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Abstract

We provide explicit expressions for the constants involved in the characterisation of
ergodicity of subgeometric Markov chains. The constants are determined in terms of
those appearing in the assumed drift and one-step minorisation conditions. The results are
fundamental for the study of some algorithms where uniform bounds for these constants
are needed for a family of Markov kernels. Our results accommodate also some classes
of inhomogeneous chains.
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1. Introduction

Quantitative convergence rates of Markov chains have been extensively studied in the
geometric ergodicity scenario; see, for example, [8] and [9] and the references therein for
homogeneous and inhomogeneous Markov chains, respectively. Such results have proved to be
very useful in certain applications, such as the analysis of adaptive Markov chain Monte Carlo
(MCMC) or stochastic approximation (SA) recursions (see, for example, [3], [6], and [14]),
where quantifying the convergence rates of a family of Markov kernels {Pθ }θ∈� in terms of
θ ∈ � is required. In some cases, delicate control of the constants can also be used to deduce
the stability of the algorithms; see, for example, [4] and [19].

In this paper we establish explicit bounds on the rate of convergence of subgeometric Markov
chains in terms of the constants involved in standard drift and minorisation conditions. As in the
geometric context, such results are important for adaptive MCMC and SA with subgeometric
kernels; see, for example, [7]. In Section 4 we discuss in more detail two specific applications
prompted by two other recent methodological and theoretical developments in the area of
MCMC; see [4] and [5].
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We now provide a brief discussion of the existing results and see how they relate to our work.
Hereafter, we shall use the following standard notation whenever well-defined:

Pf (x) :=
∫

P(x, dy)f (y), μ(f ) :=
∫

μ(dx)f (x),

PQ(x, A) :=
∫

P(x, dy)Q(y, A), μP (A) :=
∫

μ(dx)P (x, A),

where P and Q are Markov kernels on a measurable space (X, B(X)), f : X → R is a
measurable function and μ is a (signed) measure.

In the literature, the Markov chain ‘convergence rate’ often refers to the rate of convergence
of marginal distributions, that is, if π is the invariant measure of P ,

r̂(n)|P nf (x) − π(f )| ≤ cV (x) for all n ∈ N, x ∈ X, (1)

where (r̂(n))n≥0 is a positive nondecreasing rate sequence, f belongs to a suitable class of
functions integrable with respect to π , the function V : X → [1, ∞) is measurable and c is
a finite constant which is often left unspecified. Here, we focus instead on establishing the
stronger property

∞∑
n=0

r(n)|P nf (x) − π(f )| ≤ cV (x) for all x ∈ X, (2)

and aim to quantify the constant c in terms of the constants in Condition 1. The rate (r(n))n≥0
is positive nondecreasing as (r̂(n))n≥0, and if r(n) = r̂(n), (2) clearly implies (1). While the
distinction between (1) and (2) is often not essential in the geometric case, it turns out to be
important in some subgeometric scenarios. Indeed, for some applications, using the marginal
convergence rate (1) to deduce a property of the type in (2) may be suboptimal for subgeometric
Markov chains; an example is briefly discussed below.

The characterisation of subgeometric Markov chains with drift and minorisation conditions
has been considered in various earlier works starting with the pioneering work of Tuominen
and Tweedie [20]. In the more recent works Fort and Moulines [13] and Jarner and Roberts
[15] establish polynomial rates of convergence, but do not provide quantitative results. Douc
et al. [11] (see also [12]) have extended these results to more general subgeometric ergodicity
scenarios. The latter works consider quantities of the type (2), but do not provide a quantitative
expression for the constant c.

Douc et al. [10] later provided rates of convergence for subgeometric chains with computable
constants, but their approach is restricted to the convergence of the marginals (1) and no result
is available concerning (2). Although bounds of the form (1) may imply (2) in some scenarios,
such an approach may be suboptimal and lead to a significant loss. This is the case, for example,
with certain polynomial kernels yielding (1) with rate r̂(n) ∝ nβ with some β > 0 [15]. This
guarantees the finiteness of the sum in (2) with a constant rate r(n) = 1 only if β > 1, whereas
our results imply (2) also with weaker polynomial rates including the cases β ∈ (0, 1] of [15].

Our main result, Theorem 1 in Section 2, provides an explicit upper bound for the constant c

for a slight generalisation of (2). The approach follows that of Andrieu and Fort [1], but we
complement it by providing explicit and relatively simple expressions, valid under a slightly
stronger but more easily applicable one-step minorisation condition. In Section 3 we then
establish a set of corollaries of Theorem 1 for the important special case of polynomially ergodic
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chains, and continue with discussion on two specific applications in Section 4. The proof of
Theorem 1 is given in Section 6, after describing the notation and definitions in Section 5. Our
proof is nearly self-contained, using only two auxiliary results which are restated in Appendix
A for the reader’s convenience.

