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CHAINS OF VARIETIES
NARAIN GUPTA, FRANK LEVIN, AND AKBAR RHEMTULLA

Summary. If 8 is a variety of groups that can be defined by #n-variable
laws and B™ is the variety all of whose m-generator groups are in 8 then there
corresponds the chain: BW = VLA = ... = LW = B, In this paper such
chains are investigated to determine which of the inclusions are proper for
certain varieties 8. In particular the inclusions are shown to be all proper for
the varieties N2, (NA)29, €, where N, is the variety of nilpotent-of-class-c
groups, I is the abelian variety and € = (€®) is the variety of centre-by-
metabelian groups. For AN, (¢ = 3) the inclusions are likewise proper but for
B = (AN, A Ne) the corresponding chain is: VD > V@ > PO > PO =
B > P® = B, The remainder of the paper is devoted to the study of
N s-groups.

1. Introduction. Let ¥ be a variety of groups that can be defined by
n-variable laws for some # = 1 and consider the chain

(1.1) LWL = LA = . = LW = L,

where B¢ is the variety of all those groups whose m-generator subgroups
belong to B. For N, the variety of nilpotent-of-class-c groups, it is known that
N > No® > Jo® = Ny (Levi-Van der Waerden [8]) and N9 = N (D =
N, (¢ = 3) (Heineken [5], Macdonald [10]). For I, the metabelian variety,
we have MDD > M > NG > MO = <M (B. H. Neumann [14]; c.f. Theorem
4.2 for an alternative proof). Further related results may be found in Mac-
donald [11].

In this paper we construct a series of examples which enable us to determine
the chain (1.1) for certain varieties which can be defined by single (complex)
commutator words. For instance we show that if 8 = Y.(c = 3) then
LD > VO > > BO = Pt = B (Theorem 3.5); if B = NA(c = 2)
then LW > V@ > 0 > PeAD = Pt = B (Theorem 4.1); if B = G,
the centre-by-metabelian variety, then 8D > B > || > BG = B (The-
orem4.3) and if B = AN (c = 3) then BLW > LG > ... > BRI = P+ =
Pt = P (Theorem 4.5). In contrast to these inclusions we show that if
T = AMN2 A N then BW > VA > PO > PO = PG > PO = P (Theorem
4.8). To the authors’ knowledge this type of chain has not been known pre-
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viously for varieties of groups. The remainder of the paper is devoted to the
study of some general properties of N ;-groups where time and again we refer
to our examples to show that the results obtained are to some extent best
possible. For instance we show thatif G = F,, (M) (n = 3), then G < ¢,_1 (G)

but G £ ¢,—2(G) (Theorem 6.1).

2. Notation. Unless otherwise specified all notation is standard and follows
that of Hanna Neumann [15].

3. Examples. Let » = 2 be a fixed positive integer and let A (n) be the
ring of polynomials in non-commuting variables X, \J Y,,; over Z, where
Xpr1 = {x1, .., %01} and Yoo = {y1, ..., Yua1}. Let B(n) be the basic
ideal of 4 (n); that is the ideal generated by X,.1\U Y,;;. We are interested
in the ring B(n) and certain ideals of B(n); but in order to describe these
ideals we need to explain certain terms. A monomial of length m(m > 0) in
the ring B (n) is an element of the form z; . .. z,in B(n) withz, € X,,1 U V41,

1=1,...,m. Wesay z;...z, has a repeated x-entry to mean that for some
k,lsatisfyingl Sk <l = m,z =2, € X,p1. Wesay z;... 23, has r y-entries
to mean that the number of z,,(¢ = 1, ..., m), such thatz; € Y, is precisely

r. For each positive integer %, we define five ideals of B(n) as follows:

J(n, k, 1) = The ideal of B(n) generated by all monomials of length
n+ k4 2in B(n).

J(n, k, 2) = The ideal of B(n) generated by all monomials of length
n + k 4+ 1 in B(n) with a repeated x-entry.

J(n, k, 3) = The ideal of B(n) generated by all monomials of length
n -+ k 4+ 1 in B(n) in which the number of y-entries is different from k.

J(n, k, 4) = The ideal of B(n) generated by all elements of B(n) of the
form z1...2, + %1c...20 wWhere v =n+k+1, 2,€ X, .U Y,11, (@ =
1,...,7),and ¢ is any odd permutation of {1, ..., r} fixing those indices j for
which z; € Y41.

J(n, k) = The ideal of B(n) generated by J(n, k, 1), J(n, &k, 2), J(n, k, 3)
and J(n, k, 4).

The rings that we shall need are the quotients

R(n, k) = B(n)/J(n, k).

We will say that a monomial 2; . . . 2,441 in R(n, k) is in canonical form if,
whenever z; = %4, 2; = Xa;, then ¢ < j if and only if a; < a; for all 4,
jEef{L, ..., n+k+1},a;,a; € {1,...,n 4+ 1}. By making repeated use of

J (n, k, 4), we can clearly reduce every monomial of weight #» 4 & 4 1 that is
not zero in R(n, k) to its canonical form. Thus the additive group of R(x, k) is
the free abelian group, freely generated by all distinct monomials of weight
1, ..., n-+ & in variables X, \U V,,; together with those monomials of
weight # 4+ k 4+ 1 which have k y-entries and are in canonical form. In par-
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ticular R (n, k)"t*+1 is freely generated, as an abelian group, by monomials of
weight n + & 4 1 with % y-entries and in canonical form.

For p; € R(n, k) we define the ring commutator (p1, p2) = pipz — p2p1, and,
inductively for m > 2, (o1, ..., pn) = {{p1, - - -, Pmu_1), Pm ) defines the left-
normed ring commutator of weight m. In order to reduce complication in
notation, we shall occasionally use the semicolon to separate the commutator
signs. For instance we shall write {p1, p2; p3, ps) to mean ({p1, p2), {(p3, ps)).

