(x) satisfying Assumption 1 is called reactive if there exists a neighbourhood of
a locally attractive hyperbolic solution X such that y = Df (35([)) v is reactive.

If a system is reactive in a neighbourhood of a locally attractive hyperbolic solution X, some trajec-
tories starting in a neighbourhood of X may initially move away from X, before converging to it. In other
words, the finite time Lyapunov exponents for X can be positive. An uninformed guess might relate
the short-term behaviour of solutions to the real part of the least stable eigenvalue of A. This is true
only when A has a set of orthogonal eigenvectors. In such a case, however, a monotonic decay towards
zero characterises all the solutions since the eigenvalues of Df (x*) determine both the asymptotic and
the transient behaviour of the system. In other words, a short-time amplification is a possible effect
of nonorthogonality of the eigenvector basis — also called non-normality of A. Neubert and Caswell
[75] unveil a relation between the reactivity of a linear homogeneous system y = Ay, A € RV, and the
dominant eigenvalue of the symmetric part of the Toeplitz decomposition of A (recall that every real
symmetric matrix is Hermitian, and therefore, its eigenvalues are real). The argument works also for
nonautonomous linear homogeneous problems. Note that

W = %\/Y(t, 10, Y0) "¥(1, o, Yo)
Y, Yo) '¥(t, 1o, ¥o) + Y2, 1o, ¥o) "¥(1, to, Yo)
B 2|y(t, to, yo)l
(10, 50) T (AT +AD) (2, 16, o)

2|y(t’ t0$ )’0)|

(3.2)

Therefore, from (3.1) we obtain that

Yo (A(fo)T + A(h))))’o

R, = max
[yol#0 2|}’(I’ tO? )’0)|2

fo

The term on the right-hand side of the previous formula is also known as a Rayleigh quotient, and its
maximum is attained at the largest eigenvalue of the matrix (A(to)T + A(lo)) /2 [42], that is,

Alto)" +A(t)

Ry, = hiom (H(A(19)) € R, where H(A) = 5

In the context of autonomous non-normal linear operators, reactivity is also known as the numerical
abscissa of A [27].
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Figure 3. The transient behaviour of three systems A, A,, As; from Example 3.4 is investigated. In the
first row, the time evolution of the magnitude of four trajectories starting from different initial condi-
tions around the origin is depicted. In the second row, we see the respective amplification envelopes of
each system. Even though the systems have the same characteristic return time, and additionally, the
systems A, and A, have also the same value of reactivity, the indicator amplification envelope and its
characteristics P and t,.. are able to capture different transient behaviour.

Invariance with respect to change of coordinates

In general, the reactivity is not preserved under a change of basis z = Qy, with Q non-singular. If Q is
orthogonal, that is (Q~' = Q7), the eigenvalues of the symmetric parts of A(%) and QA(,)Q~' are the
same and reactivity is conserved.

Example 3.4. In this example, we compare three planar asymptotically stable linear systems x = A;x,
where i ={1,2,3}:

-2 0 -2 1 -2 0

A = A= A=
: 5 —1 2T\V26 4450 —v26—+/350—1 } 1 -1

All three systems have the same value of the dominant eigenvalue and consequently the same character-
istic return time given as T(0) = 1. The systems A, and A, are reactive with a positive value of reactivity
given by Ry = (v/26 — 3)/2 ~ 1.05. The system As is nonreactive with Ry = (v/2 — 3)/2 ~ —0.79. In the
first row of Figure 3, the plots show the time evolution of the magnitudes of trajectories starting from
different perturbed initial conditions around the origin.

Although the trajectories of the reactive systems A, and A, can exhibit a transient growth in their mag-
nitude, this is not possible for the nonreactive system A,. Furthermore, this example shows that despite
having the same characteristic return time and reactivity indicator values, the transient behaviour of the
trajectories in systems A, and A, may vary substantially. This motivates the introduction of the so-called
amplification envelope (see Subsection 3.3). The amplification envelopes of three considered systems
are plotted in the second row of Figure 3.

https://doi.org/10.1017/5S0956792523000141 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792523000141

164 H. Krakovska et al.

3.3. Maximal amplification and maximal amplification time

Example 3.4 shows that reactive systems with same reactivity and characteristic return time do not
necessarily share the same transient behaviour. This fact led Neubert and Caswell [75] to the definition
of amplification envelope, which records the maximal deviation from the attractor for trajectories starting
at perturbed initial conditions of fixed norm.

Definition 3.5 (Amplification envelope). The amplification envelope for an asymptotically stable linear
system y = A(t)y, with A : R — RN [ocally integrable, is defined as the continuous function

=1y, 1y,
0: Rt xR—R*, (1,1)~ p(t, 1) = sup M, (3.3)

I¥ol#0 [vol

where y(-, ty, Yo) is the unique solution of y = A(t)y satisfying y(ty, ty, o) = Yo. Therefore, p(t, t,) is in fact
equal to the operator norm (induced by the Euclidean norm) of the principal matrix solution Y(t + t,, t,)
of y = A(t)y for the initial time t,, that is

p(t,10) = | Y (1 + 1o, 1) -
For a nonlinear system x =f(x) such that f satisfies Assumption 1, the amplification envelope in a
neighbourhood of a hyperbolic solution X is defined as the amplification envelope of the linear system

y = Df(x(1))y.

Note in particular that if A(f) =A € RV for all ¢ € R, the amplification envelope depends only on
the variable r € R™, that is

pit,10)=p(&)= "], .

In such a case, a constant K(A), known as the Kreiss constant of A and defined as K(A) =
SUDg,(-0 Re(@)|I(2] —A)"||,p, can be used to identify upper and lower estimates for the maximum
amplification over time, using Kreiss Matrix Theorem [99]. In particular,

K@) < max p() <eNK(A).

The exact computation of the Kreiss constant is itself the object of study [3]. A method to address the
time-dependent case on a finite time interval requires the use of an augmented Lagrangian whose first
variations are set to zero to obtain a set of algebraic-differential equations that can be solved forward
and backward in time iteratively [90].

From the amplification envelope, we can derive the two following indicators of resilience. The max-
imal amplification corresponds to the maximal magnification over time for trajectories starting in the
nearby of an attractor, whereas the maximal amplification time records the occurrence of the maximal
amplification.

Definition 3.6 (Maximal amplification and maximal amplification time). Consider the setting

of Definition 3.5. The maximal amplification and maximal amplification time are respectively
defined as:

pmax(t()) = n;lj})x ,O(t, t())s tmax(t()) - argmaxtz()p(ts tO)

Remark 3.7. The characteristic return time (see Definition 3.1) and the reactivity (see Definition 3.3)
of a linear system are also calculable from the amplification envelope. Indeed, for every fixed t, € R,
the first corresponds to the slope of In(p(x, t, ty)) as t — +00, while the second is equal to the slope of
In(pQX, t, ty)) as t — t,.
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Invariance with respect to change of coordinates

The construction of the amplification envelope implies that it is invariant with respect to diffeomor-
phisms of the phase space which preserve the Euclidean distance. This includes in particular linear
changes of coordinates z = Qy, with Q non-singular and orthogonal.

3.4. Intrinsic stochastic and deterministic invariability

The amplification envelope provides an effective tool to describe the local transient behaviour of a sys-
tem close to an attractor if it is affected by an ‘isolated and impulsive’ perturbation. Arnoldi et al. [4]
investigate the same transient behaviour when the system is subjected to a time-dependent (random or
deterministic) forcing. In the spirit of this paper, we generalise the presentation of [4] to hyperbolic
solutions (see Definition 2.6) up to the point where this makes sense.

Consider a continuous and bounded function A:R — R such that the linear homogeneous
system

y=A()y (3.4)

has an exponential dichotomy on R with projector the identity (see Definition 2.5). This means that,
denoted by U(t, s) the principal matrix solution of (3.4) at time s € R, one has that there are constants
o > 0 and K > 1 such that

|U(t, s)| < Ke™®“™, forallt>s. (3.5)

Firstly, consider the stochastic differential problem with additive white noise
dy=A@)ydt+SdW(r) (3.6)
where § € RYM and W = (W, ... W,)" is a vector of M independent Brownian motions. As  — o0,

the distribution of each strong solution of (3.6) converges to a stationary Gaussian distribution centred
at the origin. Moreover, the covariance matrix of the system at time 7 € R and initial data at z, € R is
given by

t

Ct, ty) = / U, ) U(t, s)" ds, 3.7
fo

where ¥: = SST. Notice also that the differentiation of C(z, f,) with respect to ¢ shows that it solves the

matrix differential equation

ditc =A(C+ CAD)" + X. (3.8)

In particular, C(#, —o0) is the only bounded solution of (3.8) over the whole real line, and (3.5) and (3.7)
together imply that (3.8) has a local attractor (see e.g. [[50], Theorem 1.23]) that must thus coincide
with C,(2) = {(¢, C(t, —00) | t € R}. C,(X) shall be called the stationary covariance of the system.

In order to construct an indicator of intrinsic resilience against stochastic perturbations, one looks at
the largest stationary response among the possible perturbations of given ‘magnitude’.

Definition 3.8 (Intrinsic stochastic invariability). Consider a continuous dynamical system induced
by an ordinary differential equation x =f(x), x € RY, satisfying 1 and the assumptions in Section 2.
Moreover, assume that X is a locally attractive hyperbolic solution and consider the local attractor
A={X@) |t €R}. Fixed anorm || - || on the matrix space RY (e.g. the operatorial norm, the Frobenius
norm), the stochastic variability Vs(A) and the intrinsic stochastic invariability of the attractor A with
respect to || - || are respectively defined as

= Ct, —o0)|, d — T(A)=—-o,
Vs(A) Zzzlﬁﬂgllzl 1C(#, =),y an s(A) VA

where C.(X) is the stationary covariance of (3.6) with A(t) = Df (35(!)).
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Remark 3.9. If A=x*, then A= Df(x*), and (3.8) does not depend on time. In this case, one can
show that the linear operator A(C): =AC + CA" has N* eigenvalues of the form A; + A, where A;, A;
are eigenvalues of A, and the stationary covariance matrix C,(X) is given by the unique solution of the
Lyapunov equation AC + CA" + X =0 [[10], Lemma 5.1.2]. Therefore, one has that

V= sup || =A7(D)].

220, [IZ]1=1

On the other hand, one can consider a deterministic forcing of (3.4), that is,
y=A(0)y +g(@), (3.9)

where g : R — R” is a bounded function. Denoted by Y(¢) a fundamental matrix solution of (3.4), note
that

x(t,g9)=Y(@) f[ Y7 '()g(s)ds, teR,

is a solution of (3.9), which can be regarded as the stationary system response, and its mean square
deviation from the origin (which is the global attractor of the homogeneous problem) is

1 T
m(g): = Th_)m T / |x(s, g)|* ds. (3.10)
g 0

Arnoldi et al. [4] suggest to use the largest mean square deviation of x(z, g) from the origin over the
possible perturbations g of given norm, as an indicator of resilience of the attractor.

Definition 3.10 (Intrinsic deterministic invariability). Consider a continuous dynamical system induced
by an ordinary differential equation x =f(x), x € RY, satisfying 1 and the assumptions in Section 2.
Moreover, assume that X is a locally attractive hyperbolic solution and consider the local attractor
A= {X(r) | t € R}. The deterministic variability V,(A) and the intrinsic deterministic invariability of the
attractor A are respectively defined as

1
Vo(A) = Hgsuligl 2,/ m(g), and In(A) = m, (3.1

where m(g) is the mean square deviation of the stationary response of (3.9) with A(t) = Df (}(t)).

Remark 3.11. If A=x*, then A =Df(x*), and one can use standard frequency analysis to improve
the information given by (3.11). This is particularly true when one limits the possible deterministic
perturbation to the so-called ‘wide-sense stationary signals’. Indeed, since any deterministic signal
can be developed into a sum of harmonic terms, or Fourier modes, and due to the fact that in the linear
approximation, the system response to a general perturbation is equal to the sum of the system response
to the single-frequency modes, a convexity argument yields that the perturbation generating the largest
system response is a single-frequency mode [4]. Therefore, when g is a single-frequency periodic forcing
one obtains that
Vo(A) = sup fliw — A7,
welR

where w is the forcing frequency of g, i is the imaginary unit, and || - || is the induced matrix operator
norm from the norm on R,

When A = x*, an important result in [4] establishes a chain of order for some of the indicators of
local resilience presented in this section.

