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CHAINS OF VARIETIES 

NARAIN GUPTA, FRANK LEVIN, AND AKBAR RHEMTULLA 

S u m m a r y . If 33 is a var ie ty of groups t h a t can be denned by ^-variable 
laws and 33(w) is the var ie ty all of whose ra-generator groups are in 33 then there 
corresponds the chain: 33(1) ^ 33(2) ^ . . . è 3 3 w = 33. In this paper such 
chains are investigated to determine which of the inclusions are proper for 
certain varieties 33. In part icular the inclusions are shown to be all proper for 
the varieties 9ÎC

(C), (9?c9l)(2c), S, where 5ft c is the var ie ty of nilpotent-of-class-c 
groups, 21 is the abelian var ie ty and S = (S ( 5 )) is the var ie ty of centre-by-
metabelian groups. For 2MC (c ^ 3) the inclusions are likewise proper bu t for 
33 = (2I9Î2 A 5K6) the corresponding chain is: 33(1) > 33(2) > 33(3) > 3?(4) = 
33(5) > 33(6) = 33. T h e remainder of the paper is devoted to the s tudv of 
^ . - g r o u p s . 

1. I n t r o d u c t i o n . Let 33 be a var ie ty of groups t ha t can be defined by 
w-variable laws for some n ^ 1 and consider the chain 

(1.1) 33(1) ^ 33(2) è . . . ^ 3 3 w = S3, 

where 3?(m) is the var ie ty of all those groups whose ra-generator subgroups 
belong to 33. For 91 c, the var ie ty of nilpotent-of-class-c groups, it is known t h a t 
9Î2

(1) > W2) > 9?2
(3) = 9Î2 (Levi-Van der Waerden [8]) and 9^c> = WJ°+» = 

Wc (c è 3) (Heineken [5], Macdonald [10]). For 2ft, the metabelian variety, 
we have aft'1* > 2W(2) > 9tft(3) > 2ft(4) = 2ft (B. H. Neumann [14] ; cf. Theorem 
4.2 for an a l ternat ive proof). Fur the r related results may be found in Mac­
donald [11]. 

In this paper we construct a series of examples which enable us to determine 
the chain (1.1) for certain varieties which can be defined by single (complex) 
commuta to r words. For instance we show t h a t if 33 = 5ftc(£ ^ 3) then 
syci) > 33(2) > > 33(c) = sgcc+i) = 33 ( T h e 0 r e m 3.5); if 33 = ^M(c ^ 2) 
then 3?(1) > 33(2) > . . . > 33(2C+1) = 33 (2c+2) = 33 (Theorem 4.1); if 35 = 6 , 
the centre-by-metabelian var ie ty , then 33(1) > 33(2) > . . . > 33(5) = 33 (The­
orem 4.3) and if 33 = 2l5ftc(c ^ 3) then 3?(1) > 33(2) > . . . > 33(2C) = 33 (2c+1) = 
33(2c+2) _ 33 (Theorem 4.5). In contras t to these inclusions we show tha t if 
33 = 219? 2 A 5ft6 then 33(1) > 3?(2) > 33(3) > 33(4) = 33(6) > 33(6) = 33 (Theorem 
4.8). T o the authors ' knowledge this type of chain has not been known pre-
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viously for varieties of groups. The remainder of the paper is devoted to the 
s tudy of some general properties of S^fjj^-groups where time and again we refer 
to our examples to show tha t the results obtained are to some extent best 
possible. For instance we show tha t if G = 7^(9tf+i) (w ^ 3), then G" ^ fn_i (G) 
bu t G" % fn-2(G) (Theorem 6.1). 

2. N o t a t i o n . Unless otherwise specified all notat ion is s tandard and follows 
t ha t of H a n n a Neumann [15]. 

3. E x a m p l e s . Let n ^ 2 be a fixed positive integer and let A(n) be the 
ring of polynomials in non-commuting variables Xn+\ \J F w + 1 over Z, where 
Xn+i = {xu . . . , xn+i} and Yn+1 = \yu . . . , yn+i}. Let Bin) be the basic 
ideal of A (n) ; t h a t is the ideal generated by Xn+i KJ Yn+1. We are interested 
in the ring Bin) and certain ideals of B(n); bu t in order to describe these 
ideals we need to explain certain terms. A monomial of length mim > 0) in 
the ring B (n) is an element of the form z\ . . . zm in B in) with zt Ç Xn+i U Yn+U 

i = 1, . . . , m. We say z\ . . . zm has a repeated x-entry to mean tha t for some 
k, I satisfying 1 ^ K 1 ^ w, zk = zt £ Xn+1. We say zx . . . zm has r ^-entries 
to mean t ha t the number of zu(i = 1, . . . , m) , such tha t zt G Yn+1 is precisely 
r. For each positive integer k, we define five ideals of B (n) as follows: 

J (n, ky 1) = T h e ideal of B{n) generated by all monomials of length 
n + k + 2 in B(n). 

J(n, k, 2) = T h e ideal of B(n) generated by all monomials of length 
n + k + 1 in B (n) with a repeated x-entry. 

J(n, k, 3) = The ideal of B(n) generated by all monomials of length 
n + k + 1 in B{n) in which the number of ^-entries is different from k. 

J(n, k, 4) = T h e ideal of B{n) generated by all elements of B(n) of the 
form zx . . . zr + zla . . . zr<T where r = n + k + 1, zt G Xn+1 U Yn+U (i = 
1, . . . , r ) , and a is any odd permutat ion of {1, . . . , r) fixing those indices j for 
which Zj G Yn+1. 

J(tiy k) = The ideal of B(n) generated by J(n, k, l),J(n, k, 2) , J(n, k, 3) 
and J(n, k, 4 ) . 

The rings t ha t we shall need are the quotients 

R(n,k) = B(n)/J{n,k). 

We will say t ha t a monomial z\ . . . zn+1c+i in R(n, k) is in canonical form if, 
whenever zt = xai, z3 = xaj, then i < j if and only if at < aj for all i, 
j Ç [1, . . . , n + k + 1}, at, ctj £ {1, . . . , w + l } . By making repeated use of 
J (n, k, 4 ) , we can clearly reduce every monomial of weight n + k + 1 tha t is 
not zero in R(n, k) to its canonical form. T h u s the addit ive group of R(n, k) is 
the free abelian group, freely generated by all distinct monomials of weight 
1, . . . , n + k in variables Xn+i \J Yn+i together with those monomials of 
weight n + k + 1 which have k ^-entries and are in canonical form. In par-
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ticular R(n, k)n+k+l is freely generated, as an abelian group, by monomials of 
weight n + k + 1 with k ^-entries and in canonical form. 