A complex ring commutator of weight m in py, . . ., p, Is any expression of the
form {ty, ...y bi; bigty « ooy big; ooy o -, bm) Where t; € {p1, ..., p,}. We
shall denote by (p1,¢»p2) the expression {pi, ps, . . ., p2) where ps occurs 7 > 0
times.

Where there is no ambiguity we shall write R for R(n, k). Since R"++2 = 0,
for the purpose of studying R***+1, we may assume that each p; € R is of the
form

n+1

Z $a%gy M
=1

3
+
i

It

(3.1) pi=§:i+ n: where {;
Cinni € Z.
LEMMA 3.1. In R(n, k), p1. . . pprit1 = Qifforsomel Sr <s=n+k+1
pr = Ps = Zr]%:llg‘rjxr

Proof. On expanding p; . . . py4x+1 as a linear combination of monomials, and
deleting those terms that lie in J (%, k, 2) and J (n, k, 3) we are left with a term in
J(n, k, 4); because, for every monomial 2; . . . 2,_1X 2741 - « « Z5— 10, F541 « + - Sngrils
z; € X,u1 U Y,4 in the expansion we also have

™

M55

o
]
—

Z1e e e Z7—1X8741 ¢ ¢ « 351X 8541 ¢ o o Bpphtl

in the expansion.

LEMMA 3.2. In R(n, k), p1+  « Puistr = O 2f [{p1, -+, porsr1}| = n.

Proof. In the expansion of p; . . . py4x+1 as a linear combination of monomials
only terms which involve precisely k y-entries need be considered. Let
AC{1,2,...,n+ k + 1} and |A] = k, and let ¢, denote the linear combina-
tion of those monomials 21 . . . 2,4,41 in the expansion of p; . . . p,4s41 such that
z; € Vyyifandonlyifz € A. By 3.1,¢5 = 01... 044441 Whereo, = &;if7 ¢ A
and o; = 5;if ¢ € A. Since |{p1, . - ., poss1}| = n, there exist integers 7, s such
thatl S r <s=n+4+k+1,r,5s¢ Aand p, = p,. Thus {, = ¢,. By Lemma
3.1, tA = 0. Since p1 ... ppyry1 = ZAtA, we conclude that p;... pye1 = O.

Since any complex ring commutator of weight m in py, ..., p, can be expressed
as a homogeneous polynomial of degree m in py, . . . , p,, we obtain the following
result as an immediate corollary to Lemma 3.2.

LeEmMA 3.3. A complex ring commutator of weight n + k + 1 in p1, ..., p,is
0in R(n, k).
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By a result of Magnus [13, Chapter 5], the elements 1 + p, p € R(n, k)
generate a nilpotent group of class # + & 4 1 under multiplication. We denote
this group by G(n, k). If we denote by the square brackets the usual group
commutator, then observe that for 1 + p; € G(n, k),

(3.2) [1+Plr---11+911;1+pix+ly---yl+Pi2;---;---71+Pn+k+l]
=1+ <P1y---7pi1;PiH-1y~--ypi2;---;'--ypn+k+l>
in R(n, k). In particular,

(3-3) [1 + oy, 1+ pn+k+1] =1+ <P1y ey pn+lc+1>
in R(n, k). From this observation and Lemma 3.3. we obtain the following
LeEmMMA 3.4. G(n, k) € Nx (n > 1,k > 0).

However, G(n, k) is not nilpotent of class #» 4 &, for we next prove the
following

LEMMA 3.5. G(n, k) ¢ NIED (n > 1,k > 0).

Proof. It suffices to find a non-trivial # + & 4 1 weight left-normed group
commutator in G (n, k), or, equivalently, in view of (3.3), to find a non-trivial
ring commutator in R (%, k) of weight n + & + 1 involving n + 1 elements. Let

¢ = (%2, %3, g (X1 + Y1), X4y« o, Xpy1)

and ¢; = (X2, X3,0)Y1, X1,6=9Y1, X4y « -y Xnp1), ¢ =0, ..., k. By virtue of
Lemma 3.1 and the fact that ring commutators are multilinear with respect to
their components in R(n, k), ¢ = Z'§=oc,~. If > 2and 1 <7 =< k, then the
monomial y'{‘lxlylxz ... %,41 does not occur in the expansion of ¢; as a sum
of monomials in canonical form. For, (xs, %3, ¥1, ¥1) = (%ox3 — X3%9)y12 —
2y; (23 — x3%2) + ¥12(xaxs — x3x2). Thus y,/* w1y . . . x,41 does not occur
in ((xox3 — x3%2)V12 — 2y1(Xaxs — x3%) + yi2(Xaxs — X3X2)), 23, ..., Zpe1
X4y . . ., Xnr1) Where one of the z; is equal to x; and the rest equal to y,. Thus
the coefficient of the nomomial y,*~1x,y1xs . . . X4 in the expansion of ¢ is the
same as the coefficient in the expansion of ¢y 4 ¢;. Observe that

Z1... Zr(<x1y X jy xk>)27+4 e B =0 i oz, € X, Y Yo,

for it is equal to

21 ... 2, (XXX — XXXy — XXXy T XXX 5)Zr4a + - o Bl
which is in J(n, k, 4). Thus ¢y = 0. Now observe that the coefficient of
Y1¥71%1y1X5 . . . X,41 i0 the expansion of ¢; as linear combination of nomomials
in canonical form is the same as that of each of the following commutators:
(2% 1Y1%9% 3, -1V 1y Xdy - + - 5 Xnt1),
(—2y1%1Y1%2%3, k-2 V1, X4, - - - Y Xnt1)y v e oy
((=1)¥ 129, 7l 1 y120%s, Xy o ooy Xpg1 )y o o o s

(—=1)12y," ey ysXa . . . Xy Xy )-
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In each of these the coefficient of y*lxiyxs. .. %41 is 2+ (—1)¥1 5 0, so
that ¢ #% 0 in R(n, k).

