
A THEOREM ON ALGEBRAS OF MEASURES ON
TOPOLOGICAL GROUPS

by J. H. WILLIAMSON
(Received 2nd April 1958)

1. Introduction
Let G be a locally compact Abelian group, and <3Jl(G) the set of bounded

complex (regular countably-additive Borel) measures on 0. It is well known
that <iSl{G) becomes a Banach space if the norm of A e 9Jt((?) is defined by

the supremum being over all finite sets of disjoint Borel subsets of 0. Let
Coo{0) be the Banach space of continuous complex functions on G, vanishing
at infinity, with the uniform norm. It is known that 9ft((r) can be identified
with the dual space of Ca>(G) ; every bounded linear functional is of the
form

j f(x)d\(x) with Ae5Dt(G),

and conversely. We write A( / ) for the value of this functional at /. The
norm of A as a linear functional is the same as that defined above.

9Ji(6r) becomes a Banach algebra if multiplication is defined by

= j J
In this algebra there are certain obvious maximal ideals, the fundamental
maximal ideals, of the form

JX = {X: jGx(x)dX(x) = 0},

where x e G (the continuous characters on G). The measure A is determined by
the values of

for yew;

in general there exist maximal ideals which are not fundamental.
A Banach algebra is symmetric if there is, for each £, an element £* such

that under every homomorphism into the complex field, £ and £* are mapped
on to conjugate complex numbers. Writing

it is clear that
X{E) =

for any Borel set E. Since evidently

E.M.S.—N
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it follows that if 9tR(G) is symmetric, the element A* corresponding to A must
be X as defined above. If A = X, A will be called Hermitian.

Since the celebrated paper of Wiener and Pitt (3), it has been known that
the algebra of measures on the real line has properties which are at first sight
surprising. For instance, it is not symmetric (although Wiener and Pitt do
not use this terminology, the fact is an easy corollary of their results). Sreider
(2) gave a simpler proof on rather different lines. Recently, Hewitt (1) has
extended Sreider's methods to the case of groups such that every neighbourhood
of the identity contains an element of infinite order. In the present paper we
adopt a somewhat different approach, more closely related to Wiener and
Pitt's original method than to Sreider's, and are able to extend the results
to all non-discrete groups. In particular we establish

Theorem 1. If G is not discrete there exists on G a Hermitian measure A,
such that, for any polynomial in A,

|| S a#\\ = 2 \ar\.

From this, it can be shown that W(G) is symmetric if and only if G is discrete.
Since the details of the construction are rather complicated, it may be

desirable to describe informally the basic ideas, which are simple. If the
relation

U^aAll^KI
is required, then the measures Ar must be, in a sense, independent. If their
supports are disjoint, the required relation certainly holds. It also holds if
the supports do not have too much in common ; for instance if the measures
have no atomic components, and the intersection of each pair of supports is
countable. This is essentially the type of argument used by Sreider and by
Hewitt. The starting point of the present approach is the observation that
we can allow the supports to have a great deal in common, and still have
independence in the sense required. For instance (taking the case of two
measures, for simplicity) it is possible to have

| | a A + V I I = | « l + \b\
for all a, b even though the supports of A and /J, are identical.

To see how this can happen, consider the measure

A = * An)
n = l

where AB has mass c (0<c<l) at xn and 1 —c at yn. The support consists of
all points of the form z = Z]22

23-.., where each zn is either xn or yn. (We ignore
all convergence problems here.) The use of a little elementary calculus leads
to the conclusion that almost the whole of A is concentrated on points z where

the ratio of x's to y's in the sequence zx, z2, z3, ... is z . So if

/* = * Mn.
l
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where fin has mass c' at xn and 1 — c' at yn, with c' ^ c, then A and /x are
concentrated on different subsets of their common support, and the required
result follows. The extension to n measures is immediate.

So what is required is to ensure that if A, A2, A3, ..., have common support—
or at least have supports which overlap substantially—then the " balance "
is different for each power, so that each power is concentrated on a different
part of the common support. The details of this vary according to the
particular properties of the group under discussion.