Proposition 3.12. If A = x* is a hyperbolic stable equilibrium, the following chain of inequalities holds
true:

—Ry <ZIs(A) <Ip(A) <EV(A).
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Invariance with respect to change of coordinates

From the definitions of covariance matrix in (3.7), and of largest mean square deviation in (3.10), one
can easily show that intrinsic stochastic invariability and the intrinsic deterministic invariability are
invariant with respect to diffeomorphisms of the phase space which preserve the Euclidean distance.
This includes in particular linear changes of coordinates z = Qy, with Q non-singular and orthogonal.

3.5. Discussion

o Local indicators are intrinsically robust against ‘small’ perturbations. The reason lies in the property
of persistence of the exponential dichotomy which goes under the name of roughness (see Coppel
[18]). Note that this is a further reason justifying the notion of exponential dichotomy. Also in the case
in which our original system admits only hyperbolic equilibria a sufficiently small but general time-
dependent forcing perturbs the equilibria into hyperbolic trajectories whose properties of stability
persist but, in general, cannot be analysed via the sign of the eigenvalues of the variational problem
anymore. In other words, the Lyapunov spectrum of an hyperbolic equilibrium is perturbed into the
dichotomy spectrum [87].

o Lundstrdm [61] provides calculable definitions to approximate the recovery rate (reciprocal of the
characteristic return time) and the slowest return time while at the same time estimating the distance
to threshold (see Definition 4.3) and the volume of the basin of attraction (see Definition 4.9).

 Reactivity and maximal amplification are important concepts in fluid mechanics where they are used
in the context of creation and evolution of local instabilities in a flow. The collection of results in
the area goes under the name of nonmodal stability theory. For a concise introduction to the central
techniques of nonmodal stability theory, we point the interested reader to Schmid [90].

« Ives and Carpenter [43] propose the idea that the dynamics in the nearby of the boundary of a basin
of attraction can be important to infer a measure of nonlocal stability for the attractor. Recalling the
unforced Duffing oscillator (see Figure 2), one can intuitively see that if a system lingers close to the
boundary after a first perturbation, it is possibly more susceptible to tip once a new instantaneous
perturbation takes place (see also Definition 4.7). The linearisation of the model along the boundary
is therefore suggested as a valuable tool. In practical terms, it is important to point out that identifying
the boundary may be as difficult, if not more difficult, compared to identifying the attractor itself.
The study of the boundary and its distance from the attractor are the subject of Section 4. It is worth
noting that all the definitions and properties contained therein are purely geometrical and do not
involve any linearisation.

4. Basin shape indicators

This section contains the core indicators of the classic research in ecological resilience which dates
back to the groundbreaking work by Holling [40]. The underlying assumption is that the considered
phenomenon, and its mathematical model, admits multiple stable states, and thus, the phase space of
the induced dynamical system can be partitioned into basins of attraction. Consequently, one aims to
estimate the minimal perturbation of initial conditions which can drive a system lying on an attractor,
outside of its basin of attraction. The study of the geometrical features of the basins becomes the central
focus, aiming to relate such characteristics to inherent properties of stability of the respective attractors.

This section contains three subsections and five indicators. In subsection 4.1, we present latitude in
width, distance to threshold and precariousness. In subsection 4.2, we present latitude in volume and
basin stability. In subsection 4.3, we briefly discuss the relations between the indicators presented above.

All the indicators in this section are defined for a continuous dynamical system on R with local flow

P UCRXRY S RY,  (1,x)) = (1, x0).

https://doi.org/10.1017/5S0956792523000141 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792523000141

168 H. Krakovska et al.

(a) ) () e _ ()
'\ 4 ~ o
\ / S
Iy 4 N
’ \ ’
! \ L’LL‘,, .A 1 A s
I '
1 //\ ' o 7/
/l 1 4 U /,
1
Lu,‘ ’ ! ,' ’ 7
PN A 1 [ y 4
. W ! 1 / ,
7’ 4 1 7 4
4 7 k 4 4
// , N L a
-7 ~ 4 ’
s - ~ Phd .
/== S~oo__=-"" e e

ol

Figure 4. Three scenarios of a planar dynamical system are depicted. The grey regions represent the
basins of attraction for the different attractors in blue. The corresponding boundaries are depicted as a
black dashed line. (a) Latitude in width L, for this equilibrium is given as the length of the red dashed
line. Distance to threshold is given as the length of the green line. (b) System with a limit cycle attractor.
L,, is given as the length of the red dashed line and distance to threshold DT as the length of the green
line. Note that the lines have different locations. (c¢) Example of an attractor with a basin of attraction
that has infinite latitude in width indicator L,, = +00. Note the distance to threshold given as the length
of the green line is finite.

4.1. Latitude in width, distance to threshold and precariousness

The notion of ‘width’ of a basin of attraction as an indicator of resilience dates back directly to the
seminal work by Holling [40]. Loosely speaking, the width of a basin of attraction corresponds to the
length of the ‘minimal’ segment crossing through the attractor and intersecting (at its extrema) the
boundary of the basin of attraction, if it applies (see illustrative sketch in Figure 4). Although a precise
mathematical formulation seems hard to find in the literature, the geometrical representations used in
many works (e.g. Peterson et al. [78] and Walker et al. [103]) permit to precisely formalise the underlying
idea.

Definition 4.1 (Latitude in width). Consider the (possibly empty) set

S={(.2) e R? |y,z€0B(A), and ay + (1 — a)z € A for some a € (0, 1)}. @.1)
The latitude in width of an attractor A CRY for a continuous flow ¢ : R x RY — R is defined as
LAH=1 75=1
inf,es [y —zl, otherwise.

If L, (A) < o0, the inferior in the previous formula is in fact a minimum as shown in the next result.
Proposition 4.2. Under the notation and assumptions of Definition 4.1 and if L,, < 400, we have:

L,(A)= inf |y—z|=min |y —z|].

( ) (y,2)€S |y Zl ,2)es |y Z'

Proof. By definition A is a compact subset of RY. Therefore, there is o > L,,(A) > 0 such that for
all a;,a, € A, |a; — a,] < p. Moreover, notice that d/3(A) is nonempty since L,,(A) < p < co. By the
compactness of A, there are ay, . . ., a, € A such that

AcC U B,(a;) =:P.
i=1
In particular, notice thatif y, z € S and |y — z| < p, then (y, z) € P x P, which is a compact subset of R*".
Therefore, by the continuity of the norm in R and Weierstrass Theorem, we immediately obtain the
result. O
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Figure 5. Representation of the dynamics induced by the planar system x; =—x; + 10x;,

X, =x,(10 exp (%2) — X)(xy — 1). The system has three equilibria X,, X; and X,. The stable and unstable
manifolds of the saddle-node X, are depicted in red. The stable manifold of X, is the separatrix between
the basins of attraction of X, and X,, respectively painted in green and white. A qualitative behaviour
of the system can be deduced via the vector field (blue arrows) and a few trajectories in solid blue. Both
stable equilibria have an infinite latitude in width, while their distance to threshold can be made as a
small as wished through a suitable scaling. The resilience of this system has been thoroughly analysed

by Kerswell et al. [47].

Already in Peterson et al. [78], while still employing the idea of width of the basin of attraction (under
the name of ecological resilience), a focus was aimed at understanding the smallest perturbation of initial
conditions able to drive the system away from the original attractor (or equivalently the largest pertur-
bation of initial conditions for which the systems returns to the attractor). This approach, qualitatively,
yet unequivocally presented by Beisner et al. [9], emphasises the importance of the points of minimal
distance between an attractor and the boundary of its basin of attraction (in some cases called thresh-
old or separatrix). The definition has the advantage of revealing that an attractor with infinite latitude
in width (see Definition 4.1) is not necessarily ‘very resilient’ (see Figure 5). This idea has been used
consistently ever since for example in Lundstrom and Adainpdi [62], Lundstrom [61], Kerswell et al.
[47], Klinshov et al. [48], Mitra et al. [74] and Fassoni and Yang [29] where it is called precariousness
(on the subject see also Definition 4.7 and Proposition 4.8 below).

Definition 4.3 (Distance to threshold). Consider the (possibly empty) set
S={(ay)eR*|aec A, ycdB(A)). 4.2)

The distance to threshold for an attractor A C R for a continuous flow ¢ : R x RN — R is defined as

0, ifS=0

inf(a’)-)es |a - yl } otherwise.

1=

Remark 4.4. Reasoning as for the proof of Proposition 4.2, one can easily show that if DT(A) < oo,
then it is attained at a point of minimum. Moreover, notice that DT(A) = +o0 only if dB(A) = @ which
means that A is the global attractor (see Definition 2.3) for the system.

When dealing with a concrete model of a real phenomenon, it is possible to tune the previous def-
initions according to the available information on the phenomenon. In particular, if one can anticipate
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Figure 6. Sketch of the phase space for the dynamical system induced by (4.4) and of the distance to
threshold and latitude in width of the attractor A = {0}. Additionally, we can see that when we specify
the anticipated perturbations as R*, the distance to threshold changes, whereas, the latitude in width
remains the same (for details, see Example 4.5).

the set of possible perturbed initial conditions, the calculation of the latitude in width and the distance
to threshold can be restricted to a suitable subset C of the phase space called region of interest. For
example, such an adjustment on the distance to threshold has been explicitly presented in [68] where
the set S in (4.2) is substituted by

Se={(a,y)eR® |aec A, yedBA)NC}, 4.3)

for some C C RY. Likewise, the latitude in width can be modified with respect to the region of interest.
Then, for some fixed C C R¥, the set S (4.1) is changed for

Sc={(,2:(y,20eSand y e C}.
Example 4.5.

x=x(x—1/e)(x+¢) where xeR,ee€(0,1] “4.4)

The dynamical system induced by (4.4) has a stable equilibrium at x =0, which we consider as
the relevant attractor, and two unstable fixed points at —e and 1/¢. See Figure 6 for a sketch of the
phase space. Notice that when € becomes smaller, the distance to threshold DT(0) = ¢ decreases, but
the latitude in width L, (0) = 1/¢ + ¢ increases. If the set of anticipated perturbed initial conditions
C =R" is considered, the distance to threshold becomes DTy+(0) = 1/¢, since we have the set S¢ =
{(0,1/¢)} (see (4.3)), while the latitude in width L, z+(0) remains the same. On the other hand, if we fix
C =10, ¢), the set Sc becomes empty for both distance to threshold and latitude in width and therefore
DT (0) =L, 0,(0) =~4o00.

Example 4.6. Let us consider the example presented in Remark 2.2 (see also Figure 7). Depending on
the different choice of the local attractor we may obtain different values of the distance to threshold DT .
If we consider only the limit cycle of radius 1 as the attractor A,, the unstable equilibrium at the origin
is part of the basin’s boundary 0B(A,). Therefore, the distance to threshold DT(A,) = 1. However, if
we consider as a local attractor the set of points in the limit cycle and the origin, A, = A, U{(0, 0)},
or the whole closed ball of radius one A; = B;, we obtain DT(A,) = DT(Az) = 2. It is obvious that in
terms of actual resilience of the system’s state against a perturbation the origin plays a negligible role.

Instead of focusing on an attractor and its basin, in practice it is convenient to look at the current
state of the system within the basin. The idea of studying the minimal distance from the boundary of the
basin has qualitatively presented by Walker et al. [103], where it is described as only one of four com-
ponents of ecological resilience together with the latitude in width (see Definition 4.1), the resistance of
a gradient system (see Definition 5.3) and the cross-scale interaction among the previous components
and eventual subsystems. We push the idea in [103] a bit forward and propose a mathematical definition
which probes also the points outside the basin of attraction. This is not only a reasonable generalisa-
tion, as it also allows to quantify the difficulty for a point outside the basin to enter it after a given
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Figure 7. Sketch of the phase space for the dynamical system induced by (2.2) and representation of
the distance to threshold depending on the choice of the local attractor (see Remark 2.2). For the local
attractor A, consisting of the points in the limit cycle of radius 1, DT(A,) = 1. For the local attractor
A, = A, U{(0,0)}, DT(A,) = 2. The choice of the attractor A, admits to consider only distances to the
‘significant’ parts of the boundary.

perturbation, but it also allows us to later establish a connection with a recently presented indicator (see
Definition 5.5).

Definition 4.7 (Precariousness). The function P 4 : RY — R U {00} defined by

00 if 0B(A) =2,
Xo > Pa(xg) = ,632& IXo =yl ifdB(A) # @ and x, € B(A)
— inf |xo—y| ifdB(A)# D and xy ¢ B(A)
yedBA)

is called the precariousness of the point x, € RY with respect to the basin of attraction B(A).