THEOREM 3.6. 9, > NP > ... > NSO = NAHD =N, (¢ = 3).

Proof. Since N,V is the variety of all groups, .V > N ?; and the equality
N = N+ is due to Heineken and Macdonald as mentioned in the intro-
duction. The inclusions %R.™ > N ™D (2 <m < ¢ — 1) follow from
Lemmas 3.4 and 3.5 by considering G (m, ¢ — m).

Let H(n, k) be the subgroup of G(n, k) generated by 1 4 x; + v,
14+ %x9,...,1 4+ x,41. Then H(n, k) is a finitely generated torsion free group
of class precisely n 4+ k& + 1 all of whose # generator subgroups are of class
at most n + k. It follows by a well-known result of Gruenberg [1] that H (n, k)
is residually a finite p-group for every prime p. Thus we obtain the following
generalization of a result of Gupta-Gupta-Newman [3].

THEOREM 3.7. For any integers n = 2, k = 1 and every prime p, there is a
finite p-group of milpotency class precisely n + k 4 1, all of whose n-generator
subgroups are nilpotent of class at most n 4 k.

Remark 1. Theorem 3.7 can also be proved independent of Gruenberg's
result by replacing the algebra 4 (n) by A*(n) = Z,:[X,.1\J YV,11], where p!
does not divide k£ 4 2, and using arguments similar to above except that Z,:
replaces Z wherever it occurs.

4. The chain problem. In the previous section we showed that for ¢ = 3,
ND > .0 > N In this section similar results for N A (c = 2), AN, (c = 2)
and € will be obtained. In addition we give an alternative proof of B. H.
Neumann'’s result that ™ > ... > M@, where I is the variety of meta-
belian groups.

THEOREM 4.1. Let B = NA (¢ = 2). Then

PO > [ > .., > Yeod = Roorn =

Proof. The equality BE+D = LB is due to Macdonald [11] and BWD > L@
is obvious. To prove B™ > B™+D (2 < m = 2c¢), we consider again the group
G(m, 2c — m + 1) which by Lemma 3.3 belongs to 8™ and we show that a
certain commutator of weight 2¢ + 2 in m + 1 variables is non-zero in
R(m, 2¢c — m + 1). For the following argument we set p; = x; + v, for all 7
considered.

Case 1. m = 2¢. We look at the coefficient of ysx1%s . . . X,,41 in the expansion
of t = {p1, p2; p2, P3; P1, P5; - - - } Pmy Pm+1) @S @ linear combination of monomials
in canonical form. Since the coefficient of w.x1x26; in the expansion of
{p1, p2; p2, p3) is equal to —4, the coefficient of yox;...%Xpp1 in ¢ is
—4 . 2(m+D=8)/2 = ¢+ gince m = 2c.
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Case 2. m even and 2 < m < 2c. We look at the coefficient of
Y1ve (Y193)"YsX1 . . . X1 in the expansion of

t = (p1, P2, i1 (P1, P3)5 P2, P35 P1s P55+ + + 5 Py Pmi1)
as a linear combination of monomials in canonical form. Here n =
(2¢ — m — 2)/2. Notice that the coefficient of y;vs(y1¥3)"VsX1 . . . Xpy1 i0 £ IS
the same as that in the expansion of each of the following commutators:

<y1y2y(n) (3’13’3), <P1v p3>r <p2y P3>y ceey <pm7 pm+1>>y
@1y2(0133)" (p1, p3), (P2, p3)s (P4 P5)y -+ s {Pumy Pmt1),s
<y1y2 (ylys)n, - YV3X1, 2902303, 2x4x5, ey mexm+1>.

In all these cases, the coefficient of y1ys(y1y3)™ysx1 . . . Xpy1 is —2772,
Case 3. m odd. In this case let

b= {p1, p2;utn) (P1, P3); P2y PL; P5y P63 « = + 3 Py Pms1)

where n = (2c — m — 1)/2. The coefficient of y,ys(y1y:)"%1 ... %X, in the
expansion of ¢ as a linear combination of monomials in canonical form is the
same as in each of the following commutators:

12,00 (V138), 215, 209%4, 205X, - - ., 25X mt1),
(Ay1Ys (Y173)"%1X3X 9K 4, 2X5K6, +  + 5 2XmXmr1 ),
(—4y1y2 (V1Y3)"%1%60% 5% 4, 2X5K6, + + « , 2K, Xmp1 )
In each case the coefficient is —2"+172,
Thus in each of the three cases ¢ # 0 and hence LB > R+ for all m
satisfying 2 = m =< 2c.
As a further application of our techniques we give an alternative proof of
the following theorem.
TuEOREM 4.2 (B.H. Neuman [14]). M@ > M® > M®,
Proof. To show IM® > M it sufhces to show that G(2, 1) ¢ NP, for
G(2,1) € N» by Lemma 3.4 and ,;® C M. In the expansion of

(x1 + 1, %25 21 + ¥1, x3) as a linear combination of monomials in canonical
form, the coefficient of y;x1xsx; is —4; for it is the same as the coefficient of
Yix1xexs in (2x102 + Yixe; 2013 + Y1x3 ).