2. Explicit rate of convergence for subgeometric Markov chains

We start with the generic main assumption, a subgeometric drift condition towards a small
set, and recall the definition of Young’s functions.

Condition 1. Suppose that (Pk)k≥1 is a collection of Markov kernels on a measurable space
(X, B(X)). Assume that there exist a set C ∈ B(X), a measurable function V : X → [1, ∞)

and a concave, nondecreasing and differentiable function φ : [1, ∞) → (0, ∞) such that
limt→∞ φ′(t) = 0. Moreover, there exist probability measures (νk)k≥1 on (X, B(X)) and
constants εν, εb ∈ (0, 1), bV , cV < ∞ such that for all k ≥ 1,

PkV (x) ≤ V (x) − φ ◦ V (x) + bV 1{x∈C}, Pk(x, · ) ≥ εννk( · ) for all x ∈ C,

inf
x /∈C

φ ◦ V (x) ≥ bV (1 − εb)
−1, sup

x∈C

V (x) ≤ cV ,

where 1{·} is the indicator function.

Definition 1. The nondecreasing functions 	1, 	2 : [1, ∞) → (0, ∞) are (a pair of) Young’s
functions if 	1(x)	2(y) ≤ x + y for all x, y ≥ 1.

Theorem 1 when applied with Pk = P is a refinement of [1, Proposition 3.1 and Theo-
rem 3.6], since it provides an explicit expression for the upper bound.

Theorem 1. Assume that Condition 1 holds. Then there exists a constant c ∈ [0, ∞) dependent
on bV , cV , εb, εν , and φ only, such that for any pair of Young’s functions 	1, 	2 and any
measurable f : X → R satisfying ‖f ‖W := supx∈X |f (x)|/W(x) < ∞ with W(x) := 	2(φ ◦
V (x)/φ(1)),∑

n≥0

	1(r(n))|P (n)f (x) − P (n)f (x′)| ≤ c(V (x) + V (x′) − 1)‖f ‖W, (3)

where P (n) := P1 · · · Pn with the convention that P (0)(x, A) := 1{x∈A}, and where r : N →
[1, ∞) is defined through Hφ : [1, ∞) → [0, ∞) by

Hφ(t) :=
∫ t

1

ds

φ(s)
, r(n) := φ ◦ H−1

φ (εbn)

φ(1)
. (4)

The constant c can be given as

c := 2

εbφ(1)

[
2 + b̄

εν

+ c∗b̄r(1)

(
1 + r(1)

εbφ(1)

)]
,

where

b̄ := 2bV + εbφ(1), c∗ :=
∞∑

j=1

(1 − εν)
j−1

j−1∏
k=1

(1 + δkM1),

δk := εb(φ
′ ◦ H−1

φ )(εbk), M1 := r(1)

[
1 + 2r(1)

εbφ(1)

(
bV + cV

1 − εν

− 1

)]
.

The proof of Theorem 1 is postponed until Section 6.
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Remark 1. We make a number of remarks in relation to Theorem 1.

(i) It is easy to see that the assumptions imply limt→∞ H−1
φ (t) = ∞ so limk→∞ δk = 0

and, therefore, c∗ < ∞.

(ii) In the case of a constant drift, that is, if the function φ ≡ εφ > 0 then we have c∗ = ε−1
ν .

(iii) The condition infx /∈C φ ◦ V (x) ≥ bV /(1 − εb) is essential for our proof; we need the
bivariate drift established in Lemma 1. If limt→∞ φ(t) = ∞ then it is often possible to
check Condition 1; see Corollary 2 for the polynomial case.

(iv) If μ1 and μ2 are probability measures such that μ1(V ) + μ2(V ) < ∞, then (3) implies
the following bound:∑

n≥0

	1(r(n))|μ1(P
(n)f ) − μ2(P

(n)f )| ≤ c(μ1(V ) + μ2(V ) − 1)‖f ‖W,

because for any function g integrable with respect to μ1 and μ2, we have |μ1(g) −
μ2(g)| ≤ ∫

μ1(dx)μ2(dx′)|g(x) − g(x′)|.
(v) Suppose that π is the invariant probability measure of Pk for k ≥ 1 and π(V ) < ∞, then

(1) with μ1 = 1{x∈·} and μ2 = π yields

∑
n≥0

	1(r(n))|P (n)f (x) − π(f )| ≤ c(V (x) + π(V ) − 1)‖f ‖W .