The following simple proposition establishes a relation between the distance to threshold and the
asymptotic value of precariousness.

Proposition 4.8. Consider a continuous dynamical system ¢ on RY. If dB(A) is nonempty, then

lim P 4 (¢(1, %)) = DT(A), for all x, € B(A),

and the equality holds if every trajectory in A is dense.

Proof. The first inequality is a direct consequence of the definition of basin of attraction (see Definition
2.1) and of distance to threshold (see Definition 4.3) that is for any x, € B(A),

lim PA(¢(t, xo)) =lim inf |¢(¢,x) —y|=1lim inf |@(?, x0) Lx — Y|
t—00 t—o00 yedB(A) t—>00 XEW(xp),
yedB(A)
> inf |x—y|> inf |a—y|=DT(A).
xew(xq), acA,
yed B(A) yed B(A)

If all trajectories in A are dense, the equality is a direct consequence of the fact that w(xy) C A is
invariant for the flow and thus it is dense in .A. O
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Invariance with respect to change of coordinates

The indicators latitude in width, distance to threshold and precariousness are invariant with respect to
diffeomorphisms of the phase space which preserve the Euclidean distance. This includes in particular
linear changes of coordinates z = Qy, with Q non-singular and orthogonal.

4.2. Latitude in volume and Basin stability

For one-dimensional dynamical systems, the latitude in width of a basin of attraction (see Definition
4.1) coincides, in fact, with its Lebesgue measure w(B(A)) (recall that a basin of attraction is always an
open set and therefore Lebesgue-measurable; see Proposition 2.4). The notion acquires special interest
when the study can be restricted to a measurable set C C R” of finite measure since one can interpret
the ‘relative volume’ of the basin of attraction 5(A) (or the portion of B(.A) which lies in C) in terms
of the probability that a perturbed initial condition still belongs to B(.A).

According to Griimm [[34], Page 4], Holling and collaborators are the first to use this approach.
Griimm [[34], Page 7] proposes to measure an attractor’s resilience as the volume of its basin of attrac-
tion. Wiley et al. [107] and Fassoni and Yang [29] suggest to measure the volume in a relative sense to
some bounded subset, as follows.

Definition 4.9 (Latitude in volume). Ler C C RY be Lebesgue-measurable and such that 0 < u(C) < 0.
We define the latitude in volume of the attractor A with respect to the region of interest C as:

n(BA) N O)

L(AC)=
4O ()

L, returns a nondimensional value in [0, 1]. Particularly, L,(A, C) = 0 if and only if all the trajectories
starting in C (except at most those starting in a negligible subset of C) do not converge to A as t — o0.
On the other hand, L,(A, C) =1 if and only if all the trajectories starting in C (except at most those
starting in a negligible subset of C) converge to A as t — 0.

Remark 4.10 (Region of interest). The ‘region of interest’ C implicitly reveals the characteristics of
the models to whom the indicator of latitude in volume should be applied. The system at hand should
be at most subjected to isolated impulsive perturbations of bounded magnitude & > 0, where the term
isolated means that the interval of time between two occurrences should be longer than the transient
required by the system to reach an ‘indistinguishable proximity’ to the attractor A from any point in
the basin of attraction. Then, the subset C is defined as the set of possible perturbed initial conditions
from the attractor [67], that is Bs(A). If additional information on the probability distribution of such
perturbations is available, the indicator can be refined (see Definition 4.11). On the other hand, this
indicator assumes additional meaning in the case of multi-stable systems [29, 107]. In this case the
basin’s volume can be interpreted as a measure of the ‘attractor’s relevance’ in the phase space, where
it competes against other attractors and their basins over the phase space. Thus, the region of interest
should include all the (relevant) attractors A;, i =1, ..., v (assuming that they are included in a set of
bounded measure) as well as the possible perturbed initial conditions of magnitude § from them, that is
U;:1 B;s(A;) C C. Even so, there is no consensus in the literature as how to choose the region C itself.
For example, in [29] the smallest N-dimensional interval I containing Uiuz1 Bs(A) is considered (see
the conceptual sketch in Figure 8b). This approach privileges the immediate calculation of the measure

of I.

Menck et al. [66, 67] propose a variation of the latitude in volume (see Definition 4.9) where a weight
over the phase space is considered, according to an a priori chosen probability density p of the expected
perturbations of initial conditions from the attractor. This indicator and its numerical calculation have
been investigated in several works including Lundstrom [61], Lundstrom and Adainpié [62], Evans and
Swartz [28], and Mitra et al. [73].
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Figure 8. Depiction of two different approaches in choosing the region of interest C depending on the
available information. The relevant attractor is sketched as a black dot and identified by the symbol A,
whilst its basin of attraction corresponds to the grey area denoted by the symbols B(A). The region of
interest C is shown as the area encircled by a black dashed line and denoted by C. (a) The latitude in
volume of the attractor A is calculated with respect to the region of interest C corresponding to the set of
expected perturbations of the initial conditions (red region). (b) The latitude in volume of the attractor A
is calculated with respect to the n—dimensional interval C containing also the further attractors A,, A,
as well as the set of each local attractor’s expected perturbed initial conditions (red regions).

Definition 4.11 (Basin stability). Let p:RY — R* be a Lebesgue integrable function such that
fRN p(x) dx = 1. The basin stability Ss4, of an attractor A with respect to p is defined as:

Ssa(p) = / XX p(x) dx, (4.5)
RN

where x(x) is the characteristic function of Z C R". Sp ) returns a nondimensional value in [0, 1].
Remark 4.12. Given C C R Lebesgue-measurable and such that 0 < u(C) < 0o and considered
{I/M(C) forxeC,

else,

pcx) =
one immediately has that Sg 4)(pc) = L,(A, C).

Invariance with respect to change of coordinates

Both, basin stability and latitude in volume, are not invariant with respect to the change of coordinates.
Nevertheless, measure-preserving diffeomorphisms of RY allow to preserve the value of the indicators.
However note that then also the region of interest C (or function p, in the case of basin stability) has to
be transformed accordingly.

4.3. Discussion

 Basin shape indicators, while being a useful intuitive tool, should be treated very carefully. Indeed,
often a real-world system is inherently ‘open’, meaning that it is constantly subjected to a time-
dependent forcing (deterministic and/or random). Hence, the boundary of the basin of attraction of
the unperturbed problem may not have a dynamical meaning and the indicator can become mis-
leading. A concrete example of this fact can be recognised in the phenomenon of tipping induced
by nonautonomous terms as treated in Section 6. Furthermore, even if this does not apply and the
system is subject to only instantaneous isolated perturbations, the estimation of a basin’s boundary
is usually a difficult task. For example, Kerswell et al. [47] use a variational method employing the
maximal amplification (see Definition 3.6) to estimate the distance to threshold. On the other hand,
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Figure 9. Depiction of the phase space of the system induced by i = r(r — cos(Tp) — (1 4+ ¢)), ¢ =0,
where (r, ) € [0, 00) X [0,27) and & > 0. The problem has an asymptotically stable equilibrium at the
origin. The basin of attraction is in a shape resembling a ‘flower’ and has a relatively big volume.
However, the distance to threshold is only DT = ¢.

basins of attraction with fractal-like boundaries (or intermingled and riddled basins, which do not
arise for trapped attractors but are possible for the Milnor’s definition) are discussed in the work of
Schultz et al. [91].

« The following result establishes a direct relation between latitude in width, latitude in volume and
distance to threshold. It is intuitively clear that the latter delivers the safest information (see Figure 9).
Nevertheless, we include a brief proof as it seems to not be anywhere in the literature.

Proposition 4.13. Consider a continuous dynamical system ¢ on R". Then, for a given attractor A and
for any C C RY measurable with 0 < u(C) < 0o we have that

2DT(A) <L,(A), and LA, C)<L,(A Bp(A)=1.

Proof. We let S,, and S, denote the sets introduced in Definitions 4.1 and 4.3, respectively. Firstly, notice
that if DT(A) = 400, then Sp; = @. Therefore, the basin’s boundary dB(A) = ¥ and thus also S,, = @ and
L,, = +00. On the other hand, if DT(A) < oo and L, (A) = +oc0o the aimed inequality is trivially true.
Assume now that DT(A) < +o0o and L, (A) < +o00o. Due to Proposition 4.2 and Remark 4.4, there is
(v,2) €S, such that L,(A) = |y — z| and (&, v) € Spr such that DT(A) = |u — v|. Let * € (0, 1) be such
that x = a*y 4+ (1 — a*)z € A. Then, we have that |u — v| < min{|y — x|, |x — z|}. Therefore,

2DT(A) =2u —v| < |y — x| + [x — z[ = |y — 2| = L.(A),

which is the first aimed inequality. In regard to the second inequality, an argument by contradiction
allows to easily show that Bp;(A) C B(A). Thus, we have

M(B(A) N Bpr(A)) — M(BDT(-A)) —
w(Bpr(A)) w(Bpr(A)) .

L,(A, Bpr(A) =

On the other hand,
1 =max{L,(A, C)| C C R", measurable with 0 < 11(C) < 00}

which immediately gives the second inequality. O
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Figure 10. (a) Two continuous vector fields f and g induce ordinary differential equations sharing the
same distance to threshold and characteristic return time for the attractor A = 1. However, a common
uncertainty € > 0 on both problems may lead to dynamical systems which are not topologically equiva-
lent, since the first maintains always a nonempty set of bounded solutions (b), whereas it may occur that
the latter has no bounded solutions (c). The example is thoroughly described by Meyer and McGehee
[71].

5. Nonlinear transient dynamics

The indicators of resilience introduced in the previous sections focus either on the properties of the
linearised flow or on the geometrical features of the basin of attraction. However, they do not take into
account the nonlinear transient dynamics within the basin, which may play a crucial role. In order to
better exemplifies this idea let us briefly present an example from Meyer and McGehee [71]. Consider
the differential equations

X if x <0,
x=fx)={x'sin(zx) if0<x<1, and x=gkx)=—x(x—1).
1—x ifx>1,

The dynamical systems induced by both equations have an unstable equilibrium at x =0 and a stable
equilibrium at x = 1. Therefore, the distance to threshold for .4 = 1 is the same for both systems, namely
DT(A) = 1. Moreover, the characteristic return times are also the same Tx(.A) = 1. Nonetheless, the two
functions f and g attain different maxima, respectively, u =7 ~" and t = 1/4. For a given uncertainty
It < & < u on both vector fields, it can happen that the induced dynamical systems cease to be topolog-
ically equivalent (see Figure 10). In particular, the dynamical system induced by x = g(x) — & does not
have any bounded solution anymore.

This section contains five indicators. Return time in subsection 5.1, resistance of a gradient system
in subsection 5.2, resilience boundary in subsection 5.3, intensity of attraction in subsection 5.4 and
expected escape times in subsection 5.5.

Except for the return time, which is defined for a general continuous flow on R, all the other indica-
tors are defined for dynamical systems induced by ordinary differential equations of the type x =f(x),
x € R", for which we assume that the assumptions in Section 2 are satisfied.

5.1. Return time

Between the *70s and the *90s of the last century, the notion of return time as an indicator of resilience
(firstly introduced by O’Neill [76]) gathered attention and stimulated a fair amount of research (e.g.
Cottingham and Carpenter [19], DeAngelis et al. [22, 23], Harte [38]). The reason lies in the fact that
this definition was able to capture the transient behaviour of the system after an initial perturbation in
contrast with the more classical characteristic return time (see Definition 3.1). Although there are several
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variations in the literature (mostly differing only for the constant of normalisation), they all are similar
to the definition below [75, 76].

Definition 5.1 (Return time). Consider a continuous dynamical system ¢ on R, and assume that A is
an attractor for ¢ and B(A) its basin of attraction. The return time for the system from x, € B(A) \ A
to A is defined as:

— 1 >
Tp(A, x,)= —— dist(¢(t, x,), A) dt, 5.1
®(A, x,) dists,, A) /; (¢(1,x,), A) (5.1
wheie dist(A, B) denotes the Hausdorff semi-distance between the sets A, B C RY. We shall use the sym-
bol Ty, instead of the more classical Ty in order to avoid confusion with the characteristic return time
presented in Subsection 3.1. Moreover, for a fixed measurable set C C B(A) \ A, the maximal return
time and average return time from C to A are respectively defined as

T" (A, C)=supTr(A,x,), and Tp*"(A,C)= L / Tr(A, x) du(x).
xpeC w(C) Je

The definition of return time is a valuable theoretical tool, but the indefinite integral in (5.1) is a
clear obstacle in practical applications. Therefore, more calculable indicators, still accounting for the
transient dynamics (see Neubert and Caswell [75]), have been developed and were frequently preferred
in applications.