To show that NP > M@ we consider R*(2, 1) = R(2, 1)/I, where I, is
the ideal {4p;p € R(2,1)}, and the corresponding group G*(2,1) =
1 + R*(2, 1) under multiplication. Since {(yi, X1; X2, %3) = 2y1X1%2X3 —
2x1Y1%2%3 — 2x1%9¥1%3 + 2x1%0x3y1 # 0 in R*(2, 1), it follows that

G*(2,1) ¢ M® = .
To show that G*(2,1) € IM®, it suffices by a result of Macdonald [10] to show
that {p1, p2; p1, p3) = O for all p; € R*(2, 1), 7 = 1, 2, 3. Write p; = ¢4 + 14
(see 3.1) and use Lemma 3.1 to obtain

{p1, p2; p1y p3) = ({1, P25 M1, P3) + (M1, p2; 1y P3) + (11, P2; 1103 )
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Now {11, p2; 11, p3) = 0in R(2, 1) for it lies in J(2, 1, 3).
For the same reason, ({1, ps; n1, p3) = (&1, £2; 71, £3) so that

(p1, p2; p1, p3) = 2E:fa(més — Eam1) — 2(més — Em)Erds + 2(miée — Eomi) ik
— 25:83(mée — Eamy)
= 4E15omEs — 4E:8e8am — dmbabets + 4Embats = 0in R*(2, 1).

Remark 2. We have B. H. Neumann's example showing IN® > M® s a
2-group. Recently, C. K. Gupta [2] has shown the existence of a torsion free
group in M@ and not in IM®. Note the G(2, 1) is also a torsion free group,
but it lacks other interesting features of C. K. Gupta's group.

We now consider the variety € of centre-by-metabelian groups which is
defined by the law [x, y; %, v; w] = 1.

THEOREM 4.3. €@ > €® > W > E®,

Proof. The group G(2, 2) € € and to show G(2, 2) ¢ E€®, we note that in
R(2, 2), (x1 4 y1, X2 + ¥2; %1 + y1, ¥3 + ¥3; x1 + y1) 5% 0 as the sum of the
coefficients of y;2x1xex3 is 4. Similarly G(3, 1) € €® and to show G(3,1) ¢ €@
we note that in R(3, 1), (¥1 + y1, X2 + ¥2; %1 + y1, X5 + ¥5; X4 + y4) # 0 as
the sum of the coefficients of yx;x.x3x0,4 is —4.

The final inequality € > €® requires a somewhat different approacht.
Let Rs = Z[x1, ..., %5]/1(xs1) - . - Xiey), Where I(x;qy - .. %) is the ideal
generated by all monomials of length 6. Let G5 be the multiplicative group
generated by 1 4 x1,...,1 4 x;5. Then G5 is the free nilpotent-of-class-5
group freely generated by 1 + x;, 7 =1, ..., 5 (see for instance [13 Chapter
5]) and the mapping [1 + x;qy, - - ., 1 + xi5)] = &Xiqyy « - - 5 Xi5)) defines a
homomorphism of v5(Gs) onto the additive subgroup K; of R; generated by
all Lie-elements of the form {(x;a), ..., Xz )-

The laws defining €™ correspond thus to the subgroup 45 of K5 generated
by all elements of the form

(*) <xi(1)1 X1(2)y X4(3)y Xi(4)5 xi(5)>
with [{¢(1),...,7(5)}| = 4 and
**) (X Xe@; Xy X Xaw)) T Kaans Xien s Xien, Xaan; Xien)

with |{z(1), ..., 2(5)}| = 5 and 7 any transposition of {1, ..., 5}. Thus to
show €@ > E® it is enough to show that ¢ = (x1, x2; &3, x4; x5) ¢ A5, where
A5 is the subgroup of 45 generated by all elements of the form (**). It follows
from the work of Macdonald [10] that 45 contains 2¢ so that A5 is generated
by all elements of the form ¢ + co where ¢ is any permutation of {1, ..., 5}
and co = (X15, X20; %30, X0} Xs0)-

tThis was also proved independently by Dr. M. F. Newman whom we thank for communi-
cating the proof. The proof given here is ditferent.
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Let Bs be the subgroup of K; generated by all elements of the form
(1w, Xu2i Xuwy Xaws Xaw) with [{i(1), ..., 1(5)}| = 5. Since (x, y) =
—{y, x), and {(x, v; 2, ¢) = — (3, t; x, ) it follows that B; is generated by all
elements of the form

Coy = (X1, X%, %5050 (BR>1) 4,7 €1{2,3,4, 5} and 4, j, k, I all distinct
and
dy = (xo, x4 %5, x501) (R>1) 1=3,4,5.
There are 12 ¢;;'s and 3 d,'s and we first of all note that these generate Bj

freely. Indeed let D_6,d; + D 84,c,; = 0. To ease the notation we write ijk . . .
for x ;. . .. Then

¢y = (likl — Lilk — <1kl + i1k — Rili + kL1 + (k10 — lkil)j
+ j(1ilk — Likl + 41kl — 411k + kIls — klzl — [kl + [ki1)

(2tkl — 2ulk — 12k1 4 12lk — RI20 4 kL2 + k20 — [Ri2)1
+ 1(2ilk — 20kl + 12kl — 20k + kI20 — RI2 — [k20 4 [ki2).

d

Now the coefficients of 12345, 12354, 12435, 12534, 12453, 12543, 13245,
13254, 13425, 13452, 13524 and 13542 are, respectively, §; — £25, —03 — &a4,
84 + E25, 05 + 24y —04 — S23, —05 + 23, —03 — &35, 63 — E34, —05 + Ess,
85 — 39, —0s + &34 and 84 + £30. Equating each of these to zero, we obtain
0 =083 =04 =205 = fo3 = E2a = £a5 = 32 = £34 = &35 With this knowledge
we obtain the rest of £;;'s equal to zero by looking at the coefficients of 14352,
14253, 14235, 15342, 15243 and 15234.

Now A is generated by {¢ + ciy, d +dy; 4, € {2, .,5},i % jand k =
3,4, 5). If c € A; then

C = Co5 = Zai]‘(c + Czj) +Zﬁk(5 + d;)

implies that —1 = 0 which is not possible. This completes the proof of the
theorem.