(vi) It is possible to refine the bound by replacing the term c(V (x)+V (x′)−1) with c1(V (x)+
V (x′)) + c2, where the constants c1 and c2 are easily accessible from the statements of
Lemmas 3 and 5.

3. Rate of convergence for polynomially ergodic chains

Here, we state two convenient corollaries of Theorem 1 in the case where P satisfies a
polynomial drift condition. The first corollary characterises the required balance between the
class of functions and the rate of convergence.

Corollary 1. Assume Condition 1 holds with φ(v) = βvα with some constants β > 0, α ∈
[0, 1), and εb ∈ (0, 1). Then, for any ξ ∈ [0, 1] and for any measurable function f : X → R

with

‖f ‖V α(1−ξ) := sup
x∈X

|f (x)|
V α(1−ξ)(x)

< ∞,

there exists a constant cα,β,εb,ξ < ∞ depending on α, β, εb, and ξ such that

∑
n≥0

(n + 1)ξα/(1−α)|P (n)f (x) − P (n)f (x′)| ≤ cα,β,εb,ξ c‖f ‖V α(1−ξ) (V (x) + V (x′) − 1), (5)

where c < ∞ is the constant given in Theorem 1.

Proof. We may compute

Hφ(t) =
∫ t

1

ds

βtα
= t1−α − 1

β(1 − α)
, H−1

φ (n) = (nβ(1 − α) + 1)1/(1−α),
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to obtain
r(n) = (εbnβ(1 − α) + 1)α/(1−α) ≥ (n + 1)α/(1−α)cα,β,εb

,

where cα,β,εb
:= min{1, (εbβ(1 − α))α/(1−α)}. Define the functions

	1(x) :=

⎧⎪⎨
⎪⎩

ξ−1xξ if ξ ∈ (0, 1),

x if ξ = 1,

1 if ξ = 0,

	2(y) :=

⎧⎪⎨
⎪⎩

(1 − ξ)−1y1−ξ if ξ ∈ (0, 1),

1 if ξ = 1,

y if ξ = 0,

(6)

satisfying 	1(x)	2(y) ≤ x + y, by Young’s inequality for ξ ∈ (0, 1).
Theorem 1 implies that∑

n≥0

	1

(
cα,β,εb

(n + 1)α/(1−α)
)
|P (n)f (x) − P (n)f (x′)| ≤ c‖f ‖	2(βV α)(V (x) + V (x′) − 1),

from which we deduce the claim with

cα,β,εb,ξ = c
−ξ
α,β,εb

[
(1 − ξ)ξβξ−1 + 1{ξ=1} + 1{ξ=0} β−1

]
.

We further consider a corollary which allows us to consider different growth rates of the
upper bound in (5) in terms of x and x′.

Condition 2. Suppose that P is a collection of Markov kernels on (X, B(X)). Assume that
there exist a set C ∈ B(X) and a measurable function V̂ : X → [1, ∞) with c

V̂
:= supC V̂ <

∞ and constants β > 0, α ∈ (0, 1), and b
V̂

< ∞ such that for all P ∈ P ,

P V̂ (x) ≤
{

V̂ (x) − βV̂ α(x) if x /∈ C,

b
V̂

if x ∈ C.

Furthermore, suppose that every level set A
V̂
(v) := {x ∈ X : V̂ (x) ≤ v} is uniformly 1-small,

that is, there exist εv > 0 and probability measures (νP )P∈P on (X, B(X)) such that for all
P ∈ P ,

P(x, · ) ≥ εvνP ( · ) for all x ∈ A
V̂
(v).

We first observe that Condition 2 implies Condition 1 for functions V = V̂ η with any
η ∈ (1 − α, 1].
Proposition 1. Suppose Condition 2 holds. Then, for any (Pk)k≥1 ⊂ P and λ ∈ [0, 1),
Condition 1 holds with V (x) = V̂ (x)1−λα , φ(v) = (1 −λα)βvαλ , where αλ := α(1 −λ)/(1 −
λα) with the set C := A

V̂
(cV ) and with some constants εb, εν ∈ (0, 1), and bV , cV < ∞,

whose values depend only on λ and the constants and the function V̂ in Condition 2.