The following result shows (as expected) that the integral in (5.1) is finite when the attractor consists
of a hyperbolic solution (see Definition 2.6).

Proposition 5.2. Consider a continuous dynamical system on RY induced by an ordinary differential
equation x = f(x), with f continuously differentiable. Furthermore, assume that the attractor A is made
of the points of a locally attractive hyperbolic solution X (see Definition 2.6). Then,

Tr(A, x,) < 400, for all x, € B(A).

Proof. Due to the First Approximation Theorem (see [[36], Theorem I11.2.4]), there is § > O such that
if ¥ € B(A) satisfies [x — X(s)| < § for some s € R, then for all > s, |¢(t,X) — X(f)| < Ke ?"~ for some
K >1 and g > 0. On the other hand, by definition, for every x, € B(A) \ A there is s > 0 such that
dist(¢(s, x,), A) < §. Then, the result is a consequence of the linearity of the integral in (5.1). O

Invariance with respect to change of coordinates

The maximal and average return times are invariant with respect to diffeomorphisms of R which pre-
serve the Euclidean distance. This includes in particular linear changes of coordinates z = Qy, with Q
non-singular and orthogonal. Note that the region of interest needs to be reparametrised in a consistent
way.

5.2. Resistance of a gradient system

Stability landscapes are a commonly used tool in mathematical ecology as they provide immediate intu-
itive information on the dynamical features of equilibria (when they exist) of low-dimensional systems.
Limitations and warnings of cautious employment of this instrument have been pointed out by many
(see [68] e.g.). In mathematical terms, a stability landscape can be seen as the potential V of a gradient
system (and related to the notion of Lyapunov function [17]). This means that the phenomenon can be
represented via an ordinary differential equation of the type x = —VV(x), where V is a twice continu-
ously differentiable real valued function. Then, one can consider the minimal work required to bring the
system from an attractor A to a perturbed initial condition outside the basin of attraction B(.A) as an
indicator of resilience (see e.g. Lundstrom [61]).

Definition 5.3 (Resistance of a gradient system). Consider a continuous dynamical system induced by
an ordinary differential equation x = —V'V(x), where V : RY — R is a twice continuously differentiable.
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The resistance (potential) of a gradient system with respect to the attractor A is
W(A) = » SAnf (V(xo) = V(@).

Remark 5.4. Walker et al. [103] call resistance of an attractor A the quantity defined by

W(A)
L(A)

where L, (A) is the latitude in width of A. As pointed out also by Meyer [68], care should be taken in the
interpretation of this indicator. In particular, if the timescales of disturbance and internal dynamics are
considerably different, the slope of the potential function at the state of the system does not necessarily
relate to the capability of the system to recover.

RW(-A) =

Invariance with respect to change of coordinates

If the potential function V is conserved, a diffeomorphism o : R¥ — R y > o(y) of the phase space
does not change the indicator since |V(xy) — V(x)| = |V(o(vy) — V(o (¥)| if xo = 0 () and x = o ().

5.3. Resilience boundary

Meyer et al. [70] suggest to measure the resilience of an attractor by introducing and applying the
so-called ‘flow-kick framework’, a sequence of repeated ‘impulsive’ disturbances. Given a continuous
dynamical system induced by an ordinary differential equation x = f(x), x € R¥, assume that solutions
are defined for all 1 € R". For fixed 7 > 0, k € RY and a € A, a flow-kick trajectory X, (-, a) starting in
a € R" is constructed by considering a partition of the positive real line in intervals [jz, (j + 1)t),j € N,
and a sequence of functions ; : [jz, (j + 1)t] — R such thatX; solves the Cauchy problem

x=f(x), X(t)=%_,(t)+«, and %X(0)=ac A

One may interpret k as a kick, while T represents the flow time, and a pair (7, ) € (0, 00) x R" is called
a disturbance pattern. Notice that except for the trivial case where « is the origin in R", a flow-kick
trajectory is not a solution of the original problem.

Definition 5.5 (Flow-kick resilience set and resilience boundary). Under the previously stated assump-
tions and notation, a disturbance pattern (t, k) € (0, 00) x RY is said to be in the flow-kick resilience
set if

in(f P4 (’)?,,,((t, a)) >0 forallac A,
>

where P 4(y) is the precariousness of y € RY (see Definition 4.7). Moreover, the boundary of the flow-
kick resilience set in (0, 00) x R" is called the (flow-kick) resilience boundary for the basin of attraction

B(A).

If N > 1, the resilience boundary should be considered as a precautionary threshold. Indeed, it allows
to identify the flow-kick trajectories which leave 3(.A) at some point, but does not allow to distinguish
them from those who eventually return to B(.A) [70]. On the other hand, if N =1 and X, (7, a) ¢ B(A)
for some a € A and disturbance pattern (z, ), the same is true for all ¢ > 7. In fact, under appropriate
assumptions, the scalar case allows to associate a quantitative indicator based on the area of the region in
between the flow-kick resilience set and the line |« | = DT(A); see also Figure 11, where DT(.A) denotes
the distance to threshold for .A. This indicator has the merit of establishing a relation with distance to
threshold (Definition 4.3) and distance to bifurcation (Definition 6.1).
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Figure 11. Example of flow-kick resilience and resilience boundary for scalar models in popu-
lation dynamics. The upper left-hand side panel portrays two populations. Population 1 modelled
by x=x(1 — 15:) 55 — 1), (solid blue line) where kt stands for kilo-tonnes, and population 2 by

x=x(1 — )55 — 1)(0.0002x* — 0.024x + 1.4) (dashed red line). Both systems have an attracting
fixed point at A = {100kt} whose basin of attraction is marked in grey. The two systems have same dis-
tance to threshold and characteristic return time. Their resilience boundaries are shown in the upper
right-hand side panel where also three kick flow patterns are highlighted. In the lower panels, two pairs
of flow-kick trajectories are shown for population 1 on the left-hand side and population 2 on the right—
hand side. In black the flow-kick trajectory relative to the disturbance pattern (6 months, —24kt), in red
the one relative to (12 months, —48kt) and in green the one relative to (18 months, —30kt). The distur-
bance pattern (6 months, —24kt) lies in the resilience set for population 1, but outside the resilience set

of population 2. We refer the reader to [70] for further details.

Invariance with respect to change of coordinates

Diffeomorphisms of RY which preserve the Euclidean distance do not affect this indicator, provided that
also the vector k € RY of the disturbance pattern is reparametrised accordingly. This is due to the fact
that such changes of variable do not affect the indicator of precariousness (Definition 4.7). In particular,
linear changes of coordinates z = Qy, with Q non-singular and orthogonal conserve the value of this

indicator.

5.4. Intensity of attraction

The intensity of attraction aims to measure the strength of the attraction of an attractor. It was first devel-
oped by McGehee [65] in the context of continuous maps acting on a compact metric space, and it has
been recently extended by Meyer [69] and Meyer and McGehee [71] to the continuous-time dynamics
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induced from an ordinary differential equation on R". For the sake of consistency with the setup of this
work, we shall present the latter.

Consider a continuous dynamical system induced by an ordinary differential equation x = f(x), with
f:UCRYN —R", U open, and f bounded and globally Lipschitz continuous on U. Moreover, con-
sider an interval I C R containing zero and an essentially bounded function g € L*([0, T], RY), that is,
g [0, T] — R such that inf{c > 0: u({r € [0, T] : |g(?)| > c}) = 0} < 0o and the perturbed system

x=f(x)+ g(). (5.2)

Equation (5.2) is well-defined (it is in fact a special type of so-called Carathéodory differential equa-
tions), and it satisfies the conditions of existence and uniqueness for the associated Cauchy problems
[16]. In fact, it is also assumed that for any x, € R" the solution x, (-, x,) of (5.2) with x(0) = x, can be
continuously extended to [0, T]. Notice also that the function

¢:[0,TI x RY x L® - RY, (%0, §) > P(1, Xo, 8) = x,(1, Xo)

vary continuously in [0, 7] x RY x L> [71]. As a matter of fact, under the given assumptions, the prob-
lem also induces a continuous skew-product flow [56—58]. The fundamental idea behind the concept of
intensity is to conceive each bounded set of perturbing functions g € L* as a class of controls, and to
investigate which parts of the phase space can be reached through them. In this way one is able to relate
the transient dynamics of a system to the minimal class of controls, which are able to drive the points
of an attractor away from it for all future time. In order to state the mathematical definition, let us recall
some notation. Given S C R", we denote by ¢(, S, g) the set Uxoes ¢ (1, x0, &) and call the reachable set
from S via controls of norm r > 0 within the interval of time /, the set

pPs.10.h=J U ¢S, (5.3)

1€[0,T] geF([0,T])

where F.([0, T]) = {g € L([0, T, R") : ||lgll, <7}

Definition 5.6 (Intensity of attraction). The intensity of attraction Z(A, [0, T]) of an attractor A is
defined as:

Z(A,[0,T]) =sup{r > 0| P.(A, [0, T]) C K C B(A) for some compact K C R}. (5.4)

Interestingly, the intensity of attraction provides information on the persistence of an attractor not
only against a time-dependent perturbation. Meyer et al. prove that for any vector field, which differs in
norm from f less than its intensity of attraction, a compact positively invariant subset of R" exists which
contains the attractors of both systems (see [[71], Theorem 6.12]).

Invariance with respect to change of coordinates

Linear changes of coordinates z = Qy, with Q non-singular and orthogonal conserve the value of this
indicator.

5.5. Expected escape times

It is a well-known fact that the presence of a stochastic perturbation can have a non-negligible impact
on the dynamics of a system and possibly trigger a critical transition [51]. Dennis et al. [24] who, in
turn, refer to Gardiner [31] for the main idea suggest to judge the resilience of an attractor for a system
subjected to white noise via the notion of mean first passage time, also known as expected escape time.

Definition 5.7 (Expected escape times). Consider a scalar stochastic differential equation

dX =f(X) dt + /v(X) dW (1), (5.5)

where v : R — R* is continuous, and W is a standard Brownian motion. If (5.5) has a stationary dis-
tribution with probability density p(x), then the area under p(x) between x, and x, gives the long-term
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proportion of time that the process X will spend in the interval (xy,x;). The expected escape times
correspond to the mean first passage times for a process starting at x, to increase (resp. decrease)
to x,

T(x) = / ; b (P)(;zy)z dy forx, <x,

o [Fp()dz
L(x)=2 ————dy forx,>x.
« vopk)

The expected escape times represent the mean amount of time necessary for the process X to attain
the value x starting from x, < x and x, > x, respectively. As explained in [24], one or both these integrals
can be infinite. For example if x = 0 acts like an absorbing value and the system lies close to it, there is a
positive probability that the first escape time takes an infinite value and so p(x) is not integrable near 0.
An analogous reasoning holds for the second integral if oo acts as an absorbing boundary. In this case,
the right tail of p is not integrable.

Invariance with respect to change of coordinates

The expected escape times are presented for scalar stochastic equations. A linear change of coordi-
nates in this context would mean a scaling of the only available dependent variable. For example,
consider Y = aX, with a > 0. Then, one obtains the stochastic differential equation dY = af (Y /a) dt +
Ja2v(Y/a) dW(r). Note that if p(z) is the stationary distribution for X, then p(z) = p(z/a)/a is the
stationary distribution for Y. Then, the expected escape times for the process Y starting at y, are

- Jy P dz
T1(y)=2 ———————du fory, <y,
=2 ] @viap =y
T P(2)dz
Ty =2 f"’% du fory, > y.

v a*v(y/a)p(p)

For example, let us consider the first integral; then; we have that for y, <y and using p(z) = p(z/a)/a,
and suitable changes of variables,

y L ® y/a [N y/a "
’ﬁ(y)=2f wh PEOdE =2/ Jo_ PG/ dz 22/ Lop@ds
w @O/ap/a) wra av(y/a)p(n) vo/a VO/@)P()

which is equal to t,(y/a) for the process X starting at y,/a. An analogous result holds for 7,. General
diffeomorphic reparametrisations of R do not in general preserve the value of the indicators.