LEmMMA 4.4. Let B = (AN,)P9 (¢ = 2). Then BLLD > B > ... > B = P,

Proof. By Lemma 34, G(m, 2c —m + 1) € 9.7357?)_,.1 < B™ for m €
{2,...,2c — 1}. Thus to prove the lemma it suffices to show that
G(m, 2c —m + 1) ¢ B+, As in the proof of Lemma 3.5 we show that a
certain commutator in R(m, 2c — m + 1) does not vanish.

Case 1 (c = m). In this case let

t = (P1,()P25 P21 (c—m+2P3) Py + + + 1 Pmt1)

where p; = x; + y. Note that the coefficient of y,°x;y;~"+x, . .. Xny1 in the
expansion of ¢ as a linear combination of monomials in canonical form is the
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same as the corresponding coefficient in each of the following commutators:

(% o (5 ol

whered = ¢ — m + 2,

{=1)ys%1, ((—1) 'y Waxy + (—1)%5% wsxa), X4y « -« y Lot )y
<(_1)0y26x1; (_l)d_l(d + 1)y3d—-1x2x3y Xy o« v oy xm+1>‘

In each of these the coefficient of y2%%1ys*xs . . . X1 is (—1)°H1(d 4+ 1) =
(=1)™1- (¢ —m + 3).
Case 2 (¢ < m < 2¢). In this case let

b= {p1,(2641=m)P2y P3y « + + s Pd} Py Pd41s +  « » Pmt1)

where d = m + 1 — ¢ and once again p; = x; + v,. Observe that the coeffi-
cient of y.2"™xy . . . Xg¥1%as1 - - - Xpy1 10 the expansion of £ as a linear combina-
tion of monomials in canonical form is the same as the corresponding coefficient
in the expansion of each of the following:

zel 1)? € i e—i .
] (_ ) ’L p2 p p2 yP3y e« -y Pdy PLy Pa+1y - « » 5y Pm+1
i—

where e = 2c + 1 — m,
(=12 oy — (—1)%dy2*11%9), X3y« « oy a5 V1, Xat1y + « - 5 X))y
(=) (e + 1)y wixe . . . X¢; ViXat1 - - « Bmg1)e
In each case the coefficient is (—=1)t1(e + 1) = (—1)2". (2c + 2 — m).

By the Heineken-Macdonald result we have AN, = (AN, @D =
AN HEAD = (AN, (¢ = 3). This fact together with Lemma 4.4 yields the
following result.

THEOREM 4.5. If B = AN (c = 3) then

BD > PO >, > B = L,

Essentially Theorem 4.5 has been proved by considering the chain (1.1) for
B = AN, A Naere (¢ = 3). We now investigate the corresponding chain for
the variety 8 = AN2 A N6 and show that it is exceptional.

LemMA 4.6.7 If B = ANz A N, then BE > BO = B,

Proof. The proof will follow a similar argument to that used in Theorem 4.3
to show €@ > E®, Here we consider R¢ = Z{x1, ..., %6]/L(Xs) ... X5n)
where I(x;q) . ..%yn) is the ideal generated by monomials of length 7. Let
b = (%1, X2, X3; X1, X5, X6y and be = (X10, X20, X306} Xug, X560, Xoo) Where o is a

1The proof is based on a suggestion of Dr. M. F. Newman (oral communication).
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permutation of {1, 2, ..., 6}. Let B; be the additive group generated by all
expressions be + (bo)T where 7 is any transposition. As in the proof of Theorem
4.3 we shall show that b ¢ By. Since b + b(13) € B,, by Jacobi Identity it
follows that 3b € B,.

Let B be the additive group generated by all commutators bs. Then B is
freely generated by the basic Lie elements

(%4, %5, X5 X1y Xy %)
where ¢ > j < k, I >m < n,1> 1 (ctf. [13]); and
<x‘lay Xjoy Xroy X 1oy Xmoy xna> = IO'I <xi, Xjy Xy X1y Xony xn) modulo Bl.

Let B, be the subgroup of B generated by 30 and all b — |o|bs where bo is one of
the free generators of B. Clearly b ¢ B, and it is enough to show that B; < B..
As in Theorem 4.3, B, is generated by all b — |o|bc where ¢ is any permuta-

tion of {1, ..., 6}. If bo = —bo’ where bs’ is a free generator of B, then
lolbe = |o’|be’. If bo is not a free generator or its negative then it is easily
seen that |o|bs = —|o’|bs’ — |0’’|be’’ where bo’ and bo’’ are free generators or

their negatives, so that b — |olbe = b + |o'|be’ + |o"|be’” = —3b + b +
l¢’|be” + |¢’’|be’’ modulo Bs = (—b + |o’|be’) + (—b + |¢’|be’”’) = 0 mod-
ulo Bz.

LemMA 4.7. Let B = ANy A Ne. Then BLW = VO,

Proof. Since B < N, it suffices to show that in R as defined in Lemma 4.6
the additive subgroup B; generated by all elements of the form

(4.1) <P1, P2y P25 P4y P5,y P5>
(4.2) <Pl, P2y P35 P1y P4, P2>, and
4.3) {1, p2, P25 p1, P4, ps), Where p; € Rs

contains the commutators

(4.4) (%1, X, X3} X4, X5, X5) = by,
(4.5) (%1, %9, X35 X1, X4, X5) = by,
(4.6) (%1, X2, X3} X4, X5, X1) = b3, and
4.7) (22, X3, X1; X1, X5, X1) = Da.