For pi G R(n, k) we define the ring commuta to r (pi, p2) = P1P2 — P2P1, and, 
inductively for m > 2, (pi, . . . , pm) = ((pi, . . . , pm_i) , pm) defines the left-
normed ring commuta to r of weight m. In order to reduce complication in 
notat ion, we shall occasionally use the semicolon to separate the commuta to r 
signs. For instance we shall write (pi, p2; ps, pi) to mean ((pi, p 2 ) , (p3, P4)). 
A complex ring commuta to r of weight m in pu . . . , pr is any expression of the 
form (/1, . . . , ttl; til+1, . . . , ^ 2 ; . . . ; . . . , tm) where tt £ {pi, . . . , pr\- We 
shall denote by (pi,(r)P2) the expression (pi, p2, . . . , pi) where p2 occurs r > 0 
t imes. 

Where there is no ambigui ty we shall write R for R(n, k). Since Rn+k+2 = 0, 
for the purpose of s tudying Rn+k+1

j we may assume t h a t each pt £ R is of the 
form 

!

n+l n+1 

Pi = ïi+rii where f< = ^ U^hf]i ÏL VijJi\ 

tiji Vtj € Z. 

L E M M A 3.1. InR(n, k), p i . . . pn+k+\ = 0 i f /or some l ^ r < s ^ n + k-\-l 

Proof. On expanding pi . . . p^+^+i as a linear combination of monomials, and 
deleting those terms t h a t lie in J(n, k, 2) and J(n, k, 3) we are left with a term in 
J(n, k, 4) ; because, for every monomial Zi . . . zr-.iXiZr+i . . . zs-iXjZs+i . . . zn+k+u 

zt G Xn+i U Yn+i in the expansion we also have 
Z\ . . . Zr—iXjZT+i . . . S 5 _ i X ^ 6 . + i . . . Zw+A;+1 

in the expansion. 

L E M M A 3.2. /w R(n,k),Pl... pn+k+1 = 0 if \{pu . . . , pn+k+i\ | ^ n. 

Proof. In the expansion of pi . . . pn+k+i as a linear combinat ion of monomials 
only terms which involve precisely k ^-entries need be considered. Let 
ACS {1,2, . . . , n + k + 1} and | A| = k, and let /A denote the linear combina­
tion of those monomials z± . . . z.n+k+i in the expansion of pi . . . pn+k+i such t h a t 
Zi G Yn+i if and only if i G A. By 3.1, tA = ai . . . <rn+ic+i where <Ti = f * if i G A 
and (jj = rji'if i G A. Since | {pi, . . . , pn+k+i] I = w, there exist integers r, s such 
t h a t l ^ r < 5 ^ » + H l , ^ ^ A and p r = ps. T h u s f r = f5. By L e m m a 
3.1, /A = 0. Since pi . . . pw+A+i = ] £ A * A , we conclude t ha t pi . . . pn+*+i = 0. 

Since any complex ring commuta tor of weight m in ph ..., pr can be expressed 
as a homogeneous polynomial of degree m in pi, . . . , p r , we obtain the following 
result as an immediate corollary to Lemma 3.2. 

L E M M A 3.3. A complex ring commutator of weight n + k + 1 in pi, . . . , pn is 
0 in R(n, k). 
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By a result of Magnus [13, Chapter 5], the elements 1 + p, p G R(n, k) 
generate a nilpotent group of class n + k + 1 under multiplication. We denote 
this group by G(n, k). If we denote by the square brackets the usual group 
commutator , then observe t ha t for 1 + pt Ç G(n, k), 

(3.2) [1 + pi, . . . , 1 + p t l ; 1 + pil+1, . . . , 1 + pi2; . . . ; . . . , 1 + pn+Jc+1] 

— l + (PI , . . . , pu', Pii+u . . . > Pf2; • • • ; • • • i pn+k+i) 

in R(n, k). In particular, 

(3.3) [1 + pi, . . . , 1 + pn+k+1] = 1 + (pi, . . . , Pn+k+l) 

in i^(w, k). From this observation and Lemma 3.3. we obtain the following 

L E M M A 3.4. G(n, k) £ 9tf![* (n > 1, k > 0) . 

However, G(n, k) is not nilpotent of class n + k, for we next prove the 
following 

L E M M A 3.5. G(n, k) $ m i ^ (n > 1, k > 0 ) . 

Proof. I t suffices to find a non-trivial w + k + 1 weight left-normed group 
commuta tor in G(n, k), or, equivalently, in view of (3.3), to find a non-trivial 
ring commuta tor in R(n, k) of weight n + k + 1 involving n + I elements. Let 

C = (x2, Xt, (£+! ) (# 1 + 3>l), X4, . . . , X w + l ) 

and Ci = (x2, #3,(*):yi> ^ I . U - O ^ I » #4, • • • , xn+i), i = 0, . . . , k. By vir tue of 
Lemma 3.1 and the fact t ha t ring commutators are multilinear with respect to 
their components in R(n, k), c = 23*=oc*. If & > 2 and 1 < i ^ k, then the 
monomial y\~lx\y\X2 • • • xn+i does not occur in the expansion of ct as a sum 
of monomials in canonical form. For, (x2j x3, 3>i, 3>i) = (x2x3 — xsx2)yi2 — 
2yx(x2Xz — XzX2) + yi2(x2xs — x3x2). T h u s yik~1x1y1x2 . . . xn+ï does not occur 
in ((x2xz — x^x2)yi2 — 2yi(x2xz — x^x2) + y i 2 f e x 3 — x3x2)) , s3, . . . , ^ + i , 
x4, . . . , xn+\) where one of the zt is equal to Xi and the rest equal to y±. T h u s 
the coefficient of the nomomial yik~lXiyiX2 . . . xn+1 in the expansion of c is the 
same as the coefficient in the expansion of c0 + cx. Observe tha t 

Z\ . . . Zr((Xi, Xj} Xk))zr+4 . . . Zn+k+i = 0 if Zt G ^Vfl ^ ^n+l, 

for it is equal to 

Z\ . . . £r(XîX^Xfc XjXfXk XkXfXj -\- XfrXjXijZr+4 . . . Zn+k+i 

which is in J(n, k, 4 ) . T h u s c0 = 0. Now observe tha t the coefficient of 
yi°~lXïyiX2 . . . xn+i in the expansion of C\ as linear combination of nomomials 
in canonical form is the same as tha t of each of the following commuta tors : 

(2xi^ix2x3,a_i)3/i, XA, . . . , xn+i), 

( — 2y1x1y1x2xz,ik-2)yi, x4, . . . , *»+i), • • • > 

(( — l)k-12yik~1x1y1x2xz1 x4, . . . , xn+1), . . . , 

({-\)k-l2yl
]c-lXiyiX2 . . . xn, xn+i). 

https://doi.org/10.4153/CJM-1974-019-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-019-3


194 N. GUPTA, F. LEVIN, AND A. RHEMTULLA 

In each of these the coefficient of yik~1XiyiX2. . . xn+i is 2 • ( — l ) * - 1 7^ 0, so 
t h a t c 7^ 0 in R(n, k). 