5.6. Discussion

« Although the indicators based on the transient dynamics add an additional layer to the analysis
of resilience, their mutual comparison as well as their comparison with other classes of resilience
indicators is a task that remains largely unaccomplished. One of the few quantitative exceptions is
given by the comparison between the characteristic return time (Definition 3.1) and the return time
(Definition 5.1) showcased by Cottingham and Carpenter [19] for a model of summer phosphorus
cycling in north temperate lakes. According to their simulations, the characteristic return time iden-
tifies a planktivore-dominated food web as more resilient than a piscivore-dominated one, whereas
the opposite result is obtained through the return time. This single example shows that no qualitative
agreement between these indicators can be generally assumed. As a matter of fact, the return time
seems to be considered as a more reliable indicator since the estimation given by the reciprocal of
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the characteristic return time completely neglects the transient deviation after the perturbation which
can be considerably large [22].

o In 1979, Harrison [37] introduced the concept of stress period for a differential equation, that is, a
compact interval of time in which the problem is perturbed and one can measure the ability of the
system to resist displacement, and the rate of recovery to the original condition once the perturbation
is over. In the original formulation (presented in subsection 6.2), the perturbation consists only of
a time-dependent piece-wise-constant change of a parameter. However, it can be easily generalised
as exposed in Remark 6.6 and included among the indicators of resilience focusing on transient
dynamics.

« Stochastic tools have come to play an increasing role in the analysis of persistence of certain dynami-
cal features. In this review, we limited the presentation to the expected escape times in Definition 5.7
which explicitly appear in the resilience literature. However, it seems clear to us that other analytical
tools from stochastic analysis will eventually appear in the context of resilience. For example, the
identification of the most likely escape trajectory has been treated by Forgoston & O. Moore [30] by
identifying a heteroclinic connection for the associated twice-the-dimension Euler-Lagrange prob-
lem, and it might be regarded as a stochastic analogous of the resistance of gradient systems. More
recently, Slyman and Jones [93] have applied a similar technique in the context of rate-induced tip-
ping, a critical transition that we shall treat in Subsection 6.3. Similarly, the role of propagation of
uncertainties in the occurrence of a bifurcation can be regarded as a transient indicator which extend
the distance to bifurcation indicator in Definition 6.1 (see e.g. Kuehn and Lux [54] or Lux et al.
[63]).

6. Variation of parameters

In addition to the previous notions of resilience, one can also view parameters as static phase space
variables, which are changed infinitely slowly. Due to their special role, one can then ask, how one may
define resilience in the parameter space. Therefore, the term resilience acquires a wider significance as
it does not limit to the capability of a system to endure a perturbation and revert to a desirable state but
to the overall persistence of the dynamical relations which determine the qualitative behaviour of all the
trajectories. Let us set some common notation for this section. We shall consider a family of continuous
dynamical systems induced by a parametric family of ordinary differential equations

x=f(x,2), xeRY, AeACR", 6.1)

withf € C(RY x R¥, R") satisfying the assumptions in Section 2 for all A € A. When we fix a parameter
o € RM, we will refer to the respective equation by the symbol (6.1),, and denote by ¢,, the local flow
on RY induced by (6.1),,.

This section contains three subsections. In subsection 6.1, we present the indicator distance to bifur-
cation. In subsection 6.2, we present three indicators: resistance, elasticity and persistence. Lastly, the
relation between resilience and tipping points in nonautonomous systems is explored in subsection 6.3.
It should be noted that in subsections 6.2 and 6.3, the considered variation of parameters is ‘dynamic’
meaning that in place of A € A in (6.1), we shall use a function y : R — A, t+— y(¢).

6.1. Distance to bifurcation

Bifurcation theory is a classical branch of nonlinear dynamical systems which studies the lack of topo-
logical equivalence in phase space upon (smooth) change of one or more of the system’s parameters. The
classic theory for autonomous dynamical systems encompasses the bifurcations of local steady states,
periodic orbits, as well as homoclinic and heteroclinic orbits [55]. For its characteristics, a bifurcation
point entails a profound change in the dynamics of the system, which may include the change of stability
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or the disappearance of a considered attractor. In practical terms, a bifurcation point can sometimes be
undesirable, especially when the system exhibits hysteresis or irreversibility [13]. It is therefore natural
that the distance to a bifurcation point has been suggested as a measure of resilience [25, 43].

Definition 6.1 (Distance to bifurcation). Let A be an attractor for the dynamical system induced by
(6.1),, and denote by A, (A) CRM the set of bifurcation points for A. The distance to bifurcation for A
is defined as

Dy(A) = A*ienz:[:, [Ao — A7,
T

Notably, distance to bifurcation can be interpreted as a distance to threshold (see Definition 4.3) in
parameter space.

Invariance with respect to change of coordinates

No general class of diffeomorphisms of the phase space leaves this indicator unaltered.

6.2. Resistance, elasticity and persistence

Harrison [37] examines the transient behaviour of a system which undergoes an instantaneous change
of parameters and returns to the original values, just as instantly, after an interval of time. The sys-
tem’s response during and after the perturbation are suggested as indicators of the system’s capacity to
withstand a change and to recover. Harrison names these features respectively resistance and resilience
(although, to avoid confusion, we will use Orians’s nomenclature [77] and call Harrison’s resilience
elasticity). Using Webster’s words [105], the first describes ‘the ability to resist displacement’, whereas
the latter ‘the rate of recovery to the original condition’. With the notation set at the beginning of the
section, we have the following definitions:

Definition 6.2 (Resistance). Given an attractor A for (6.1),,, and fixed T > 0 such that for all A € A,
and a € A, ¢,(-, a) is defined at least in [0, T, the resistance of system (6.1),, at A with respect to A
and the stress period [0, T] is defined as:

R(A’ A’ T): Sup |¢A(t’ a) _¢k0(t’ a)l

1€[0,T], aeA,\o
rEA

Definition 6.3 (Elasticity). Given an attractor A for (6.1),,, and fixed T > O such that ¢,(T, A) C B(A)
forall . € A, consider the continuous function ®,, : [T, 00) x A x A — R" defined by

Dy (1,a,0): = |y (1 = T, (T, @) — s, (2, ).
The elasticity of the system (6.1),, at A with respect to A and the stress period [0, T] is defined as:

E(A, A, T) = sup ( l d q’)\o(t’ a, A)) )

relT o), ae Az \ oo (f, @, A) dt
AEA

In Figure 12, it is possible to appreciate the complementary information provided by resistance and
elasticity in a simple scalar differential model from population dynamics.

Remark 6.4. The definitions of resistance and elasticity presented above admit a natural generalisation.
Instead of using the original trajectory inside the attractor as a reference, in practice it may be sufficient
to record the displacement from the attractor or the rate of convergence to the attractor. This would lead
to the following weaker definitions

R'(AANT)= sup |$(t,a)—d],

1€l0.7), ad €Ay,
reA
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Figure 12. Effect of a stress period of Harrison’s type on two populations following the logistic model
x=rx(1 —x/K) with carrying capacity K =1, and growth rates, respectively, equal to r, =1 and to
r, = 2. A stress period [0, 1] is applied to both models during which the carrying capacity is diminished
of the 20% (i.e. A = {0.8}). The resistance of the attractor x* = 1 is lower for the first species than the
second. Conversely, the elasticity of the attractor x* = 1 is higher for the first species than the second.

and

@} (1,a,2): = inf |¢y, (1 = T, ¢:(T, @) — ',
acA

1 doy(t,a, A
E"(A, A, T)=  sup ( o )> .

relT.o0).ac Ay, \ iy (1, a, 1) di
AEA

Ratajczak et al. [83] use a setup similar to Harrison’s to address the problem of the interaction
between the duration and the ‘intensity’ of a stress period in determining a tipping of the system from the
original basin of attraction to a different one (if it applies). In accordance with Harrison’s nomenclature,
we shall call this property persistence.

Definition 6.5 (Persistence). The persistence of an attractor A for (6.1),, with respect to a stress
intensity A € A is given by

P,(A) =sup{T > 0| ¢,(t, A) C B(A) forall 0 <t < T}.
The persistence of an attractor A for (6.1),, with respect to a stress duration T > 0 is given by

Pr(A)=sup{p > 0|, (t, A) C B(A) for all0 <t < T and |» — A| < p}.

Remark 6.6. It is clear that Harrison’s formulations of resistance and elasticity as well as of persistence
generalise to any perturbation on a finite time interval rather than just a piece-wise constant change of
parameters. Consider (6.1),, for some Lo € RM, T > 0, and a set A of functions from R x R" into R
such that if A € A, then for every compact set K C RY, sup, . A(#, x) is locally integrable and 1(t, x) = A,
forall x e RN and t ¢ [0, T]. Hence, one can consider the problem

X =f(x, Adt, x)),

and still define resistance, elasticity and persistence as above.

Invariance with respect to change of coordinates

Both, resistance and elasticity, are invariant with respect to diffeomorphisms of the phase space which
preserve the Euclidean distance. This includes in particular linear changes of coordinates z = Qy, with
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0 non-singular and orthogonal. The persistence with respect to stress intensity is susceptible to changes
of time scale. Note also that no specific class of diffeomorphisms of R" preserves the persistence with
respect to the stress duration.

6.3. Resilience against rate-induced tipping

Sizable changes in the output of a system upon a negligible variation of the input are referred to as
critical transitions or tipping points. Motivated by current challenges in nature and society [32, 88], the
study of the several mechanisms leading to a critical transition has experienced significant mathematical
interest as well [51, 52]. In recent years for example, the phenomenon of rate-induced tipping [106] has
been proposed as an alternative mechanism for a critical transition, with respect to the more classical
autonomous bifurcations and noise-induced tipping [5]. Rate-induced tipping can be seen as a special
type of nonautonomous bifurcation for the differential equation

x=f(x,y(r), xeRY teR,r>0 (6.2)

obtained from (6.1) through a time-dependent variation of parameters y : R — R which is assumed to
be bounded, continuous and asymptotically constant: lim,_, ., ¥ () = A, lim,_, , ¥ () = A. In particu-
lar, the parameter r > 0 represents the rate at which the time-dependent variation takes place. We shall
maintain a concise presentation and leave the detailed assumptions and technical aspects for Appendix A.

Typically, the study of rate-induced tipping is carried out under the assumption that the time-
dependent variation of the parameters does not cross any point of autonomous bifurcation; that is we
assume that for all A in the image of y, the dynamical systems induced by (6.1),, are all topologically
equivalent. One might expect that for any fixed attractor A, of the past limit-problem, and denoted by .4,
the ‘corresponding’ attractor of the future limit-problem, for all r > 0 there is an attractor of (6.2), which
approaches A, as t — —oo and A, as t — oo. However, this is not always the case and, depending on r,
a local attractor of (6.2), limiting at A, as t — —oo may fail to track .A; as  — oo. This phenomenon
is called rate-induced tipping, and the specific value ry (A,) of the parameter where it occurs is called
critical rate (see Definition A.1). It seems therefore natural that the critical rate r (Ap) determines a
threshold of resilience for (6.1),, against the time-dependent change of parameters y, in the sense that
forall r < rj, where r;j is the inferior over all the attractors of (6.1),,, the tracking of attractors from the
past to the future is always verified.

This statement assumes further significance if we look at rate-induced tipping as of a nonautonomous
bifurcation. Then, the bifurcation point r; can be used to construct a distance to bifurcation analogous
to the one in Definition 6.1.

Definition 6.7 (Distance to rate-induced tipping). Let A, be an attractor of the past limit-problem, and
Ay the ‘corresponding’ attractor of the future limit-problem. The distance to rate-induced tipping for
(6.2) and for A, is defined as

Drale(AO) = |r - r;(AO)l

It should be noted, that in contrast to autonomous bifurcations, estimating the value of a critical rate
can be hard if not impossible [53]. There is, furthermore, a substantial difference from Definition 6.1.
The tipping point r;, depends on the function y that realises the variation of parameters. Therefore, it is
beneficial to investigate the continuous dependence of r; with respect to the variation of y. We hereby
propose a first result in this direction, when all the attractors of (6.1), are hyperbolic equilibria. The result
guarantees the lower semi-continuity (and if it applies the continuity) of r; with respect to y in a specific
set of functions: fixed 7, € R, we consider the set Q(y, 1,) of twice continuously differentiable functions
w :R — A such that w(f) = y(¢) for all f < t, and lim,_, , w(f) = A € A. For a detailed explanation of the
symbols appearing in the statement and for the proof, please consult Appendix A.
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Theorem 6.8. Assume that f is bounded and uniformly continuous, and that there are € > 0 and § > 0
such that, for every7 > 0, a T(y,7) > 0 exists for which if o € Q(y, to) and ||y — o|lc@.a, < 8, and if X,z
is a solution of x = f(x, w(rt)) defined on [T(y,7), 00) and y = Df (fw;(t), w(?t)) y has an exponential
dichotomy with projector the identity on [T(y,T), 00), then the distance between X,z and any solution
of x = f(x, w(t)) starting at time s > T(y, ) at x, € RY with [X,7(s) — xo| < &, converges to zero as t —
0o. Moreover, assume that if X, , has a rate-induced tipping point ry, such tipping point is unique and
transversal. The following statements hold true.