Proof. Let P ∈ P . Following the proof of [15, Lemma 3.5], Jensen’s inequality, and the
mean value theorem imply that, with η = 1 − λα,

P V̂ η(x) ≤
{

(V̂ − βV̂ α(x))η ≤ V̂ η(x) − ηβV̂ ηαλ(x) if x /∈ C,

b
η

V̂
if x ∈ C,

where αλ = (α − (1 − η))/η = α(1 − λ)/(1 − λα). Clearly,

PV (x) ≤ V (x) − φ ◦ V (x) + bV 1{x∈C}, (7)

where φ(v) = ηβvαλ and bV = b
η

V̂
+φ(c

V̂
). Let εb ∈ (0, 1) and take cV ∈ [c

V̂
, ∞) sufficiently

large so that φ(cV ) ≥ bV (1 − εb)
−1.
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Corollary 2. Suppose that Condition 2 holds. Then, for any ξ ∈ [0, 1] and λ ∈ [0, 1),
there exists a constant c∗ < ∞ such that for all (Pk)k≥1 ⊂ P and ‖f ‖

V̂
αλ,ξ < ∞ where

αλ,ξ = α(1 − λ)(1 − ξ),

∑
n≥0

(n + 1)α(1−λ)ξ/(1−α)|P (n)f (x) − P (n)f (x′)| ≤ c∗‖f ‖
V̂

αλ,ξ (V̂ 1−λα(x) + V̂ 1−λα(x′) − 1).

Proof. Proposition 1 and Corollary 1 imply that the claim holds.

4. Applications

Next, we discuss two specific applications of our results. Both applications are related to
the evaluation of the efficiency of MCMC schemes in terms of asymptotic variance: the first
application involves the so-called pseudo-marginal MCMC [2, 5], while the second application
is related to a general comparison result of inhomogeneous Markov chains recently established
in [16].

In both cases, we are interested in estimating an integral

π(f ) :=
∫

Rd

f (x)π(x)dx,

where π(x) is a probability density and f is a π -integrable function. The efficiency criterion
is the so-called asymptotic variance

σ 2(f ) := lim
n→∞ E

{
1√
n

n∑
k=1

[f (Xk) − π(f )]
}2

,

where (Xk)k≥0 denotes the Markov chain with initial distribution π and with the same π -
invariant transition kernel(s) as the MCMC sampler and E is the related expectation.

4.1. Efficiency of the pseudo-marginal MCMC

The pseudo-marginal algorithm is relevant to situations where the density π cannot be eval-
uated point-wise, which prevents a straightforward implementation of the Metropolis–Hastings
algorithm, for example. Such a situation occurs naturally, for instance when π(x) is a marginal
density of a higher-dimensional density. As pointed out in [2] and [5] it is however possible
to implement a valid (auxiliary variable) Metropolis–Hastings algorithm in this scenario, by
using nonnegative unbiased estimators of the density values π(x). Interestingly, regardless
of the accuracy of the related estimator, the corresponding Markov chain will be ergodic with
minimal assumptions, and therefore yield ergodic averages convergent to the integral of interest;
see [2], [5].

However, the efficiency of the algorithm usually depends heavily on the properties of the
estimators of π(x). If the accuracy is increased, the pseudo-marginal algorithm tends to behave
in a way similar to the ideal algorithm for which exact values of π(x) are used instead of
estimators. In particular, let N ≥ 1 be a parameter controlling the accuracy of the estimator
(such as the number of estimators used when using an averaging property to reduce variability),
and let σ 2

N(f ) be the asymptotic variance of the related pseudo-marginal algorithm. Then, under
general conditions, σ 2

N(f ) → σ 2(f ) as N → ∞, where σ 2(f ) is the asymptotic variance of
the ideal algorithm [5, Theorem 21].
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The key assumption required for the aforementioned result to hold is that the integrated
autocorrelation series converge uniformly, that is,

lim
n→∞ sup

N≥1

∣∣∣∣
∞∑

k=n

E{f̄ (X̃
(N)
0 )f̄ (X̃

(N)
k )}

∣∣∣∣ = 0, (8)

where f̄ (x) = f (x)−π(f ), and where (X̃
(N)
k )k≥0 corresponds to the Markov chain generated

by the pseudo-marginal chain with accuracy parameter N .
The condition in (8) is relatively straightforward to check whenever the pseudo-marginal

algorithms are geometrically ergodic with uniformly bounded drift and minorisation constants;
see [8], [17]. However, pseudo-marginal algorithms are subgeometric whenever the density
estimators of π(x) can take arbitrarily large values [5, Proposition 13].

This is the situation where Corollary 2 becomes relevant, as it is straightforward to check (8)
under simultaneous (in N ) polynomial drift and minorisation conditions. In particular, we may
write for any N for which the drift and minorisation conditions hold,

∣∣∣∣
∞∑

k=n

E{f̄ (X̃
(N)
0 )f̄ (X̃N

k )}
∣∣∣∣ ≤ E

{
|f̄ (X

(N)
0 |

∞∑
k=n

|E{f̄ (X̃
(N)
k ) | X̃

(N)
0 }|

}
.