T H E O R E M 3.6. 9 ^ > ?tc
(2) > . . . > 9ÎC

(C) = ^ c
( c + 1 ) = 9ÏC (c è 3) . 

Proof. Since $ftc
(1) is the var ie ty of all groups, 5ftc

(1) > 5ftc
(2); and the equali ty 

9lc
(c) = yic

c+1 is due to Heineken and Macdonald as mentioned in the intro­
duction. T h e inclusions 9cc

(m) > 9?c
(w+1) (2 ^ m ^ c - 1) follow from 

Lemmas 3.4 and 3.5 by considering G(rn, c — m). 

Let H(n, k) be the subgroup of G(n, k) generated by 1 + Xi + yu 

1 + x2, . . . , 1 + xn+i. Then #(?£, k) is a finitely generated torsion free group 
of class precisely n + k + 1 all of whose w generator subgroups are of class 
a t most n + k. I t follows by a well-known result of Gruenberg [1] t h a t H(n, k) 
is residually a finite p-group for every prime p. T h u s we obtain the following 
generalization of a result of Gup ta -Gup ta -Newman [3]. 

T H E O R E M 3.7. For any integers n ^ 2, k ^ 1 tmd every prime p, there is a 
finite p-group of nilpotency class precisely n + k + 1, all of whose n-generator 
subgroups are nilpotent of class at most n + k. 

Remark 1. Theorem 3.7 can also be proved independent of Gruenberg 's 
result by replacing the algebra A (n) by A*(n) = Zpt[Xn+i U Yn+i], where pl 

does not divide k + 2, and using arguments similar to above except t ha t Zpt 
replaces Z wherever it occurs. 

4. T h e c h a i n p r o b l e m . In the previous section we showed t h a t for c ^ 3, 
9U1) > . . . > 9lc

(c ) . In this section similar results for 3îc2l(c ^ 2) , 2MC (c ^ 2) 
and S will be obtained. In addit ion we give an al ternat ive proof of B. H . 
Neumann ' s result t h a t 9W(1) > . . . > 9ft(4), where 9JÎ is the var ie ty of meta-
belian groups. 

T H E O R E M 4 .1 . Let 35 = 9ÎC2Ï (c ^ 2) . Then 

25 ( 1 ) > 23 ( 2 ) > . . > %$(2c+v — sg(2c+2) = sg# 

Proof. T h e equali ty $(2 C + 1 ) = S3 is due to Macdonald [11] and Wl) > 23(2) 

is obvious. T o prove 25(w) > 5Q(m+1) (2 ^ m ^ 2c), we consider again the group 
G(m, 2c — m + 1) which by Lemma 3.3 belongs to 25(w) and we showr t h a t a 
certain commuta to r of weight 2c + 2 in w + 1 variables is non-zero in 
i^(m, 2c — m + 1). For the following a rgument we set pt = xt + yt for all i 
considered. 

Case \.m = 2c. We look a t the coefficient of y2XiX2 . . . x w + 1 in the expansion 
of t = (pi, p2; P2, P3; P4, P5Î . . . ; Pm, Pm+i) as a linear combination of monomials 
in canonical form. Since the coefficient of y2x±x2x^ in the expansion of 
(pi> P2] pi, Pz) is equal to —4, the coefficient of y2X\ . . . xm+i in / is 
_ 4 . 2 ( ( « + D - 3 ) / 2 = _2^+i since m = 2c. 
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Case 2. m even and 2 S m < 2c. We look a t the coefficient of 
yiy2(yiys)ny3X1 . . . * m + i in the expansion of 

t = (PU P2, (n+l) (pi, p3); P2, P3Î P4, P5Î • • • J pm, Pm+1 ) 

as a linear combination of monomials in canonical form. Here n = 
(2c — m — 2 ) / 2 . Notice t ha t the coefficient of 3/iy2(y i3>3)w:y3#i . . • x w + i in £ is 
the same as tha t in the expansion of each of the following commuta tors : 

<3,l3;2,U) (^l^s), <Pl, P3), (P2, Ps), • • • , (Pm, Pro+l)), 

<3;i3,2(3,i3;3)w, (pi, Pa), <P2, ps), (p4, p5) , . • • , <pm, Pm+i), 

y&iy 2*2*3, 2*4*5, . . . , 2*w*OT_|_i). 

In all these cases, the coefficient of y\yiiy\yz)nyzX\ . . . xm+i is — 2m/2. 
Case 3. m odd. In this case let 

^ = (Pi, P2Î(n+l) (Pi, P3); P2, P4Î P5, P6Î • • • I Pm, Pm+1 } 

where n — (2c — m — l ) / 2 . The coefficient of yxy<i(y\yz)nX\ . . . xm+i in the 
expansion of t as a linear combination of monomials in canonical form is the 
same as in each of the following commuta tors : 

(yiy*>(n)(yiy3), 2*1*3,2*2X4, 2 * 5 * 6 , . . . , 2xmxm+1), 

(4y1y2(yiyz)nx1x<sX2X4, 2*5*6, • . . , 2xmxm+1), 

(—4:y1y2(y1yz)nx1x2X2X^ 2*5*6, . . . , 2xmxm+i). 

In each case the coefficient is — 2 ( w + 1 ) / 2 . 
Thus in each of the three cases / 9e 0 and hence Wm) > Wm+l) for all m 

satisfying 2 ^ m ^ 2c. 

As a further application of our techniques wre give an al ternative proof of 
the following theorem. 

T H E O R E M 4.2 (B.H. Neuman [14]). 2 t t^ > Wl^ > $W(4). 

Proof. To show W2) > 2Tc(3) it suffices to show tha t G (2, 1) g 5K<3>; for 
G (2, 1) G 9Î3

(2) by Lemma 3.4 and 9ff3
(2) £ $Jl™. In the expansion of 

(xi + 3̂ 1, *2î *i + yi, Xz) as a linear combination of monomials in canonical 
form, the coefficient of 3/1*1*2*3 is —4; for it is the same as the coefficient of 
3>i* 1*2*3 in (2*1*2 + y 1X2; 2* 1*3 + 3/1*3). 