1. Forall r > r, there is 8, > 0 such that if o € Q(y, 1)) and ||y — ollcwa) < 81 then r > r¥.

2. Assume additionally that for all w € Q(y, ty), if X, undergoes a rate-induced tipping, the tipping
point r;, is unique and transversal. Then, for all r <}, there is 8, > 0 such that if |y — @llcw.a) < 62
thenr <r:.

Invariance with respect to change of coordinates

Except for specific classes of problems an explicit formula to identify rate-induced tipping points is not
available. Nevertheless, it is immediate to check that any change of time scale proportionally affects such
critical rates. In general, diffeomorphisms of R will also affect both the past and future limit problems
and the intermediate dynamics.

7. Example

In this section, we consider a classic one-dimensional population model with an Allee effect, that is with
declining individual fitness for low-population densities (see Courchamp et al. [20]). Firstly, we derive
the values of the indicators presented in Sections 3—6. Then, we perform a parametric study of their
behaviour and finally compare the resilience of chosen populations with concrete parameter settings.

The model

We shall study the parametric differential problem

k=fe,r L) =rx (1—%) (%— 1), (7.1)

where x € R" represents the population size, r > 0 the intrinsic growth rate, K > 0 the carrying capacity
of the environment, and 0 < L < K an Allee threshold. For the sake of convenience, we will set the
carrying capacity to K = 1. For 0 < L < 1, the problem has three equilibria, atx, =0, x; = 1, and x;, = L.
The first two are stable and the latter unstable. Therefore, L determines a threshold below which the
population cannot persist.

7.1. Resilience of the attractor x; = 1

In this subsection, we apply the presented indicators to the attractor x; = 1 of the considered model
X =f(x, r,L). Note that when L = 1, the system undergoes a transcritical bifurcation and the equilibria
x; and x; collide. When the calculations cannot be performed explicitly, the software Matlab is used for
numerical computation and simulation. In particular, we use the function ode45 with the options on the
relative and absolute tolerance respectively set to Re1Tol = 1e-12 and AbsTol = 1le-12.

Local indicators

The characteristic return time of x; = 1 (see Definition 3.1 and Remark 3.2) is easily obtained as the
opposite of the reciprocal of the derivative of f at x;: Tx(1) = —1/Df(1) = L/(r — rL). On the other
hand, notice that for scalar systems, the amplification envelope is trivially determined — in our case
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p(1,1) =€ — and does not provide further information. Concerning other local indicators, thanks
to Proposition 3.12, we immediately have the following equivalence (up to the sign) of the reactivity,
stochastic invariability, deterministic invariability and reciprocal of the characteristic return time —R, =

Basin shape indicators

The distance to threshold (Definition 4.3) for the attractor is DT'(x;) = 1 — L. Note also that considering
the set C = [0, 1], the latitude in volume (Definition 4.9) and the basin stability (Definition 4.11) (with
a uniform density o(x) = xjo.1;) With respect to C both yield the same value as the distance to threshold.
Furthermore, the latitude in width (Definition 4.1) has an infinite value since the basin is unbounded on
the right-hand side.

Nonlinear transient dynamics

The return time (Definition 5.1) does not admit an explicit closed form. Therefore, we employ a routine
to estimate it numerically. In Figure 13 we show an approximation of the mean return time from the set
C = (L, 1) estimated via a Monte Carlo simulation (uniform sampling on the set (L + 1077, 1) with 10000
points) depending on the parameters r € [0.01, 0.5] and L € [0.05, 0.95]. For all points, the return time
is approximated via a finite time integration ending when the considered trajectory achieves 1 — 107'°.
Note that the considered problem can also be interpreted as a gradient system. Thus, we are able to
derive its resistance W (Definition 5.3) as

(-4 Dr

W(XI)Z/L fx,r,L)ydx= 2L

The intensity of attraction Z (Definition 5.6) is obtained by calculating the maximum of f on the interval
[L, 1]. We show the behaviour of Z(x,) depending on r € [0.01, 0.5] and L € [0.05, 0.95] in Figure 14.

Variation of parameters

The distance to bifurcation (Definition 6.1) for this problem is Dy(x;) = 1 — L, and therefore, it coin-
cides with the distance to threshold. In order to study the resistance and elasticity of x; = {1}, we will
consider a perturbation of the system’s environmental capacity. Particularly, we aim to record the sys-
tem’s response to a reduction of the carrying capacity to K, = 0.9, for an interval of time [0, 7], with
T =10.If K, < L, the perturbed model is not ecologically meaningful. Hence, we will restrict the analy-
sis only to L < 0.9. Since the problem at hand is scalar, the resistance (Definition 6.2) can be calculated
simply as R(x;, K, T) =1 — ¢, (T, x,). On the other hand, the elasticity (Definition 6.3) corresponds
to the supremum of the weighted vector field —f(x)/(1 — x) over the interval [¢, (T, x;), 1), which is
attained at ¢, (T, x,). In regard to persistence (Definition 6.5), fixed K, > L, the persistence of x; with
respect to the stress intensity K, is Px, = +00, since the perturbed trajectories cannot be driven out
of the basin of attraction (K, +00) C (L, +00). The same applies to the persistence with respect to a
stress duration under the constraint that K, > L, that is P7(x;) = 4+o0c. Alternatively, one can consider a
simultaneous and consistent change of carrying capacity K, and Allee threshold, in the sense that if K,
is reduced of a certain percentage, then also the Allee threshold is reduced of the same percentage. In
this case, the value of P;(x,) will depend on T > 0.

7.1.1. Parametric study

We perform a parametric analysis of (7.1), with the aim of portraying the behaviour of some of the
considered indicators as the transcritical bifurcation point L = 1 is approached (results are summarised
in Figures 13 and 14).
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Figure 13. Comparison of the indicators for the attractor x, = 1 of the model (7.1) upon the variation
of the parameters r € [0.01,0.5] and L € [0.05, 0.95]. From top to bottom: opposite of the real part of
the dominant eigenvalue EV = i distance to threshold DT and the reciprocal of the mean return time
Tyen(1, (L4 1077, 1)). On the left, we see the scaled indicator values for the given parametric subspace.
In the middle a heat map for the parametric subspace, where yellow indicates the highest and dark blue
the lowest values of the indicators (see the logarithmic colour scale on the right). Black lines correspond
to the contour lines, which mark the parameter combinations with the same value of the indicators. If the
environmental changes drive the parameters along the contour curves, all indicators, apart from DT,
are not able to capture the approaching bifurcation independently. On the right, we see the dependence
of the indicator values on the parameter L. The three pictures on each row showcase the same surface
viewed by different viewpoints.

We focus on the parameter subspace given by r € [0.01, 0.5], L € [0.05, 0.95] and calculate seven
indicators (see previous Subsection 7.1 for details): reciprocal of characteristic return time EV = TLR,
distance to threshold DT, mean return time 7T5<**(1, (L + 1077, 1)), resistance W, intensity of attrac-
tion Z, resistance R and elasticity E. The last two indicators are calculated for the perturbation of the
environmental capacity K, = 0.9 for a stress period 7 = 10.

For a better comparison of the indicators, the estimates shown in Figures 13 and 14 are scaled to lie in
[0, 1] by (X — Xmin)/ (Xmax — Xmin), Where x represents the indicator, and minimum x,,;, and maximum x,,,,
corresponds to the local minimum and maximum of the indicator on the considered subset of parameters.
For the same reason, instead of 73", R, E, we represent their reciprocal so that the value 1 always
corresponds to the highest estimate of resilience. Additionally, resistance and elasticity we further restrict
the parameter space so to guarantee that these indicators are well-defined.

Itis possible to appreciate that upon fixing a value » > 0 and increasing L, all the considered indicators
capture a loss of resilience for the system as the bifurcation point approaches. The only exception is given
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Figure 14. Continuation of the comparison of the indicators for different parameter choices of
the model (7.1): resistance (potential) W, intensity of attraction I, resistance R and elasticity E
(please note that in order to have higher resilience corresponding to a higher numerical value,
we worked with the reciprocal of R and E). We consider perturbation of the environmental capac-
ity to K,=0.9, for time t=[0,10]. On the left, we see the scaled indicator values for a given
parametric subspace: [0.01,0.5] =r x L=1[0.05,0.95] for resistance (potential) and intensity and
[0.01,0.5] = r x L =1[0.05,0.89] for resistance and elasticity. In the middle, there is a heat map for
the parametric subspace, where yellow indicates the highest and blue the lowest values of the indicators
(see the logarithmic colour scale on the right). Black lines correspond to the contour lines, which mark
the parameter combinations with the same values of the indicator. On the right, we see the dependence
of the indicator values on the parameter L. The three pictures on each row showcase the same sur-
face viewed by different viewpoints. We see that resistance and elasticity behave in an opposite manner,
elasticity being higher for lower values of {r, L} while resistance being lower.

by the resistance which increases since the rate of exponential decay towards the attractor decreases in
the nearby of the bifurcation point. This phenomenon is also directly related to the so-called critical
slowing-down effect [21, 89, 96]. On the other hand, there are also parameter combinations, indicated
by the black contour lines, where the indicator stays constant.
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Species r L

Species 1 0.5 0.2
Species 2 1.3 0.3
Species 3 2.5 0.4
Species 4 5 0.6
Species 5 10 0.7

Figure 15. Five population strategies with different choices of parameters in equation (7.1). The table
on the left-hand side contains the parameters for each species. The plot on the right-hand side showcases
the graphs of f(x, r, L) for x € [0, 1] depending on the chosen values of parameters r and L.

high
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mean|
1/TR
-0.420 -0.352
.
2
(1]
L 0.410
o
5
0.161 0.158 0.071 0.055
11.666 10.623 10.348 10.612 10.373
0.800 0.700 0.400 0.300 low
resilience

Species

Figure 16. Each row represents one indicator and each column one species. The chromatic scale
applies row-wise as the values of the indicators have not been normalised. Darker tones of blue corre-
spond to higher values of resilience. With the exception of species 4, all the other species are considered
as the most resilient for at least one of the represented indicators.

7.1.2. Comparison of five species

Finally, we aim to showcase the behaviour of the indicators with respect to five different species growth
strategies for the Allee effect model (7.1). The different values of the parameters as well as the respective
graphs of f(x, r, L) for x € [0, 1] are shown in Figure 15. Given the previous considerations, we shall focus
on the following indicators of resilience: the opposite of the dominant eigenvalue EV = 1 /T, distance
to threshold DT, mean return time 73°"(1, (L + 1077, 1)), resistance (potential) of a gradient system W,
intensity of attraction Z, resistance R and elasticity E.

The numerical values for these indicators are shown in Figure 16. In all cases, x; =1 is the refer-
ence attractor. Each row corresponds to a single indicator, each column to a species. The chromatic
scale applies row-wise as the values of the indicators have not been normalised. Darker tones of blue
correspond to higher values of resilience. It is apparent how answering the question “Which species is
the most resilient?” is not trivial. The ranking of the resilience of each species varies depending on the
considered indicator.

In particular, it is interesting to notice that, not only there is no overall agreement on the resilience
ranking, but some indicators (EV and DT e.g.) provide antipodal responses. It is possible to single out
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Figure 17. On the left-hand side, the resilience boundaries of five species (see Figure 15) modelled
through (7.1). On the right-hand side, first row, the numerical values of the areas between the resilience
boundary and the respective distance to threshold calculated for each species. The second row con-
tains the same values now divided by the respective distances to threshold DT (x,) = 1 — L. The colour
gradient should be intended row-wise. Darker shades of blue correspond to a higher resilience.

three main clusters: a) EV and 1/77°", b) 1/E, I and W, ¢) 1/R and DT. With the exception of species
‘4’ all the other species are considered as the most resilient for at least one of the represented indicators.

Finally, in Figure 17 we can see the resilience boundaries for the considered five species. As studied
in [70], it is possible to extrapolate a measure of resilience for the attractor by calculating the area
between the resilience boundary and the line x = DT (x,) = 1 — L (see Subsection 5.3). However, since
the distances to threshold for the five species are different it seems natural to ask if the obtained values
are representative and comparable. The right panel of Figure 17 shows the numerical values obtained
for the indicator before and after dividing them by the respective distances to threshold.