The latter sum can be bounded by Corollary 2; see [5, Proposition 19]. We point out the
importance of having explicit quantitative bounds here in order to ensure that an upper bound
independent of N exists, that is, the constant c∗ in Corollary 2 can be taken independent of N .

4.2. Ordering inhomogeneous Markov chains

In a number of scenarios MCMC algorithms may rely on the composition of several π -
reversible MCMC kernels. For example, when two sampling strategies are available, that is two
π -reversible Markov kernels P0 and Q0 can be implemented, one may consider implementing
the algorithm which cycles between these two kernels. The recent result of Maire et al. [16,
Theorem 4] shows that if P1 and Q1 form another pair of π -reversible kernels, and if P0 �
P1 and Q0 � Q1 in the covariance order, then the asymptotic variances related to the two
algorithms satisfy σ 2

1 (f ) ≤ σ 2
0 (f ).

The key assumption required by [16, Theorem 4] is that the integrated autocorrelation series
converges absolutely; using notation analogous to (8),

∞∑
k=1

(
|E{f̄ (X

(i)
0 )f̄ (X

(i)
k )}| + |E{f̄ (X

(i)
1 )f̄ (X

(i)
k+1)}|

)
< ∞, i ∈ {0, 1}, (9)

where (X
(i)
k )k≥0 is the inhomogeneous Markov chain with initial distribution π and with

alternating kernels Pi and Qi .
Under geometric ergodicity, (9) is relatively easy to check [16]. In the subgeometric case,

to the best of the authors’ knowledge no results exist which would be directly applicable to
verify (9). When its assumptions are satisfied one can use Theorem 1 to deduce (9), exploiting
the fact that our results hold for inhomogeneous Markov chains. In particular, in the polynomial
scenario, Corollary 2 may be applied following the arguments in [5, Proposition 19].

https://doi.org/10.1239/jap/1437658605 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658605


398 C. ANDRIEU ET AL.

5. Definitions: coupling and bivariate drift

Definition 2. (Coupling construction.) Assume that Condition 1 holds, denote C̄ = C × C

and define the Markov kernels P̌k on the product space (X × X, B(X) × B(X)) by

P̌k(x, x′; A, A′) := Pk(x, A)Pk(x
′, A′) 1{(x,x′)/∈C̄} +Qk(x, A)Qk(x

′, A′) 1{(x,x′)∈C̄},

where Qk(x, A) := (1 − εν)
−1(Pk(x, A) − εννk(A)).

Define then the Markov kernels P̄k on (X2 × {0, 1}, B(X)2 × P ({0, 1})) as follows for
Ǎ ∈ B(X) × B(X):

P̄k(x, x′, 0; Ǎ × {0}) = (1 − εν 1{(x,x′)∈C̄})P̌k(x, x′; Ǎ),

P̄k(x, x′, 0; Ǎ × {1}) = εν 1{(x,x′)∈C̄} νk({x ∈ X | (x, x) ∈ Ǎ}),
P̄k(x, x′, 1; Ǎ × {0}) = 0,

P̄k(x, x′, 1; Ǎ × {1}) = 1{x=x′}
∫

Pk(x, dy) 1{(y,y)∈Ǎ} +δ(x,x′)(Ǎ).

Suppose that (Xn, X
′
n, Dn)n≥0 is a Markov chain defined by the kernels P̄1, P̄2, . . . , P̄n and

with (X0, X
′
0, D0) ≡ (x, x′, d). We denote the probability and the expectation associated with

the chain as Px,x′,d and Ex,x′,d , respectively, and define the stopping times T1 := inf{n ≥
0 : (Xn, X

′
n) ∈ C̄} and Tk := inf{n > Tk−1 : (Xn, X

′
n) ∈ C̄} for k ≥ 2, and τ := inf{n ≥

0 : Dn = 1}, with the convention inf ∅ = ∞.

Suppose that D0 ≡ d = 0, then Definition 2 formalises a coupling with probability εν each
time (Xn, X

′
n) ∈ C̄; the stopping time τ is a coupling time, and Xτ+k 1{τ<∞} = X′

τ+k 1{τ<∞}
for all k ≥ 0 Px,x′,0-almost surely. If the coupling was not successful, then the chains follow
independently P̌k at time k until hitting C̄ again.

Proposition 2. Consider the Markov chain (Xn, X
′
n, Dn) in Definition 2. Then, (Xn)n≥0 and

(X′
n)n≥0 follow marginally P (n) and, specifically,

Px,x′,0{Xn ∈ A} = P (n)(x, A), Px,x′,0{X′
n ∈ A} = P (n)(x′, A)

for all n ≥ 0, all (x, x′) ∈ X2, and any A ∈ B(X).