T o show t h a t 2tt<3) > Wl(4) we consider R*(2, 1) = R(2, 1 ) / J 4 where J 4 is 
the ideal {4p; p £ R(2, 1)}, and the corresponding group G*(2, 1) = 
1 + R*(2, 1) under multiplication. Since (3^, * i ; *2 , x$) = 23/1*1*2*3 — 
2*13/1*2*3 — 2*1*23/1*3 + 2*1*2*3^1 7̂  0 in R*(2, 1), it follows tha t 

G*(2, 1) g 9W(4) = 2W. 

T o show t h a t G*(2, 1) G 2ft(3), i t suffices by a result of Macdonald [10] to show 
tha t (pi, P 2 ; pi, P 3 ) = 0 for all Pi G 22*(2, 1), i = 1, 2, 3. Wri te Pi = f, + 17, 
(see 3.1) and use Lemma 3.1 to obtain 

(Pi, P2Î Pi, P3) = (fl, P2Î 171, P3) + (l7l, P2Î fl, P3) + (î71, P2Î 171P3). 
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Now (ru, p2; vu P3> = 0 in R(2, 1) for it lies in 7 (2 , 1, 3 ) . 
For the same reason, (£i, p2; 771, p3) = (£1, £2; 171, £3) so t h a t 

(pi , P2; Pi, Ps) = 2£i£2(>7i£3 — $3̂ 71) — 2(771^3 — ?3^i)£i£2 + 2(771^2 — £2?7i)ia£3 

— 2 ^ I £ 3 ( Î ? I ? 2 — £2771) 

= 4£i£2i?i£3 ~ 4£i£2£8i?i ~ 477^x^3 + 4£IT?1£2£3 = 0 i n i ? * ( 2 , 1). 

Remark 2. W e have B. H . Neumann ' s example showing 9D?(2) > $ft(3> is a 
2-group. Recently, C. K. G u p t a [2] has shown the existence of a torsion free 
group in 9W(2) and not in 9ft(3). Note the G(2, 1) is also a torsion free group, 
bu t it lacks other interesting features of C. K. Gup ta ' s group. 

We now consider the var ie ty (5 of centre-by-metabelian groups which is 
defined by the law [x,y;u,v;w] = 1. 

T H E O R E M 4.3. S ( 2 ) > 6 ( 3 ) > Ê (4) > 6 ( 5 ) . 

Proof. T h e group G (2, 2) G g ( 2 ) and to show G (2, 2) $ g ( 3 ) , we note t ha t in 
22(2, 2) , (xi + j i , x2 + 3>2; Xi + yu ^3 + Jz\ Xi + yi) ^ 0 as the sum of the 
coefficients of y^x^Xz is 4. Similarly G(3, 1) G 6 ( 3 ) and to show G(3, 1) g S ( 4 ) 

we note t h a t in R(3, 1), (xi + yu x2 + y2; xx + yu x3 + 3/3; x4 + y4) ^ 0 as 
the sum of the coefficients of 3/1X1X2X3X4 is —4. 

T h e final inequali ty (S(4) > (S(6) requires a somewhat different approachf. 
Let R5 = Z[xi, . . . , x 5 ] / / (x î ( i ) . . . x î ( 6 ) ) , where I(xi(1) . . . xm) is the ideal 
generated by all monomials of length 6. Let G5 be the multiplicative group 
generated by 1 + Xi, . . . , 1 + x5. Then G5 is the free nilpotent-of-class-5 
group freely generated by 1 + xt, i = 1, . . . , 5 (see for instance [13 Chap te r 
5]) and the mapping [1 + xi(1), . . . , 1 + xz-(5)] —» (xtil), . . . , xi(5)) defines a 
homomorphism of 75 (C5) onto the addit ive subgroup K5 of R5 generated by 
all Lie-elements of the form ( X Î ( D , . . . , x*(5)). 

T h e laws defining Ë (4) correspond thus to the subgroup A5 of K$ generated 
by all elements of the form 

(*) (#*(1), ff*(2)î#*(3), #*(4)î X t- ( 5)) 

with \{i(l), • • • i^(5)} I S 4 and 

(**) (Xi(l), Xi(2)\ * i ( 3 ) , **(4)î Xitf)) + ( X î ( l r ) , X i ( 2 r ) ; ^z(3r ) , X i ( 4 r ) ; Xi(5 T ) ) 

with \{i(l), . . . , i(5)}\ = 5 and r any transposition of {1, . . . , 5}. T h u s to 
show g ( 4 ) > E (5) it is enough to show t h a t c = (xi, x2 ; x3, x±; x5) $ Âbj where 
Âb is the subgroup of 4̂ 5 generated by all elements of the form (**). I t follows 
from the work of Macdonald [10] t h a t Â5 contains 2c so t h a t Â5 is generated 
by all elements of the form c + ca where a is any permuta t ion of {1, . . . , 5} 
and ca = (x^ , x2ff; x3ff, oc\a\ x^). 

"(This was also proved independently by Dr. M. F. Newman whom we thank for communi­
cating the proof. The proof given here is different. 
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Let B5 be the subgroup of K5 generated by all elements of the form 
(x«i), x«2); *«3), ^i(4); Xi(b)) with \{i(l), . . . , i(5)}\ = 5. Since (x, y) = 
— (y, x), and (x, y; z, t) = — (z, t\ x, y) it follows that B$ is generated by all 
elements of the form 

Cij = (xi, Xù xk, XÛ Xj) (k > /) i, j Ç {2, 3, 4, 5} and i,j, k, I all distinct 

and 

dt = (x2, XÙ xk, XÙ xi) (k > I) i = 3, 4, 5. 

There are 12 c f/s and 3 d/s and we first of all note that these generate B5 

freely. Indeed let ^ 5 ^ + 2^5^^- = 0- To ease the notation we write ijk . . . 
for X fX jXfc • • • • Then 

Cij = (likl — lilk — ilkl + illk — klli + klil + Ikli — lkil)j 

+ j(lilk - likl + ilkl - illk + klli - klil - Ikli + Ikil) 

dt = (2ikl - 2ilk - i2kl + i2lk - kl2i + kli2 + lk2i - lki2)l 

+ l(2ilk - 2ikl + i2kl - i2lk + kl2i - kli2 - lk2i + lki2). 