In (4.3) replacing p. by x2 4+ x3 and p; by x; for ¢ 5 2, give after a suitable
change of variables,

(4.8) (o1, X2, X35 X1, X4, X5) + (%1, X3, X2 X1, ¥4, ¥5) = 0 mod Bs.
Similarly, in (4.2) replacing ps by x2 4+ x4 and ps by x3 + x5 give respectively,

(4.9) (o1, %3, Xa; X1, X4, X5) + (X1, X3, X¥4; X1, X2, ¥5) = 0
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and

(4.10) (x1, X3, X4; X1, X2, X5) + (X1, X5, X4} X1, X2, x3) ;=0.
Adding (4.8) and (4.10), and using (4.9) gives

(4.11) (%1, X2, X3; X1, X4y %5) + (X1, X2, Xa; X5, X1, %4) = 0

so that by the Jacobi identity b3 = 0 mod B;. By Jacobi identity b4 can be
written as a sum of two elements of the form b3, hence b; = 0. In by, replacing
x; by x1 + x5 and using b; = 0 shows that b; = 0. And, finally in b, replacing
x5 by x1 + x5 and using b; = 0 shows that b, = 0. This completes the proof of
the lemma.

From Lemmas 4.4, 4.6 and 4.7 we deduce the following theorem.
THEOREM 4.8. Let B = AN2 A No. Then

PO > P@ > PO > PO = BO > /O = P,

5. The variety Sﬁfﬂ_k (lemmas). In this section we list some preliminary
results required for the investigation of some general properties of E)?S’lrrgroups
to be undertaken in the next section.

LemMma 5.1 (Levi [7]). The law [x, y, y] = 1 in a group implies the laws
@) [x, 3, 2] = 1L and (i) [x, 9,3, u] = L.

LemMMA 5.2 (Heineken [5], Macdonald [10]). The laow [x1, ..., x,, %] = 1
(n = 3) 1n a group implies the law [x1, . . .. Xpp1] = 1.

LemMa 5.3 (Kappe [6]). If z is a fixed element of a group G such that [z, x, x] =
1 for all x € G, then (i) [z, x, y] = [z, ¥, x]" and (ii) [z, x, ¥, u]> = 1 for all
x,y, u € G.

LEMMA 5.4 If z is a fixed element of a group G such that [z, x, x] = 1 for all
x € Gthen (1) [z, u;x,y] = 1,and (ii) [z; %, y; 1] = 1 for all x, y, u € G.

Proof. Since 1 = [z, zx, zx] = [z, %, zx] = [z, x, 2], it follows that (z9) is
abelian. By Lemma 5.3 (i), [z, *7", *7'] = [z, 97", *"']! so that [g% x, y] =
(%, v, x]~%. Since (z¢) is abelian this gives [z, u, %, y] = [z, u,y,x]7' = [z, u,y, x]
by Lemma 5.3 (ii). By a theorem of Levin [9], this gives [z, u; x, y] = 1.
Similarly commuting both sides of 5.3 (i) by u gives [z, x, v, u] = [z, v, x, ]!
since (z¢) is abelian and as above, [z, x, y, u] = [z, ¥, x, #] and again Levin’s
theorem gives [z; x, v; #] = 1. This completes the proof of the Lemma.

LemMA 5.5. In any group G, [x1, X2, X3, X4][%s, X4, X1, X3][%3, X4y X1, X2] X
[x4, x3, X2, %1][%4, X1, X2, x3] = 1 modulo v5(G).

Proof. Modulo v5(G), [x1, x2; X3, Xa] = [x1, X2, X3, X4][x1, X2, X4, x3]7L =
[x1, %2, X3, X4][%4, X1, X2, Xs][X2, %4, %1, x5]; and [x5, x4; %1, x2] = [x3, x4, ¥, xa] X
[x4, x3, %2, 21]. The Lemma follows on multiplying these two identities.

For the rest of this section » = 2 and £ = 1, unless otherwise stated.
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LEMMA 5.6. Let G € ‘)?},’2,6 A E)E,(,T;ﬂll Then G satisfies the law

[Bawys « + v s X101 Fi00s X041 + + + 3 Xiue1)s X i XautDs + + + 5 XiatrtD) )
i)y« + s X20m1)s Xiws i1y + + + 5 Liue1)r Xi)s Xiu s + + + 5 Ximizen] = 1,
where [{1(1), ..., i A — 1), s+ 1), ..., —1),i(u+ 1),
in+k+ 1} =n—1
Proof. Since G € N, it satisfies the law
[Xiyy -+ + s Xiom1)s XX 1wy XiOADs « « + 5 XiGum1)y XiX i)
XiGuiDy « » + s Xitotrdn] = 1,
which on expansion (and using G € Niti,,) gives the desired result.
LEMMA 5.7. If G € M A Netis, then G satisfies the law

[xi(l)) e yxi(n+k+1)] =1
where

0< |{z4),...,icn+ b+ 1)}| = n— 2.
Proof. By Lemma 5.5, modulo y,1;42(G) we have

1 = [Xi0), X129, X13)) X i), Xas)s + -+ + » Xiubit D]
(%520, Xa(a), X215 X i3y Xi(3)y + + + 5 XsntrtD)
[ 4, Xacas Xa)s X42r X4y + + + » XitatatD)
[ s, Xaw)y X oy Xas Xa)s + + + s Xiutatn)
(i), Xa)s Xi2r X i) Xi)s +  + 3 Xitoirtn ]

Since |{z(1), 1(4), i¢(5), ..., i(n +k 4+ 1)}| = n — 1, by Lemma 5.6 the
product of second and third commutator is trivial. Similarly the product of
fourth and fifth commutator is trivial and we conclude that

(%)) X2y« + + s Xiuprrn] = 1.

LEMMA 5.8. Let G € Ny, (n = k 4+ 1) and let u be a commutator of weight
exceeding k. Then

[H ui,xl,...,xm]= H [ts, 21, . .., xn] for m > m,
1

i
where u; 1s a commutator having u as one of its entries.