Proof. It is easy to see that for any (x, x′) ∈ X2 and A ∈ B(X),

P̄k(x, x′, 0; A × X × {0, 1}) = Pk(x, A),

P̄k(x, x′, 0; X × A × {0, 1}) = Pk(x
′, A),

and Px,x′,0{Xn = X′
n | Dn = 1} = 1.

Lemma 1. Assume Condition 1 holds and denote V̄ (x, x′) := V (x) + V (x′) − 1, then

P̄kV̄ (x, x′, 0) ≤

⎧⎪⎨
⎪⎩

V̄ (x, x′) − εbφ ◦ V̄ (x, x′) if (x, x′) /∈ C̄, (10a)

2(bV + cV ) − 1 if (x, x′) ∈ C̄, (10b)

V̄ (x, x′) − εb(φ ◦ V̄ )(x, x′) + b̄ 1{(x,x′)∈C̄} if (x, x′) ∈ X2,(10c)

P̌kV̄ (x, x′) ≤ 2(1 − εν)
−1(bV + cV ) − 1 if (x, x′) ∈ C̄, (10d)

where b̄ = 2bV + εbφ(1).
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Proof. Condition 1 implies that, for (x, x′) /∈ C̄,

P̄kV̄ (x, x′, 0) ≤ V̄ (x, x′) − φ ◦ V (x) − φ ◦ V (x′) + bV (1{x∈C} + 1{x′∈C})
≤ V̄ (x, x′) − εb(φ ◦ V (x) + φ ◦ V (x′)) − (1 − εb) inf

z/∈C
φ ◦ V (z) + bV

≤ V̄ (x, x′) − εbφ ◦ V̄ (x, x′),

where the last inequality follows because φ is convex and nondecreasing and, thus,

φ ◦ V̄ (x, x′) − φ ◦ V (x) ≤ φ ◦ V (x′) − φ(1). (11)

This establishes (10a). The bound (10d) follows from

P̌kV̄ (x, x′) = QkV (x) + QkV (x′) − 1 ≤ 2(1 − εν)
−1(cV + bV − εννk(V )) − 1. (12)

For (10b), let us write for (x, x′) ∈ C̄,

P̄kV̄ (x, x′, 0) = PkV (x) + PkV (x′) − 1 ≤ V̄ (x, x′) − (φ ◦ V (x) + φ ◦ V (x′)) + 2bV .

Finally, we turn to (10c) and observe that the above inequality with (11) and (10a) imply that

P̄kV̄ (x, x′, 0) ≤ V̄ (x, x′) − εbφ ◦ V̄ (x, x′) 1{(x,x′)/∈C̄}
− (φ ◦ V̄ (x, x′) + φ(1) + 2bV ) 1{(x,x′)∈C̄}

≤ V̄ (x, x′) − εbφ ◦ V̄ (x, x′)
+ sup

(x,x′)∈C̄

[2bV + φ(1) − (1 − εb)φ ◦ V̄ (x, x′)] 1{(x,x′)∈C̄} .

The claim follows noting that φ ◦ V̄ (x, x′) ≥ φ(1).

6. Proof of Theorem 1

We provide the skeleton of the proof of Theorem 1 next, and postpone bounding the involved
terms to lemmas.

Proof of Theorem 1. It is sufficient to prove the claim assuming that ‖f ‖W = 1. Consider
the coupling construction in Definition 2. We may write∑

n≥0

	1(r(n))|P (n)f (x) − P (n)f (x′)|

=
∑
n≥0

	1(r(n))|Ex,x′,0{(f (Xn) − f (X′
n)) 1{τ>n}}|

≤ Ex,x′,0

{τ−1∑
n=0

	1(r(n))W(Xn)

}
+ Ex,x′,0

{ τ−1∑
n=0

	1(r(n))W(Xn)

}
.

Because 	1(x)	2(y) ≤ x + y, we obtain the bound

∑
n≥0

	1(r(n))|P (n)f (x) − P (n)f (x′)| ≤ 2

[
E1(x, x′) + E2(x, x′)

φ(1)

]
,
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where the terms on the right-hand side are defined as

E1(x, x′) := Ex,x′,0

{τ−1∑
n=0

r(n)

}
, E2(x, x′) := Ex,x′,0

{τ−1∑
n=0

φ ◦ V̄ (Xn, X
′
n)

}
,

and these terms are bounded by Lemmas 3 and 5 below.