Now the coefficients of 12345, 12354, 12435, 12534, 12453, 12543, 13245, 
13254, 13425, 13452, 13524 and 13542 are, respectively, <53 - £25, - 5 3 - £24, 
£4 + £25, ^5 + ^24, —$4 — ^23, "— <$5 + £23, ~ ^ 3 — ?35, ^3 — ^34, ~ #5 + £35, 

Ô5 — £32, — ̂ 4 + £34 and <54 + £32. Equating each of these to zero, we obtain 
0 = 53 = à* = Ô5 = £23 = £24 = £25 = £32 = £34 = £35. With this knowledge 
we obtain the rest of £*/s equal to zero by looking at the coefficients of 14352, 
14253, 14235, 15342, 15243 and 15234. 

Now Â5 is generated by {c + cih d + dk; i, j G {2, . , 5}, i ^ j and k = 
3,4, 5}. If c £ Ab then 

c = c2b = ^oiijic + ci3) + X X fc + dk) 

implies that — 1 = 0 which is not possible. This completes the proof of the 
theorem. 

LEMMA 4.4. Le* SB = (219U(2C) (c ^ 2). ThenW» > W2) > . . . > 2S<2C> = SB. 

Proof. By Lemma 3.4, G(m, 2c - m + 1) Ç SR^+i = $ ( m ) for m 6 
{2, . . . , 2c — 1}. Thus to prove the lemma it suffices to show that 
G(m, 2c — m + 1) (? SB(m+1). As in the proof of Lemma 3.5 we show that a 
certain commutator in R(m, 2c — m + 1) does not vanish. 

Case 1 (c ^ w). In this case let 

t = (pi,(c)P2Î p2,(c-m+2)P3, P4, . • • , Pm+l) 

where Pi = xt + yt. Note that the coefficient of y2cXiy^c~m+lX2. . . xm+i in the 
expansion of / as a linear combination of monomials in canonical form is the 

https://doi.org/10.4153/CJM-1974-019-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-019-3


198 N. GUPTA, F. LEVIN, AND A. RHEMTULLA 

same as the corresponding coefficient in each of the following commutators: 

<(z ( - i ) t ^ c ~ M | (-D^.)P.W.'-'),W,...,^> 
where d = c — m + 2, 

( ( - 1 ) ^ 2 % , ((-l)d-1dyz
d-1x2x, + ( - 1 ) V - ^ 3 X 2 ) , XA, . . . , xm+i), 

((-l)cy2cxû (-îy-^d + l)yzd-lX2XZ, XA, . . . ,*m+i>. 

In each of these the coefficient of y2cXiy-sd~1X2. . . xm+1 is (~l)c+d~1(d + 1) = 
(_l)™-i . (c _ m + 3). 

Case 2 (c < m < 2c). In this case let 

t — \Pl>(2c+l-m)P2, P3, • • • , Pd\ PU Pd+U • • • > Pm+l) 

where J = m + 1 — c and once again p* = xt + 3^. Observe that the coeffi­
cient of y2

2c~mXi . . . xdyiXd+i . . . xm+i in the expansion of t as a linear combina­
tion of monomials in canonical form is the same as the corresponding coefficient 
in the expansion of each of the following: 

\ l 2-/ (~~^\i)P2 p P2* / ' PZl ' ' ' ' Pd'' Ph Pd+h ' ' ' ' pm+y 

where e = 2c + 1 — m, 

((( — l)ey2e~1x2Xi — ( — l)edy2
e~1xix2), x3, . . . , xd; yu xd+1, . . . , xm+1), 

(( — l)e+l(e + l)y2e~1xix2 . . . xd;y!Xd+i . . . zm+1). 

In each case the coefficient is (-l)e+l(e + 1) = (-1)2*-™ . (2c + 2 - ra). 

By the Heineken-Macdonald result we have Wlc = (2Mc)
(2c+2) = 

(3MC)(2C+1) = (3MC)(2C) (c ^ 3). This fact together with Lemma 4.4 yields the 
following result. 

THEOREM 4.5. If 2? = SHttcfc ^ 3) *Aew 

25(1) > Sg(2) > . . . > Sg(2c) = Sg. 

Essentially Theorem 4.5 has been proved by considering the chain (1.1) for 
23 = §19?c A 3l2c+2 (c ^ 3). We now investigate the corresponding chain for 
the variety 93 = 319̂ 2 A 31Q and show that it is exceptional. 

LEMMA 4.6.| If 2$ = 9M2 A 5R6, then 23<5) > 23(6) = 25. 

Proof. The proof will follow a similar argument to that used in Theorem 4.3 
to show Ë(4) > £(5). Here we consider R& = Z[xif . . . , XQ]/I(X^1) . . . x^)) 
where I(XUD . . . x^)) is the ideal generated by monomials of length 7. Let 
b = (xi, x2, x3; XA, XS, #6) a n d 6o* = (#i<r, X2<„ Xza] XA<J, x-ùa, 6̂,7) where o- is a 

fThe proof is based on a suggestion of Dr. M. F . Newman (oral communication). 
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permutation of {1, 2, . . . , 6}. Let B± be the additive group generated by all 
expressions ba + (ba)r where r is any transposition. As in the proof of Theorem 
4.3 we shall show that b £ Bx. Since b + è(13) <E Bh by Jacobi Identity it 
follows that 36 £ Bx. 

Let B be the additive group generated by all commutators b§. Then B is 
freely generated by the basic Lie elements 

\ X i, X j , Xft , X i , Xm , Xn J 

where i>j<k,l>tn<n,i>l (c.f. [13]); and 

\ X iay JCjai X'ko > >& laj Xmaj Xnff J = |(7| \X f, Xj, X# , X j , Xm, Xn / m O Q U l O -D \. 

Let B2 be the subgroup of B generated by 3b and all b — \a\ba where ba is one of 
the free generators of B. Clearly b $ B2 and it is enough to show that B\ ^ B2. 

As in Theorem 4.3, Bi is generated by all b — \a\ba where a is any permuta­
tion of {1, . . . , 6}. If ba = —ba' where ba' is a free generator of B, then 
\a\ba = \a'\ba'. If ba is not a free generator or its negative then it is easily 
seen that \a\ba = —\<r'\b<r' — \a"\ba" where ba' and ba" are free generators or 
their negatives, so that b - \a\ba = b + \a'\ba' + \a"\ba" = —36 + b + 
\a'\ba' + \a"\ba" modulo B2 = (~b + \a'\ba') + (-b + \a"\ba") ss 0 mod­
ulo B2. 

LEMMA 4.7. Le* * = 219Î2 A 5Re. FAen 93(4) = $ ( 6 ) . 