Proof. Any commutator of weight #» 4 & 4+ 1 in which # occurs twice is a
commutator in at most # + k + 1 — (B + 1) = » variables and so is trivial.

N -groups. If G = Cowr (C2 X Cy X ...) thenG € NI foreachn =2
(c.f. [15, 34.54]), so that N{),-groups are not in general nilpotent. In [12],
Macdonald and Neumann have shown that if G € N}, (= = 3) then G is
locally nilpotent and v,4+3(G) is a 2-group In this section we investigate in
detail the commutator structure of N'3,-groups, starting with the following

Theorem.
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THEOREM 6.1. Let G = F,N™y) (n = 3). Then

=
=

(1) [ym (G), ’sz(G)] = {1} (m1, ma = 2 and m, + m, =
(ii) [v2(G), v2(G)] # {1};
(iil) [Ymi (G), Yme (G)] = {1} (my, mo 2 3 and my + my =

n+ 2).

n+ 3);

Proof. For the proof of (i) it is enough to show that [y, (G), v2(G)] <
Cnemi1(G) form = 3,...,n 4 1. For the result then follows by using P. Hall’s

three subgroup lemma.
Since G satisfies the law

[xly X2y X2, Xdy o« o oy Xy Xt 1y X;mt1y Xintdy o o oy xn+3] = 1:

G1 = G/tp_n(G) satisfies the law
[xly X2y X2y X4y o« o oy Xy 41y xm+l] = ]-y

which in turn implies the law

[xly X2y X2y X4y o o oy X5 Ximt1, Xmt2; xm+3] =1 (by Lemma 54:).

Thus G: = G1/¢(G,) satisfies the law

[1, %2, X2, X4y o+« ) Bins X1 Xmie] = 1,

Gs = G2/t (v2(G2)) satisfies the law [x1, x2, X2, X4y « 0., Xp] =

1, and G4 =

G3/tm—3(Gs) satisfies [x1, s, x2] = 1 which implies the law [xy, %3, 23]® = 1 by
Lemma 5.1. Thus by Lemma 5.8 we conclude that [v,(G), v2(G),¢mi1G] is
a 3-group which is also a 2-group by the Macdonald-Neumann result.

For the proof of (ii) we consider the group G(#, 1) of Section 3, which is a

homomorphic image of G and note that in R(n, 1),

= <y1y X1y o ooy Xp—1; Xy xn+1> # 0
since the coefficient of y1x; . . . %,411s 2 in the expansion of ¢. Indeed, we observe
that if # is even then {(yi, X1; X2, X3; . .. ; Xp, Xpe1) ¥ 0 and if % is odd then
{yay K15 %2, X35+ v 5 Xy, X3 ) 7 O,

For the proof of (iii) we anticipate the result of Theorem 6.2 (proved in-
dependently of (iii)) which states that N}, < NILY (= = 3). Thus by

Lemma 5.7, G satisfies the law [x1, %2, %3, Y1, . . ., Vo1] = 1 where

|{3’1, . yyn—l}‘ =n-— 2.
For m = 3, we have

[[xly X2y 00 ey xm]v [yl) Yo, y3]1 Zly e v oy zn—m—l} =
[xly sy Xmy V1, V2, V3 231y - e ey Zn—m—l]
(%1, X2y o v vy Xy V3, V2, V1, B1y - « + y Zneme1]
(1, X2, ooy Xy Y2y V15 V3 B2y « + « s Zpeme1) !
[%1, %2y« « oy Xy V3, Y1, Y2y Z1y « + + 5 B "

(by Jacobi identity)
=1 (by Lemma 5.6).
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Using the above result, we can strengthen statements (i) and (iii) as follows.

THEOREM 6.1*. Let G = F,(NM) n = 3. Then
(1) Yn43(G) M 72(72(G)) = {1};
(1) Ynt2(G) M v2(v3(G)) = {1}.

Proof. (i). Let K = v,13(G), L = v2(y2(G)). If KN L # {1}, then let

7 s

, 5

L#w=J] uf =] 27,
i=1 =1

where €4, §; = =1, each u, is a commutator of weight = # + 3 and each v, is
a commutator lying in G”’. If w involves m variables, then since G is a relative-
ly free group, each of ;s and v,’s is a commutator involving all of these m
variables. By Theorem 6.2 (proved independently of Theorem 6.1*) G €
N, < NI < N so that m = n + 2 and every u; is of weight # + 3.
By Theorem 6.1 (i), each v, is of weight < # + 2 so that m = » + 2. Also by
Theorem 6.1 (i), [¥1, - - - » Ynrs] = [V1, Y2, V3o - - - » Yt3)o] fOr any permutation
gof {3,...,n+ 3}. In particular, every u, is a left-normed commutator of
the form [x, X, « ., Xsnye) With [{31, ..., 4443} = # 4+ 2. By Lemma 5.7
no two of x4, ..., %4,,; are the same. This together with conditions implied
by Lemma 5.6 enables us to write w as follows:

n
w=]] w
i=1
where w; = [x1, X2, . . . , Xyy2, ¥1] and for ¢ > 1,
w; = [xi: Xiy oo oy Ximly Xigly o o oy Xyyo, xi]

and a; € Z. Without loss of generality assume that a; # 0. Replace x; by x1x
to obtain @’ from w. By looking at w as IIj_v,57 and making use of Theorem
6.1 (i), we get w = w'. By looking at w = II"_jwsi, we get w'w' =
[%1, %2, « « oy Xpa2, 21]°t = 1 in G. Thus [x1, %2, . . ., Xppe, ¥1)** is a law in G.
Interchange x; and x, to obtain [x1, s, . . . , Xpye, ¥1]7* = 1in G. Thuswy#i = 1
for all zand w = 1in G.