Lemma 2. Let φ : [1, ∞) → (0, ∞) be concave, nondecreasing and differentiable, and let
r(n) be as defined in (4). Then, r(n) is nondecreasing and for all n, m ≥ 0,

r(n + m) ≤ r(n)r(m), (13a)

r(n + m) − r(n) ≤ εb(φ
′ ◦ H−1

φ )(εbn)r(n)

m∑
k=1

r(k). (13b)

Proof. Denote r(t) := (φ ◦ H−1
φ )(εbt)/φ(1) for t ∈ R+, and compute

r ′(t) = εb(φ
′ ◦ H−1

φ )(εbt)r(t) ≥ 0, (log r)′(t) = εb(φ
′ ◦ H−1

φ )(εbt).

The latter is nonincreasing, therefore (13a) follows from

log r(n + m) − log r(n) =
∫ n+m

n

(log r)′(t)dt ≤
∫ m

0
(log r)′(t)dt = log r(m),

because r(0) = 1. By the mean value theorem

r(n + m) − r(n) =
n+m−1∑

k=n

(r(k + 1) − r(k)) =
n+m−1∑

k=n

r ′(k + ξk)

for some ξn, . . . , ξn+m−1 ∈ [0, 1]. Observe that r ′(k + ξk) ≤ εb(φ
′ ◦ H−1

φ )(εbn)r(k + 1), so

r(n + m) − r(n) ≤ εb(φ
′ ◦ H−1

φ )(εbn)

n+m−1∑
k=n

r(k + 1).

We deduce (13b) by applying (13a).

Lemma 3. Assume Condition 1 holds and consider the coupling construction in Definition 2.
Then,

Ex,x′,0

{ τ−1∑
n=0

φ ◦ V̄ (Xn, X
′
n)

}
≤ 1

εb

V̄ (x, x′) + b̄

εbεν

, (14)

where b̄ is defined in Theorem 1.

Proof. By (10c) and Proposition 3,

Ex,x′,0

{ τ−1∑
n=0

εb(φ ◦ V̄ )(Xn, X
′
n)

}
≤ V̄ (x, x′) + b̄Ex,x′,0

{ τ−1∑
n=0

1{(Xn,X′
n)∈C̄}

}
,
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and we can write

Ex,x′,0

{ τ−1∑
n=0

1{(Xn,X′
n)∈C̄}

}
=

∞∑
j=1

Px,x′,0{τ > Tj } =
∞∑

j=1

(1 − εν)
j−1,

because Px,x′,0{τ > Tj } = Px,x′,0{DT1+1 = 0, . . . , DTj−1+1 = 0} and Px,x′,0{DTi+1 =
0 | DT1+1 = 0, . . . , DTi−1+1 = 0} = 1 − εν .

Lemma 4. Assume that Condition 1 holds, let r be defined in (4) and consider the coupling
construction in Definition 2. Then,

Ex,x′,0

{ T1∑
n=0

r(n)

}
≤ 1 + r(1)

εbφ(1)
(V̄ (x, x′) − 1) 1{(x,x)/∈C̄} .

Proof. The claim holds trivially for (x, x′) ∈ C̄, so assume that (x, x′) ∈ C̄. From (10c)
we apply Proposition 4 with ϕ = εbφ and b = b̄; note that rϕ(n) = r(n). Then, Proposition 3
with Zk := (Hk ◦ V̄ )(Xk, X

′
k) yields

Ex,x′,0

{T1−1∑
n=0

εbφ(1)r(n)

}
≤ H0 ◦ V̄ (x, x′) = V̄ (x, x′) − 1.

Equation (13a) implies that r(n + 1) ≤ r(1)r(n) so, we deduce

Ex,x′,0

{ T1∑
n=0

r(n)

}
= 1 + Ex,x′,0

{ T1∑
n=1

r(n)

}
≤ 1 + r(1)Ex,x′,0

{T1−1∑
n=0

r(n)

}
.

Lemma 5. Assume that Condition 1 holds, let r be defined in (4) and consider the coupling
construction in Definition 2. Then,

Ex,x′,0

{τ−1∑
n=0

r(n)

}
≤ 1

εbφ(1)

[(
1 + c∗b̄r2(1)

εbφ(1)

)
V̄ (x, x′) +

(
c∗b̄r(1) − 1 − c∗b̄r2(1)

εbφ(1)

)]
,

where b̄ and c∗ are given in Theorem 1.

Proof. Equation (10c) and Propositions 3 and 4 applied as in the proof of Lemma 4 yield

Ex,x′,0

{τ−1∑
n=0

εbφ(1)r(n)

}
≤ V̄ (x, x′) − 1 + b̄Ex,x′,0

{τ−1∑
n=0

r(n + 1) 1{(Xn,X′
n)∈C̄}

}
.