Proof. Since 2? ^ 9Î6, it suffices to show that in R6 as defined in Lemma 4.6 
the additive subgroup Bz generated by all elements of the form 

(4 .1) (pi, p2 , P2Î P4, P5, Pô) 

(4.2) (pi, p2, p3; pi, p4, P2>, and 

(4.3) (pi, p2, P2Î pi, P4, PÔ), where p* G Re 

contains the commutators 

(4.4) (xi, x2, x3; x4, x5, x5) = bu 

(4.5) (xi, x2, x3; xi, x4, x5) = b2l 

(4.6) (xi, x2, x3; x4, Xg, #i) = b3, and 

(4.7) (x2, x3, Xi; x4, x5, Xi) = 64. 

In (4.3) replacing p2 by x2 + x3 and ptby xt for i p̂  2, give after a suitable 
change of variables, 

(4.8) (xi, X2, x3; Xi, x4, x5) + (xi, x3, x2; Xi, x4, x5) = 0 mod B%. 

Similarly, in (4.2) replacing p2 by x2 + x4 and p2 by x3 + x5 give respectively, 

(4.9) (xi, x3, x2; xi, x4, x5) + (xi, x3, x4; Xi, x2, x5) = 0 
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and 

(4.10) (xi, x3, x4; xi, x2, x5) + (xly x5, x4; xu x2, x3) ; = 0. 

Adding (4.8) and (4.10), and using (4.9) gives 

(4.11) (xi, x2, x3; xi, x4, x5) + (xi, x2, x4; x5, xx, x4) = 0 

so that by the Jacobi identity bz = 0 mod B%. By Jacobi identity 64 can be 
written as a sum of two elements of the form 63, hence 64 = 0. In bAf replacing 
Xi by Xi + x5 and using 63 = 0 shows that b\ = 0. And, finally in b± replacing 
x5 by Xi + x5 and using fr3 = 0 shows that 62 = 0. This completes the proof of 
the lemma. 

From Lemmas 4.4, 4.6 and 4.7 we deduce the following theorem. 

THEOREM 4.8. Let S3 = 2I9 2̂ A SR6. Then 

35(1) > S8(2) > 25(3) > 23(4) = 55(5) > 33(6) = % 

5. The variety yi(n\.k ( lemmas). In this section we list some preliminary 
results required for the investigation of some general properties of Sîi^-groups 
to be undertaken in the next section. 

LEMMA 5.1 (Levi [7]). The law [x, y, y] = 1 in a group implies the laws 
(i) [x, y, z]3 = 1 and (ii) [x, y, 2, u] = 1. 

LEMMA 5.2 (Heineken [5], Macdonald [10]). The law [xi, . . . , xni x{\ = 1 
(n ^ 3) in a group implies the law [xi, . . . . xn+{\ = 1. 

LEMMA 5.3 (Kappe [6]). Ifz is a fixed element of a group G such that [2, x, x] = 
1 for all x Ç G, then (i) [2, x, y] = [2, y, x ] - 1 and (ii) [2, x, 3>, w]2 = 1 for all 
x, y, u G G. 

LEMMA 5.4 7/ z is a fixed element of a group G such that [z, x, x] = 1 for all 
x G G then (i) [2, u\ x, y] = 1, and (ii) [2; x, y; u] = 1 /or all x, y, u £ G. 

Proof. Since 1 = [z} zx, zx] = [2, x, zx] = [2, x, 2], it follows that (zG) is 
abelian. By Lemma 5.3 (i), [2, xM_1, yu~l] = [2, 3>M~\ x" - 1]-1 so that [zu, x, y] = 
[zu, y, x]~l. Since (zG) is abelian this gives [2, w, x, 3;] = [2, w, y, x] _ 1 = [2, w,y, x] 
by Lemma 5.3 (ii). By a theorem of Levin [9], this gives [z, u; x, y] = I. 
Similarly commuting both sides of 5.3 (i) by u gives [2, x, y, u] = [2, 3/, x, w]_1 

since (zG) is abelian and as above, [2, x, 3% u] = [2, 3% x, w] and again Levin's 
theorem gives [z; x, y; u] = 1. This completes the proof of the Lemma. 

LEMMA 5.5. In any group G, [xi, x2, x3, x4][x2, x4, Xi, x3][x3, x4, Xi, x2] X 
[x4, x3, x2, Xi][x4, Xi, x2, x3] = 1 modulo 75(G). 

Proof. Modulo 75(G), [xi, x2; x3, x4] = [xi, x2, x3, x4][xi, x2, x4, x3]_ 1 = 
[xi, x2, x3, x4][x4, Xi, x2, x3][x2, x4, Xi, x3]; and [x3, x4; Xi, x2] = [x3, x4, xu x2] X 
[x4, x3, x2, Xi]. The Lemma follows on multiplying these two identities. 

For the rest of this section w ^ 2 and k ^ 1, unless otherwise stated. 
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LEMMA 5.6. Let G G Sft^ A 5ft&+i- Then G satisfies the law 

[Xi(i), . . . , X i ( x - i ) , Xi(\), X i ( x + i ) , . . . , Xi(M-i), Xifo), Xifo+i), . . . , Xi(n+k+i)] 

LXi(i), . . . , Xi (X- i ) , Xt(n), Xi(\+i), . . . , X ^ ^ - i ) , Xz-(\), Xifo+i), . . . , Xf(w+A+l)J = 1 » 

where \\i(l), . . . , i(\ - 1), i(X + 1), . . . , i(/* - 1), i(/i + 1), . . . , 

i(w + * + 1)}| ^ w - 1. 
Proof. Since G Ç Sfti+&, it satisfies the law 

[Xi(i), • • • , Xi (X- l ) , XiwXifr), Xi(\+i), . . . , X*(M_i), X*(X)ff*(/i), 

#i(/i+l)> • • • j Xi(n+Ic+i)] = 1 , 

which on expansion (and using G Ç îS+^+i) gives the desired result. 

LEMMA 5.7. 7/ G € 9^+* A 9tS+i+i, /Ae» G satisfies the law 

[Xi(i)f . . . , Xi(w+£-j_i)J = 1 

0 < \{i(±),...,i(n + k + 1)}| £ » - 2 . 

Proof. By Lemma 5.5, modulo 7W+A;+2(G) we have 

1 = [ # i ( l ) , Xt(2), Xi(3), Xi(Q, Xt(5), . . . , Xt(n+k+i)] 

> Xi(n+k+l)] 

i %i(n+k+l)\ 

f #*(»+*;+1) J 

» #*(»+#+1) J* 

— 1, by Lemma 5.6 the 

[Xi(2)i #*(4)> Xi(i), Xi(Z), Xt(5), • 

[Xi(Z), Xt(4), Xi(i), Xi(2), Xi(5), . 

[Xi(4), Xt(Z), Xi(2), Xi(i), Xi(5), . 

\Xi(A), Xi(i), Xt(2)y Xi(3), Xi(5), . 