(i) Let H = v,42(G), K = v2(y3(G)). If HNK # {1}, then let
1#wc HNK.

,
w = H ut = H vjaj
=1

where €;, 8, = £1, each u, is a commutator of weight = # 4 2 and each v,
is a commutator in ys(y3(G)). As in (i), each #; and »; involves m variables
where m is number of variables in the expression of w. Since G € 9?,(,"131,
m=mn-+ 1. If m = n + 2, then the right hand side is trivial by Theorem 6.1
(iii). Thus m = n + 1. Let w = w; ... w,;1 where w, is the product of those
u,¢ in which x; is repeated. By interchanging the variables, if necessary,
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assume that w; > 1 in G. By making use of Lemma 5.7 we can assume that

wy = [X1, X2, X1, X3y « « « , Xpp1]°001, X2, X3, X1, Xty « « o Xpp1]?
where «, 8 are not both zero. Let 2(x1, ..., Xpr1) = W1 ... Wep v, 0% ... 0,700,
Then z(xy, ..., %,41) is a law in G. Now
2(X1, o ooy Xnp1)Z 1 (X1X0, X2y 4 - v oy Xpt1)
= [x1, X2y X2, X3y + + 5 Lt 1] (X1, X2, X3y X2, Xay o 0 oy Xpy1] P
= [x9, X1, X2, X3y « + « , Xpp1]%[X2, X1, X3y X2y Xay o o vy Xpy1)?

is a law in G. Interchange x;, x3 to get w; = 1 in G. This completes the proof.

THEOREM 6.2 (c.f. [15, 34.52]). ™ < REEY (0 = 3).

Proof. Let ¢ = [%y1),--.,%int+3] be any left-normed commutator in
G € Ny with [{¢(1),...,i(n + 3)}| = n + 1. By Theorem 6.1 (i), ¢ is
unchanged if we interchange the positions of any two variables appearing
after the second entry. Thus we may write

¢ = [Xun, X1y Xi@) + -+ s Xjtn ],

where j(n + 3) ¢ {i(1),4(2),7@3),...,7(n + 2)}. But G € N, implies that
[%101), Xi2)y X3y - -+ » Xjmt+2] = 1 and hence ¢ = 1. To see that the inclusion
is proper consider F,(M,+2) which is not in E)Efl'il.

Remark 3. In [12], Macdonald and Neumann have constructed a 3t;®-group
which is not a N4®-group. Thus Theorem 6.2 cannot be improved to include
n = 2.

7. The variety N{; (continued). We first prove an analogue of Theorem
6.2.

THEOREM 7.1. N < NI, for kB = 1 and n = 3k + 2.

Proof. Let G € NM, and let ¢(X) = [Kimsri2, -« - » Xi2), xy«1) be a com-

mutator in # + 1 variables. Since G is locally nilpotent (see [4]), it is sufficient
to show that ¢(x) = 1 modulo y,4r+3(G). Term x;; free if it occurs precisely
once in ¢(x). If x4 is free then since G € Ny4y, c(x) = 1. We may therefore
assume that x;( is not free. Among the entries of ¢(x) we note that there are
at least » — k free variables and since n — k = (n 4+ k& + 2)/2, there is a
least integer j such that x,¢; and x ;41 are both free in either ¢(x) or in ¢(x)~*.
Moreover j + 1 < n + k + 2 for otherwise we could consider

(X intr+2)r Xitnirrn)]

as one variable. Since G € NI, we have

(4, X4 0% 0y Xi=1)s « « + s Xen] = 1
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where 4 = [Xiu41t2), - - - » X4s+2]. This, on expansion, shows that c(x) = 1
mOdulO 7n+k+3(G)'

THEOREM 7.2. Let

k
G € AL, (0 > 2k + 3).
A

Then yp-2ui1(G) = ®(G) where 1(G) = {1(ys(G)) and ®,41(G)/®,(G) =
®,(G/2,(G)).

Proof. Since G € N A Netivy, by Lemma 5.7 G satisfies the law
[x1, %2, X3, Xs1)s -+ + o Xiupa—ny] = 1 where [{z(1),...,i(n +k —2)}]| <n—2
and in particular the law [[%y1), ..., Xi@r—2], [*1, *2, %3]] = 1 (see Mac-
donald [10, Lemma, p. 272]). More generally since G € Wiii,, A Netitii, G
satisfies the law [[%), - « + , Xigerss =], [X1, X2, 23]] = 1 where

i), ...,in+k+t—2)}| Sn+t—2
From these identities it follows that G/®,(G) € /\’;;59?5@33’,2, and inductively
k—s
G/®,(G) € A NIEHD,
§=0
Hence taking s = k we obtain G/ ®;(G) € %;ﬁ}z_k;)gk = Ny—op (since n — 2k = 3).
Thus yp—211(G) = 2:(G).
By Theorem 7.1if n = 3% + 2, then A5 MUY, = N, and since 3k + 2 =

2k + 3, we obtain the following Theorem as a corollary to Theorem 7.2.

THEOREM 7.3. If G € WY (n = 3k + 2) then [v,—241(G),wvs(G)] = {1}.

The following result shows that Theorem 7.3 is best possible in the following
sense.

THEOREM 7.4. Let G = F (M) n= 2k — 3. Then [(Yn—2i4+4(G),i—1yv3(G)] #
{1}.

Proof. Consider G(n, k) which is a homomorphic image of G. In R(n, k),
1 %1y« o vy Xn2k 433 V20 Xne2tay X2kt 55 V3o o o 50 o o 3 Vior Xy K1) # 0

since the coefficient of yixs . . . Xy—opt3VeXn—opt+ 4Xn—2245Y3 + + « ViXn¥py1 is 1 in the
expansion of the commutator as a linear combination of monomials in canoni-
cal form.
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