7.2. Resilience of the attractor x, =0

In this subsection, we perform a (shorter) analysis of resilience for the attractor x, = 0. In order to solve
the singularity arising from posing L =0 in (7.1), we shall study the problem

x=gx,r,L)=mx(1—-x)(x—L), x>0, (7.2)

which is equivalent to (7.1) when L > 0 (and K = 1), via the variation of time scale 7+ Lt. When L
tends to zero, the continuous variation of the solutions can be deduced using Tikhonov’s theorem [98].
Note that when L = 0, (7.2) undergoes a transcritical bifurcation and the equilibria x; and x, collide.

Local indicators

Reasoning as in the previous section we obtain the characteristic return time of x, = 0 (see Definition
3.1 and Remark 3.2) as the reciprocal of the derivative of g at xy: Tz(0) = —1/Dg(0, r, L) = (rL)~". Here
again, the amplification envelope p(0, t) = P4 " does not provide further information, while the same
equivalence (up to the sign) of the reactivity, stochastic invariability, deterministic invariability and
reciprocal of the characteristic return time holds thanks to Proposition 3.12.

Basin shape indicators
The distance to threshold (Definition 4.3) for the attractor is DT (x,) = L. Note also that considering the

set C = [0, 1], the latitude in volume (Definition 4.9) and the basin stability (Definition 4.11) (with a
uniform density p(x) = xo..;) With respect to C both yield the same value as the distance to threshold.
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Furthermore, since the model has no biological meaning for x < 0, the latitude in width (Definition 4.1)
must be restricted to the positive cone, and therefore it would coincide with the distance to threshold.

Nonlinear transient dynamics

Same as for the attractor x; = 1, we use a numerical routine to approximate the return time (Definition
5.1). The results are now shown in Figure 18. We have used the same setting and stopping criteria for
the Monte Carlo simulation as before (uniform sampling on the set (0, L — 10~7) with 10000 points)
depending on the parameters » € [0.01, 0.5] and L € [0.05, 0.95]. The resistance W (Definition 5.3) is
obtained as

L}2—Lyr
2

The intensity of attraction Z (Definition 5.6) is obtained by calculating the maximum of g on the interval
[0, L]. We show the behaviour of Z(x,) depending on r € [0.01, 0.5] and L € [0.05, 0.95] in Figure 18.

0
W(xy) = / glx,r,L)ydx=

7.2.1. Variation of parameters

The distance to bifurcation (Definition 6.1) is Dy;(x,) = L, and therefore, it coincides with the distance
to threshold. We also note that a change of the carrying capacity 0 < K, for (7.2) does not affect the equi-
librium at x, = 0, in the sense that x, = 0 keeps being an equilibrium for the new system. Consequently,
the resistance of x, for such variations is always zero while the elasticity is not even well-defined — the
quantity @ (¢, a, 1) in Definition 6.3 is equal to zero. Concerning the persistence, a reasoning analogous
to the one for the attractor x; = 1 holds, in the sense that no variation of the carrying capacity is able to
change the equilibrium at O nor to drive it outside its basin of attraction (unless the carrying capacity
itself reaches zero, which, however, would make the model inconsistent).

7.2.2. Parametric study

We perform a parametric analysis of (7.2), with the aim of portraying the behaviour of some of the
considered indicators as the transcritical bifurcation point L = 0 is approached (results are summarised
in Figure 18). The same remarks about the setup, reparametrisation and comparability of the indicators
as in 7.1.1 hold. However, the indicators of resistance and elasticity are not calculated, since a variation
of the carrying capacity does not alter their values as explained in subsection 7.2.1. Therefore, the cal-
culated indicators are reciprocal of characteristic return time EV = TLR distance to threshold DT, mean
return time 75**(0, (0, L — 1077)), resistance W and intensity of attraction Z. Interestingly enough, the
indicator of mean return time captures a phenomenon that remained elusive to all the other indicators:
as L approaches the values 1, where a transcritical bifurcation for the equilibria x; and x; occurs, the
leading Lyapunov exponent for x; tends to zero and a ‘slowing-down’ of nearby trajectories appear.
Consequently, solutions starting nearby the ‘weakly’ unstable equilibrium x; linger close to it for longer
intervals of time. This increases the mean return time to x, = 0.

7.3. Synthesis, comparisons and remarks

In this section, we carried out the analysis of a scalar population model with Allee effect (7.1) in terms
of the resilience of its attractors at x; =1 and x, = 0. The different outcomes given by some of the
indicators of resilience presented in this paper have been tested against the variation of the growth rate
and of the Allee threshold (both treated as parameters). For the attractor x;, the indicators were also
compared across five different species with fixed pairs of parameters (see part 7.1.1 and 7.1.2). The
resulting absence of a non-ambiguous answer to the question ‘which species is more resilient?’ may
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Figure 18. Comparison of the indicators for the attractor xy =0 of the model (7.2) upon the
variation of the parameters r € [0.01,0.5] and L € [0.05,0.95]. From top to bottom: EV = T—IR, DT,
Tpem(0, (0, L — 1077)), W(0) and 1(0). On the left, we see the scaled indicator values for the given para-
metric subspace. In the middle a heat map for the parametric subspace, where yellow indicates the
highest and dark blue the lowest values of the indicators (see the logarithmic colour scale on the right).
Black lines correspond to the contour lines, which mark the parameter combinations with the same
value of the indicators. If the environmental changes drive the parameters along the contour curves, all
indicators, apart from DT, are not able to capture the approaching bifurcation independently. On the
right, we see the dependence of the indicator values on the parameter L. The three pictures on each row
showcase the same surface viewed by different viewpoints.
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seem contradictory at first, but it is a known feature of resilience. The measured resilience depends on
both the specific dynamic feature under analysis and the class of acting perturbations. As pointed out
by Carpenter et al. [14] and Tamberg et al. [97], one needs to carefully define the context and questions
before coming to conclusions about resilience.

For instance, if we are interested in the survival of a species, that is, the resilience of the equilibrium
x1, the following conclusions may be draft. If we are solely interested in the largest one-time shock that
the species can withstand (e.g. a sudden ecological catastrophe), but we are not concerned with the
dynamics of the recovery, the most suitable indicator is distance to threshold DT (or other basin shape
indicators — for their comparison see Proposition 4.13). As explained in subsection 7.1 and graphically
shown in Figure 13, DT is exclusively dependent on the value of the Allee threshold L and is not changed
by the magnitude of the growth rate r. From a biological point of view, this might be interpreted as
the number of individuals in the species that have to suddenly disappear for the species to go extinct,
independently of its growth rate. If the Allee threshold is crossed, the growth rate will not help. The
lower L is, the weaker the Allee effect, which means the species population can sustain bigger shocks
from which they can eventually recover. Thus, we observe the highest resilience for values of L close to
0 and the lowest for high Allee thresholds around 1 (see Figure 13).

Conversely, when the focus is on the speed of recovery after a single ‘small’ perturbation of the
number of individuals in the species, a local indicator such as EV may better fulfil the task. Indeed,
EV corresponds to the exponential rate of convergence towards a hyperbolic attracting solution. In our
model, this indicator depends on both the intrinsic growth rate r and threshold L (see subsection 7.1 and
Figure 13). A higher growth rate r results in a faster recovery, whereas the higher the Allee threshold
L, the slower the recovery. As extensively explained in Section 3, all the local indicators are reliable
only when ‘small’ perturbations are taken into account. Whenever a larger perturbation is considered,
the local indicators such as EV might not be informative enough and we have to turn to other transient
dynamics indicators. One straightforward choice is the global version of the local indicator EV : the
mean return time 7. In our model, 73" of the attractor x; = 1 shows overall similar behaviour as
the local indicator EV. This is mostly due to the extreme simplicity of the model at hand. In general,
however, these indicators may provide substantially different results — examples of this can be found in
part 7.1.2.

Next, we focus on continuous and repeated perturbations. In biological terms, we can consider a
perturbation caused by a permanent outflow of species (imagine e.g. fishing, hunting, or illness). This
can be modelled as x =f(x) + g(¢), where f(x) is the unperturbed dynamics and g(#) is the perturbation
term (e.g. fishing). Then, the indicator intensity Z will find the critical magnitude of the outflow term
g(1) after which the species can still recover. The overall trend seen in Figure 14 is similar to that of
EV — the higher the reproductive speed in terms of growth rate r, the better can the species compensate
for the outflow, although there are still differences with other indicators (see part 7.1.2).

Another type of perturbation, different from those already mentioned, is recurring stress on the
species numbers. This is where periods of no disturbance are followed by strong and rapid stress on
the species population. Think, for instance, of a seasonal illness or periodic fishing. This can be mod-
elled in terms of periodic, discrete shocks of some strength. In this case, the resilience boundary is the
most obvious choice of indicator. It captures both the magnitude of shocks that a species can sustain
to not fall below the critical population numbers given by the Allee threshold, as well as, the recovery
capabilities of the species during the periods without perturbation. High values of growth rate r help the
recovery rate, and low values of Allee threshold L permit severe shocks to the species number to still lie
in the recoverable numbers (see part 7.1.2 for comparison).

A different interpretation for the transient dynamics is given by the indicator of resistance (potential)
which quantify how much work needs to be put into eradicating the species at hand (see Figure 14). In
our context, this is possible due to the specific structure of the equation that can be written as a gradient
problem. It is not surprising that this indicator provides estimates in accordance with the other indicators
of resilience for transient dynamics — the higher the growth rate, the harder it is to eliminate the species.
Likewise, the weaker the Allee effect, the harder it is to eradicate species below the threshold L.
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On the other hand, the changing environment is another type of stress species factor. In the previous
subsection, we discussed the effect of lowering the species’ carrying capacity. This could be caused, for
example, by deteriorating environmental conditions. In terms of resilience, we might ask the following
questions: once the environmental stress factor has ended, what is the impact on the species’ population
numbers? If the species can recover (which is not always possible in general) how fast the recovery is?
The former can be answered by measuring the resistance (Harrison) R, the latter by elasticity E (see
Figure 14). Resistance (Harrison) quantifies how the population numbers decrease after the stress ends.
What we can notice is that populations with higher growth rates are more sensitive to the decline of car-
rying capacity. The same is true for low values of the Allee threshold. These species decline faster due
to the way the model is defined where the overall tendency of the vector field to have a higher magnitude
also leads to a faster decrease in the population numbers. Elasticity, on the other hand, determines the
speed of recovery after the stress ends by measuring the species population’s ability to flourish again.
Notice that for each species it finds the slowest recovery speed, thus, the worst-case scenario. The start-
ing position of recovery is described by resistance; therefore, they are related. We notice that species
with higher growth rates r, are better equipped to recover, by quickly reproducing their numbers, also for
low Allee thresholds. Apart from resistance, this trend is consistent with other indicators mentioned. We
can see that the species can have different strategies to fight temporal environmental stresses: typically,
resistance and elasticity are opposite aspects of resilience. Finally, we like to stress that similar com-
ments can be made for the equilibrium x, = 0, which represents the extinction state. The interest of the
extinctions state lies in the opportunity to control infesting species or diseases. Through the parametric
study carried out in Subsection 7.2, and the numerical evidence showcased in Figure 18, we illustrated,
once again, the different outcomes of resilience indicators. Particular emphasis is posed on the mean
return time which displays a new phenomenon: the long persistence of an infesting species (which is
eventually destined to extinction) when the Alee threshold approaches the carrying capacity. In practical
terms, this case seems quite rare in reality where the Alee threshold is usually considered in (0, 0.5).

8. Summary and conclusions

The notion of dynamical resilience has prompted a huge scientific interest ever since its first introduc-
tion by Holling [40]. Given the variety of indicators that arose under this headline, a unitary or preferred
definition seems unattainable at this point. Nevertheless, a systematic classification of the available indi-
cators using rigorous mathematical formalism was long needed. In this paper, we intentionally try to give
a broad perspective beyond ecological models — where resilience appeared in the first place — and pro-
vide a structural view of the matter from the abstract perspective of dynamical systems theory. For the
same reason, we also include those indicators that have a rigorous formalisation but can often be difficult
to calculate analytically for real systems.

We divide the indicators of resilience into four groups and present them through rigorous mathe-
matical formalism: local linear indicators (Section 3), indicators that describe the shape of the basin
(Section 4), indicators that characterise the transient dynamics in the basin (Section 5), and indica-
tors tailored to parameter changes (Section 6). Advantages and disadvantages of each class and single
indicators are discussed in detail in each section.