Since |{i(l), i(4), *(5), . . • , *(» + * + 1)}| ^ 
product of second and third commutator is trivial. Similarly the product of 
fourth and fifth commutator is trivial and we conclude that 

[Xi(l)t Xf(2), . • • , # * ( W + ; H - 1 ) J = 1 . 

LEMMA 5.8. Let G £ 3l^lk (n ^ k + 1) and let u be a commutator of weight 
exceeding k. Then 

f i ui,x1,...,xm\= n [ut, xi, . . . , xm]for m > n, 

where ut is a commutator having u as one of its entries. 

Proof. Any commutator of weight n + k + 1 in which u occurs twice is a 
commutator in at most n + k + 1 — (& + 1) = # variables and so is trivial. 

6. ^ - g r o u p s . If G = C2wr (G2 X C2 X . . .) then G G ï ï ^ i for each » ^ 2 
(cf. [15, 34.54]), so that S^+i-groups are not in general nilpotent. In [12], 
Macdonald and Neumann have shown that if G G 9?i+i (n ^ 3) then G is 
locally nilpotent and yn+z{G) is a 2-group. In this section we investigate in 
detail the commutator structure of 9^i+i-groups, starting with the following 
Theorem. 
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THEOREM 6.1. Let G = Fœ(Wn
nli) (n ^ 3). Then 

(0 [7mi(G), 7m2(G)] = {1} (wi, m2 è 2 and Wi + m2 = w + 3); 
( i i ) [7*(G) ,7 . (G)]?Ml}; 

(iii) [7mi(G), 7m2(G)] = {1} (*»i, w2 è 3 and mx + m2 = n + 2). 

Proof. For the proof of (i) it is enough to show that [7™(G), 72(G)] S 
fn_TO+i(G) for m = 3, . . . , n + 1. For the result then follows by using P. Hall's 
three subgroup lemma. 

Since G satisfies the law 

, %2f X 2 , X4, . . . , Xm, Xm+\, Xm+i, Xm-\-4y . . . , Xw_|_3j = 1 , 

G\ = G/in-miG) satisfies the law 

, X 2 , X2) Xiy . . . , Xmi Xm+l, Xm-|-lJ = 1 , 

which in turn implies the law 

[xi, x2, x2, x4, . . . , xw; xm+i, xm+2; xw+3] = 1 (by Lemma 5.4). 

Thus G2 = Gi/f (Gi) satisfies the law 

|_Xi, X 2 , X 2 , X 4 , . . . , Xm] Xm+i, Xm_|_2j = = J-j 

Gz = G2/Ç (72 (G2)) satisfies the law [xi, x2, x2, x4, . . . , xm] = 1, and G4 = 
G3/fm_3(G3) satisfies [xi, x2, x2] = 1 which implies the law [xi, x2, x3]3 = 1 by 
Lemma 5.1. Thus by Lemma 5.8 we conclude that [ym(G), 72(G),(n_m+i)G] is 
a 3-group which is also a 2-group by the Macdonald-Neumann result. 

For the proof of (ii) we consider the group G(n, 1) of Section 3, which is a 
homomorphic image of G and note that in R(n, 1), 

t = (yu %U • • • , Xn-l', Xn, ^n+l ) 5* 0 

since the coefficient of y&i. . . xn+1 is 2 in the expansion of /. Indeed, we observe 
that if n is even then (yu Xi; x2, x3; . . . ; xn, xn+i) ^ 0 and if n is odd then 
\yii #1» #2» x3; . . . ; xn_i, xn\ xn) 5= (J. 

For the proof of (iii) we anticipate the result of Theorem 6.2 (proved in­
dependently of (iii)) which states that 5R#i < SRftï1* (n è 3). Thus by 
Lemma 5.7, G satisfies the law [xi, X2, X 3 , yi, . . . , yn-i] = 1 where 

\{yu . . . , ^ - i } | S n - 2 . 

For m è 3, we have 

[[*i, X2,. • . , #«]» [yi, ^2,3^3], s i , . . . , £n_m_i] = 
[xi, . . . , xm, ^i, y2j y*, 21, . . . , sw_m_i] 

[xi, x2, . . . , xm, y8> 3̂ 2, yii 21, . . . , sn_m_i] 
[xi, x2, . . . , xm, y2, yu yz, zi, • . . , ^ - w - i ] _ 1 

[xi, x2, . . . , xmi yz, yu y2, zu . . . , i v - ^ J - 1 

(by Jacobi identity) 
= 1 (by Lemma 5.6). 

[Xi 

[Xi 
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Using the above result, we can strengthen statements (i) and (iii) as follows. 

THEOREM 6.1*. Let G = Fœ(3t(n+i) n ^ 3. Then 
(i) 7,4-3 ( G ) H 72 (72(G)) = {1}; 

(ii) 7 ^ 2 ( G ) n 72 (73(G)) = {1}. 

P«w/. (i). Let X = 7»+a(G), L = 72(72(G)). If i n L ^ {1}, then let 

T S 

1 ̂  w = n <̂e* = n »/y» 
where e<, ô̂  = d=l, each w* is a commutator of weight ^ n + 3 and each ^ is 
a commutator lying in G". If w involves m variables, then since G is a relative­
ly free group, each of u/s and v/s is a commutator involving all of these m 
variables. By Theorem 6.2 (proved independently of Theorem 6.1*) G G 
SftSïi < 9t£++21} < 5»Si2), so that m è » + 2 and every «, is of weight w + 3. 
By Theorem 6.1 (i), each vi is of weight g # + 2 so that m = w + 2. Also by 
Theorem 6.1 (i), [yu . . . , 3/̂ +3] = [ju J2, y**, . . . , 3W3)<J for any permutation 
o- of {3, . . . , n + 3}. In particular, every ut is a left-normed commutator of 
the form [xilt xtt, . . . , xin+3] with |{ii, . . . , 4+3}! = n + 2. By Lemma 5.7 
no two of xu, . . . , xin+3 are the same. This together with conditions implied 
by Lemma 5.6 enables us to write w as follows: 

n 

W = Yl Wi% 

where W\ = [xi, x2, . . . , xw+2, Xi] and for i > 1, 

î t / j [.X^, Xif . . . , X j — i , X^-j-i, . . . , Xw-j_2 , X$J 

and at 6 Z. Without loss of generality assume that ax 7e- 0. Replace Xi by XiX2 

to obtain «/ from w. By looking at w as I I 5=11//' and making use of Theorem 
6.1 (i), we get w = w'. By looking at w = Il^ize//**, we get w~lw' = 
[xx, x2, . . . , xn+2y Xi]ai = 1 in G. Thus [xi, x2, . . . , xw+2, Xi]"1 is a law in G. 
Interchange Xi and x2 to obtain [xi, x2, . . . , xn+2, Xi]~ai = 1 in G. Thus w{Li — 1 
for all i and w = 1 in G. 