The latter expectation can be written as

Ex,x′,0

{τ−1∑
n=0

r(n + 1) 1{(Xn,X′
n)∈C̄}

}
=

∞∑
j=1

Ex,x′,0{r(Tj + 1)χj },

where χj := 1{τ>Tj } = χj−1 1{DTj +1=0} for j ≥ 1 and χ0 ≡ 1.
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Equation (13b) implies that, for j ≥ 1,

r(Tj+1 + 1) ≤ r(Tj + 1)

(
1 + εb(φ

′ ◦ H−1
φ )(εb(Tj + 1))

Tj+1−Tj∑
k=1

r(k)

)
,

and εb(φ
′ ◦ H−1

φ )(εb(Tj + 1)) ≤ εb(φ
′ ◦ H−1

φ )(εbj) = δj , because Tj + 1 ≥ j and φ′ ◦ H−1
φ

is nonincreasing. Next, we show that taking conditional expectation with respect to FTj
=

σ((Xn, X
′
n, Dn) : 1 ≤ n ≤ Tj ), we obtain for j ≥ 1,

Ex,x′,0{r(Tj+1 + 1)χj+1} ≤ Ex,x′,0{r(Tj + 1)χj }(1 + δjM1)(1 − εν), (15)

where M1 is given below. Namely, Px,x′,0{DTj +1 = 0 | FTj
} = (1 − εν) and

Ex,x′,0

{Tj+1−Tj∑
k=1

r(k)

∣∣∣∣ FTj
, DTj +1 = 0

}

≤ sup
k≥1

sup
(x,x′)∈C̄

∫
P̌k(x, x′; dy, dy′)E(Tj )

y,y′,0

{T
(Tj )

1∑
n=0

r(n + 1)

}
,

where E
(j)

x,x′,0 stands for the expectation over the stopping time T
(j)

1 corresponding to the Markov

chain (X
(j)
n , X

′(j)
n , D

(j)
n ) constructed as in Definition 2 but defined using (Pk+j )k≥1 instead of

(Pk)k≥1. Lemma 4 still applies for this expectation, because it assumes only that the kernels
satisfy Condition 1. Therefore, (10d) and the bound r(k + 1) ≤ r(k)r(1) by (13a) yield

Ex,x′,0

{Tj+1−Tj∑
k=1

r(k)

∣∣∣∣ FTj
, DTj +1 = 0

}
≤ r(1)

[
1 + 2r(1)

εbφ(1)

(
bV + cV

1 − εν

− 1

)]
= M1.

Applying (15) recursively for j + 1, . . . , 2 yields

Ex,x′,0{r(Tj+1 + 1)χj+1} ≤ (1 − εν)
j−1

j−1∏
i=1

(1 + δiM1)Ex,x′,0{rφ(T1 + 1)},

and from Lemma 4 together with (13a),

Ex,x′,0{r(T1 + 1)} ≤ r(1)

(
1 + r(1)

εbφ(1)
(V̄ (x, x′) − 1)

)
.

Combining these results, we have

Ex,x′,0

{τ−1∑
n=0

r(n)

}
≤ 1

εbφ(1)

{
V̄ (x, x′) − 1 + c∗b̄r(1)

(
1 + r(1)

εbφ(1)
(V̄ (x, x′) − 1)

)}
,

which equals the desired bound.
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Appendix A. Some results from the literature

Here, we restate some results from the literature for the reader’s convenience. We start by
stating [18, Proposition 11.3.2] for inhomogeneous Markov chains; the proof of [18] applies
without modifications.

Proposition 3. Suppose that (Xn)n≥0 is a Markov chain and let Fn := σ(X0, . . . , Xn) for
n ≥ 0. Assume that Zn is nonnegative and Fn-adapted, fn and sn are nonnegative measurable
functions and

E{Zn+1 | Fn} ≤ Zn − fn(Xn) + sn(Xn) for all n ≥ 0.

Then for any initial condition x and any stopping time τ ,

Ex

{τ−1∑
k=0

fk(Xk)

}
≤ Z0(x) + Ex

{τ−1∑
k=0

sk(Xk)

}
.

Proposition 4. (See [11, Proposition 2.1].) Assume that P is a Markov kernel satisfying

PV (x) ≤ V (x) − ϕ ◦ V (x) + b 1{x∈C},

where ϕ : [1, ∞) → (0, ∞) is a nondecreasing convex function. Then for rϕ(k) := (ϕ ◦
H−1

ϕ )(n)/ϕ(1), where Hϕ is as defined in (4),

PVk+1(x) ≤ Vk(x) − ϕ(1)rϕ(k) + brϕ(k + 1) 1{x∈C} for all k ≥ 0,

where Vk := Hk ◦ V and

Hk(v) := ϕ(1)

∫ Hϕ(v)

0
rϕ(z + k)dz = H−1

ϕ (Hϕ(v) + k) − H−1
ϕ (k).
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