Our approach not only allows to generalise the available indicators to local attractors beyond equi-
libria and periodic orbits but also to set up a common framework to compare them and from which
further research can proceed in an organised fashion. Let us provide concrete examples supporting these
statements.

In Section 4, the most classical indicators of ecological resilience are presented and contrasted.
Thanks to a rigorous formalisation, it is possible to prove simple — and yet so far missing — results
that relate such indicators and use the distance to threshold as a common benchmark for all the others.
Moreover, this helps in creating further relations between this class of indicators and more recent ones
(e.g. between precariousness and the resilience boundary). On the other hand, we have for example seen
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that distance to threshold can be also used to interpret the simplest indicator of resilience in parameter
space, distance to bifurcation (see subsection 6.1). This fact gave us the opportunity to naturally extend
the concept of resilience to rate-induced tipping, a nonautonomous bifurcation which can appear when
a adiabatic change of a parameter is substituted by a time-dependent one (see Subsection 6.3).

To keep the presentation as broadly accessible to a variety of different disciplines, we only touched
upon some very interesting ideas whose presentation, however, requires a more technical treatment. For
example, we decided to maintain the core of this article autonomous and use nonautonomous dynamical
systems only where strictly necessary. Yet, the inherent nature of resilience requires a better understand-
ing of the role that time plays in the perturbation of a system, either deterministic or random. Therefore,
we foresee that nonautonomous dynamical systems theory will play an important role in a further under-
standing of resilience, as also the most recent contributions in the area seem to suggest (see Sections
5 and 6). For example, we used the notions of exponential dichotomy and hyperbolic solutions to rein-
force the local indicators in Section 3. In fact, the classical indicators using the variational equation to
infer asymptotic rates of convergence of hyperbolic equilibria or periodic orbits remain reliable under
sufficiently small perturbations due to persistence of hyperbolicity in this generalised sense. In analogy,
the study of more general exponentially stable attractors requires the notion of persistence of normally
hyperbolic invariant manifolds. We have intentionally avoided treating this topic explicitly in order to
provide a shorter and more streamlined presentation of the basic structural aspects of defining differ-
ent notions of resilience. We are also certain that the interested reader with knowledge in normally
hyperbolic invariant manifolds can carry out the relative extensions.

We also like to stress the fact that this paper does not cover the (equally interesting) interpretations of
resilience, which do not fit into the setting established in Section 2. Among them, there is for example
statistical model-based indicators (see Adamson et al. [1]), the analysis of pattern formation in ecological
systems (e.g. [7, 84]), certain resilience concepts in economics (e.g. [12]) and in the social sciences
(e.g. [86]). It would be very interesting — and highly nontrivial — to integrate these approaches within a
coherent mathematical framework, and we hope that a dedicated research effort will go in this direction.

In summary, the formalisation and classification carried out in this work is important to ensure a more
reliable, quantitatively comparable and reproducible study of resilience in dynamical systems which can
stimulate further research in the area and facilitate quantitative application-based comparisons.
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Appendix A Rate-induced tipping and proof of Theorem 6.8

Hereby, we shall give a more precise presentation of the assumptions and results on resilience against
rate-induced tipping that were briefly presented in Subsection 6.3. We deal with differential equations
of the type,

i=f(xy(n), xeR“teR,r>0,

where f € C*(RY x RY,RY) and y € C(R, A), with A C R compact and connected, is such that for
some Ag, Ao € A,

tLirjgoy(t)Z/\o, }irgoy(t)zkx and tiiggoy’(t)zo-
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Moreover, we assume that for all A € A the dynamical systems induced by (6.1) are topologically equiv-
alent and their dynamics is completely determined by hyperbolic fixed points (for attractors which are
not fixed points e.g. [2, 45, 59, 60]).

Let x; € R" be any fixed stable hyperbolic equilibrium for (6.1),, and x; € R" be the ‘corresponding’
stable hyperbolic equilibrium for (6.1),. This means that if {#,:RY — R"} is a A-continuous family of
time-preserving homeomorphisms guaranteeing the topological equivalence, then x; = £, (x;). Thanks
to Theorem 2.2 in [5], for every r > 0, there is a unique maximal solution of (6.2), %, ,:(—o0, 8, ,) —
RM, with B,, € RU {oc}, such that lim, , X, ,(f) = x;. Additionally, this solution is locally pullback
attractive (a weak form of attractivity which holds only for the past and is specific of nonautonomous
systems; see [50] for more information). Notice also that, thanks to Lemma 2.3 in [5], there is r, > 0 such
that for all 0 < r < ry, B,, = 0o and lim, ., X, .(t) = x; .- We can now give the definition of rate-induced

tipping.

Definition A.1. Under the introduced notation and assumptions, we say that the locally pullback attract-
ing solution X, , undergoes a rate-induced tipping at r}(x;) > 0 if B,, =00 and lim, . X, () =x;__
for all re (0, r;(xf))), and either ,8%,;%) <00 or lim,_, fw;%)(t) #x,_ . Moreover, we will call a
rate-induced tipping transversal if there is § > 0 such that for all r € [r}(x;y), r;(x5) + 81, B, <00 or
lim,_ o %, () # x]__.

The critical rate corresponds to the value
7, (xy) = sup {p >0 ‘ B,,=o0cand limX, ,(t)=x;_forall p < r} € RU {oo}.

We can now prove Theorem 6.8 which is a first result guaranteeing the lower semi-continuity (and if
it applies the continuity) of r; with respect to y in a specific set of functions: fixed 7, € R, we consider
the set Q2(y, #y) of twice continuously differentiable functions w:R — A such that w(f) = y (¢) for all
t<tyand lim_ , w(t)=X € A.

Proof of Theorem 6.8. In order to prove 1, let us reason by contradiction. Assume that there is 7 > r; and
a sequence (w,),en in Q2(y, o) such that ||y — w,llewa) < 1/nand ¥ < r; forall n € N. Now, note that the
sequence of functions f (x, a),,(t)) converges to f (x, y(t)) in the compact-open topology. Therefore, thanks
to Kamke’s lemma (see Sell [92]) the sequence of solutions (X, 7). converges, up to a sub-sequence, to
X, uniformly on compact intervals contained in the maximal interval of definition of the latter. In fact,
due to construction, X, (t) =X, (r) for all n € N and ¢ < #,, and thus, the uniform convergence holds on
all intervals of the form (—oo, T] with 7 in the maximal interval of definition of X, ;.

Now, for all neN let A, € A be such that lim, . w,(f) =A,. Consequently, lim,_, o A, = An.
Moreover, denoted by x; the stable hyperbolic equilibrium of (6.1),, such that lim,_ . X, 7(t) = x] ,
since 7 <r;, , we have that

lim x; = lim &, (x) = I (x) = x_.
n—oo M n—00

Therefore, the sequence (X, 7).y is in fact uniformly bounded on R, and thus, it must be 8, ; = oo,
and furthermore, X, ; is bounded. Now, since the w-limit set of X, ; is nonempty, thanks to the cocycle
property, the continuity of the skew-product flow induced by (6.2); (see [92]), and the fact that the
dynamics of (6.1),  is completely determined by hyperbolic fixed points, there is a fixed point X, _
of (6.1),,, such that lim, ., X, -(f) =X,_ . Moreover, by assumption, it must be |X,_ , — X, |>¢e>0.0n
the other hand, notice that, for the ¢ > 0 given by the assumptions, since |y (7f) — A,| tends to zero as
t — oo, there are t; = t,(y, 7, €) > 0, and due to the persistence of hyperbolic solutions (see Theorem 3.8
in [82]), a solution @ of (6.2); such that ¢ is defined at least in [¢;, 00), and X, ., — @llc(.corrY) < €/5.
Furthermore, since lim,_, ., X, () =X, _, there is t, = t,(y, 7, €) > #; > 0 such that ||X, ; — @[l c(r.c0ry) <
/5. Now, consider s > max{t,, T(7)}. Thanks to the continuous variation of the solutions, [X,, -(s) —
X, (s)| < e/5 forall n € N sufficiently big. However, again for the persistence of the hyperbolic solutions,
there is 1y € N such that for all n > n, a solution ¥, of & = f(x, w,(7t)) exists which is defined at least in
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[t2, 00) and ||V, — @l ooz, < €/5 and lim,_, ., [X,,, () — V()] = 0. However, at least for one n > n,
this is in contradiction with the fact that lim,_, ., X,,, () = x; because for all 1 > max{t,, T(r)}

0<e<x, —x_| <%, — o0+ 160 — ¥,0)|+
H, () — X D] + Ko (1) — x5, |+ 1, — x| <e.

Therefore, 1 must be true.

In order to prove 2, we shall reason similarly; once more by contradiction. Assume that there is 7 < r;,
and a sequence (w,)en in S2(y, fy) such that ||y — w,llcwa) < 1/nand 7> r;, for all n € N. Therefore,
thanks to Kamke’s lemma (see Sell [92]) the sequence of solutions (X,,, 7).y cOnverges, up to a sub-
sequence, to X, ; uniformly on compact intervals contained in the maximal interval of definition of the
latter. Additionally, as for 1, for the ¢ > 0 given by the assumptions, since |y (7f) — A | tends to zero as
t — oo, therearet, =t,(y, 7, €) > 0 and a solution ¢ of (6.2); such that ¢ is defined at least in [#,, 00), and
I, . — Pllcqn comy) < €/3. Moreover, since 7 < Iy, there is also £, > #, such that ||X,; — @llcqn.cory) <
£/3. On the other hand, the persistence of hyperbolic solutions guarantees also that there is n, € N such
that for all n > n, a solution Jn of x =f(x, w,(71)) exists which is defined at least in [#,, c0) and ||$n -
Dllen.cory) < €/3. In particular, thanks to the assumptions; for all n > n,, it must be lim,_, |V, (f) —
xinl =0, where X, = hy, (x;oo). Now, consider ¢ > t,. From the continuous variation of the solutions, we
obtain the contradiction. Indeed, there must be at least one n > n, such that

0 < [%,,+(t) — ¥,(D] < %, 2() =X, ;O] + X, () — @O + [9() — ¥, ()],

and the left-hand side can be made smaller than ¢ by choosing n sufficiently large. In this case, however,
the assumptions guarantee that lim, ., [X,, -(?) — x;, | =0 which is against the fact that 7 > r; for all
n € N. Therefore, we obtain the thesis. O

Cite this article: Krakovska H., Kuehn C. and Longo I. P. (2024). Resilience of dynamical systems. European Journal of Applied
Mathematics, 35, 155-200. https://doi.org/10.1017/S0956792523000141

https://doi.org/10.1017/5S0956792523000141 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792523000141
https://doi.org/10.1017/S0956792523000141

	Introduction
	Notation, assumptions and preliminary definitions
	Local indicators
	Characteristic return time
	Invariance with respect to change of coordinates

	Reactivity
	Invariance with respect to change of coordinates

	Maximal amplification and maximal amplification time
	Invariance with respect to change of coordinates

	Intrinsic stochastic and deterministic invariability
	Invariance with respect to change of coordinates

	Discussion

	Basin shape indicators
	Latitude in width, distance to threshold and precariousness
	Invariance with respect to change of coordinates

	Latitude in volume and Basin stability
	Invariance with respect to change of coordinates

	Discussion

	Nonlinear transient dynamics
	Return time
	Invariance with respect to change of coordinates

	Resistance of a gradient system
	Invariance with respect to change of coordinates

	Resilience boundary
	Invariance with respect to change of coordinates

	Intensity of attraction
	Invariance with respect to change of coordinates

	Expected escape times
	Invariance with respect to change of coordinates

	Discussion

	Variation of parameters
	Distance to bifurcation
	Invariance with respect to change of coordinates

	Resistance, elasticity and persistence
	Invariance with respect to change of coordinates

	Resilience against rate-induced tipping
	Invariance with respect to change of coordinates


	Example
	The model
	Resilience of the attractor x_1=1
	Local indicators
	Basin shape indicators
	Nonlinear transient dynamics
	Variation of parameters
	Parametric study
	Comparison of five species

	Resilience of the attractor x_0=0
	Local indicators
	Basin shape indicators
	Nonlinear transient dynamics
	Variation of parameters
	Parametric study

	Synthesis, comparisons and remarks

	Summary and conclusions
	References
	Appendix A Rate-induced tipping and proof of Theorem 6.8