(ii) Let H = 7»+2(G), X = 72(7a(G)). If HHK * {1}, then let 
1 7*w £ HC\K. 

r s 

w = n «/*• = n v/j 

i=l 2=1 

where et, ôj = =bl, each ŵ  is a commutator of weight ^ n + 2 and each ^ 
is a commutator in 72 (73(G)). As in (i), each ut and Vj involves m variables 
where m is number of variables in the expression of w. Since G £ 91»+1, 
w ^ » + 1. I fw = w + 2, then the right hand side is trivial by Theorem 6.1 
(iii). Thus m — n -\- \. Let w = w1 . . . wn+1 where wt is the product of those 
Uf€i in which xt is repeated. By interchanging the variables, if necessary, 
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assume that W\ ^ 1 in G. By making use of Lemma 5.7 we can assume that 

Wi = [Xi, X2, Xi, X 3 , . . . , Xn+i]a[xu X2, XZ, Xi, Xi, • • - , Xn+lY 

where a, /3 are not both zero. Let z(xi, . . . , xn+i) — W\. . . wn+ivs~
ôs . . . Vi~5K 

Then z(xit . . . , xn+\) is a law in G. Now 

z ( X l , . . . , X n + i ) s _ 1 ( ^ 1 ^ 2 , X 2 , , . . . , X„+i ) 

X2) X2y «̂ 3» . . . , Xw_|_ 
%2, Xz, X2, #4 , . . . , X n + i ] " 

= [x2, Xi, x2, x3, . . . , xn+i]a[x2, xi, x3, x2f x4, . . . , xn+i]^ 

is a law in G. Interchange Xi, #2 to get W\ = 1 in G. This completes the proof. 

THEOREM 6.2 (cf. [15, 34.52]). 9 l^ i < W&S1* (n ^ 3). 
Proof. Let c = [xi(i), . . . , x*(n+3)] be any left-normed commutator in 

G G 5RJ#i with |{i(l), . . . , i(w + 3)}| = n + 1. By Theorem 6.1 (i), c is 
unchanged if we interchange the positions of any two variables appearing 
after the second entry. Thus we may write 

C — [#*(1), # i (2) i Xj{Z), • • • > #^(n+3)L 

wherej(» + 3) € {i(l), *(2), j (3) , . . . , j (n + 2) î- But G € 9 C i implies that 
[xi(D, xî(2), Xy(3), . . . , Xj(n+2)] — 1 and hence c — 1. To see that the inclusion 
is proper consider Fn(yin+2) which is not in 9ll+i. 

Remark 3. In [12], Macdonald and Neumann have constructed a 9î3
(2)-group 

which is not a Sft4
(3)-group. Thus Theorem 6.2 cannot be improved to include 

n = 2. 

7. T h e variety 3lflk (continued). We first prove an analogue of Theorem 
6.2. 

THEOREM 7.1. 5ft£k < 9fc£E#i/or ^ l a ^ ^ 3 H 2 . 

Pm?/. Let G £ 3 1 ^ and let c(x) = [#i(n+*+2), . . . , x i (2), #1(i)] be a com­
mutator in n + 1 variables. Since G is locally nilpotent (see [4]), it is sufficient 
to show that c(x) = 1 modulo yn+k+z(G). Term x^) free if it occurs precisely 
once in c(x). If X^D is free then since G Ç $ln+ki c(x) = !• We may therefore 
assume that X^D is not free. Among the entries of c{x) we note that there are 
at least n — k free variables and since n — k ^ (w + fe + 2)/2, there is a 
least integer j such that #*(# and X^+D are both free in either c(x) or in c(x)~l. 
Moreover j + 1 < w + & + 2 for otherwise we could consider 

[Xi(n+k+2)y Xi(n+Jc+i)] 

as one variable. Since G 6 9̂ 1+*, we have 

\Uy X i ( j + l ) X j ( j ) , Xj(^_l) , . . . , #*(! ) ] — 1 
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where u = [xt(n+k+2), . . . ,£«0+2)]. This, on expansion, shows that c(x) = 1 
modulo yn+k+z(G). 

THEOREM 7.2. Let 

G 6 A 9 C & (» > 2* + 3). 

Then T»-2* + 1 (G) ^ **(G) where $j(G) = fi (73(G)) and $S+1(G)/$S(G) = 
*!(G/*,(G)) . 

P«w/. Since G 6 5ft& A 3C& l f by Lemma 5.7 G satisfies the law 
[xi, x2, x3) xi(1), . . . , xi(n+Jfc_2)] = 1 where |{i(l), . . . , i(w + £ — 2)} | S n — 2 
and in particular the law [[x*(i), . . . , xî(w+^_2)], [xi, x2, x3]] = 1 (see Mac-
donald [10, Lemma, p. 272]). More generally since G Ç KlXUt A KtlVt+u G 
satisfies the law [[xia), . . . , xi(n+k+t-.2)], [xu x2, x3]] = 1 where 

\{i(l),...,i(n + k + t-2)}\ S n + t - 2 . 

From these identities it follows that G/4>i(G) £ A * I o ^ ^ V f ;- and inductively 

G/*,(G) € V ^ - 3 + 4 r 

Hence taking 5 = fe we obtain G/$k(G) £ SW&t-s* = 9t»-2* (since » — 2& ^ 3). 
Thus (G) ^ * t (G) . 

By Theorem 7.1 if » è 3* + 2, then AU^n+k+j = ttand since 3/fe + 2 ^ 
2& + 3, we obtain the following Theorem as a corollary to Theorem 7.2. 

THEOREM 7.3. If G e 91& ( » è 3 t + 2) ^ew [7.-24+1 (G),wr»(G)] = {1}. 

The following result shows that Theorem 7.3 is best possible in the following 
sense. 

THEOREM 7.4. Let G = Fœ(^U) n^2k-3. Then [y„-2k+i(G),u-»y3(G)] * 

HI-

Proof. Consider G(n, k) which is a homomorphic image of G. In R(n, k), 

(yu xlt . . . , xn_2*+3; 3% *»-2JH-4, ^-2^+5; ^ 3 . . . ; . . . ; y*, xn, xn+i) ^ 0 

since the coefficient of yxx2 . . . xn-2k+zy2xn-2k+±xn-2Jc+byz. . . ykXnxn+i is 1 in the 
expansion of the commutator as a linear combination of monomials in canoni­
cal form. 
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