It should be remarked that in many cases, for instance the real line, very
considerable simplifications can be made, and a direct proof of Theorem 1 is
quite short. The complications of §3 of the present paper are largely due to
the difficulties arising in groups where the identity has a neighbourhood con-
sisting of elements of bounded order. It would have been rather simpler
(although longer) to write out separate constructions in the three cases treated.
It is hoped that the present treatment is a reasonable compromise between
clarity and conciseness.

2. Reduction to the Metrisable Case

We show first that it is enough to consider groups in which the first axiom
of countability is satisfied ; that is, where the identity (and hence each point)
has a countable basic set of neighbourhoods. By a result of Kakutani, this
is equivalent to the metrisability of the group.

Lemma 1. Let x be a point in a locally compact topological space, and let
{Na} be a set of compact neighbourhoods of x, whose intersection is x. Then these
neighbourhoods form a sub-basic set of neighbourhoods of x.

Proof. Let N be any open neighbourhood of x. Then, for each a,
Pa = Na\N is a compact set not containing x. Clearly

n P . = <f>,

and hence

n PO = 0
»=1 «

for some finite set of indices a1( a2, ..., ak. But then

0 Na sN,
n=l n

which is the required result.

Corollary. / / {Nn} is a decreasing countable set of neighbourhoods of x
whose intersection is x, it is basic.

Lemma 2. If G is not discrete, there is a compact subgroup H of 0 such
that G/H is metrisable and not discrete.

Proof. Let ^ be any compact symmetric neighbourhood of the identity
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element e of G. For each n > 1, let Nn be a compact symmetric neighbourhood
of e such that N% is a proper subset of Nn-V Consider

H = C[Nn-t
n=l

it is easy to see that H is a compact subgroup of G.
Let <f> be the canonical map of G on to G/H. Then, for each n, <j>(Nn) is a

neighbourhood of the identity e of G/H. Moreover, each <f>(Nn) is compact,
since <f> is continuous, and

0 <f>(Nn) = e.
n=l

It follows, by the Corollary to Lemma 1, that these sets form a basic set of
neighbourhoods of e. That is, GjH is metrisable.

Moreover, GjH is not discrete. For each integer n there is a point xn which
is in Nn bu t not in Nfl+1. This implies tha t <f>{xn) 4 <f>(Nn+1); for if <f>(xn)e<f>(Nn+1)

there would be a point y e H with xn = yz, for z e Nn+1. Since H g^Nn+1,
this would imply yz e N*+v a contradiction. So (^(Nj) contains infinitely
many distinct points (^(x-J, <f>(x2), <f>(xa), .... This implies that GjH cannot be
discrete; for ^(iVj) is compact, and in a discrete space a compact set is
necessarily finite.

Lemma 3. Let G be a locally compact group, H a compact subgroup, with
Haar measure on H normalised to 1. Then if f(x) e Ca>{G), the function

F(x) = jBf(xy)dy,

where x is any point in x and the integral is taken with respect to Haar measure
on H, is in Gao{GjH).

Proof. This is a routine verification.

Lemma 4. / / the map ifi is defined by

*" = # .
ivhere F and f are as in Lemma 3, then its dual map \fi' is an isometric ~-homo-
morphism ofyR(GjH) into m(G).

Proof. Given F e Cm(G/H), there exists / e Gm(G) such that F = ifif; it
is only necessary to take f(x) = F(x) for all x ex. Given A e W(GjH), and
e> 0, there is a function F e Gx{GjH) with || F \\ = 1 such that

Le t / e Gm{G) be as above ; then | | /1 | = 1 and

so that
> || A || -€.

But it is trivial that || ifi' \\ = 1, hence tfi' is an isometry.
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The fact that tfi' is a linear transformation is immediate. Also, for arbitrary
feCoo(G)a,ndA, M e1

= Jo/Jo/J J H f(*y™)dvdvdA(x)dM(
= Jo/J Jon*yvWM*)dvdM(j/)

Hence

Lastly, writing

and noting that

and

it follows that

</.'(A)( / ) = (fA)( / ) = A(#) = A(0/) = AW) = f (A)( / ) ,

and hence
f(A) = f(A).

This completes the proof.
Corollary. If a measure satisfying the requirements of Theorem 1 can be

constructed in each non-discrete metrisable group, such a measure can be con-
structed in each non-discrete group.

For, if 0 is non-discrete and non-metrisable, let flbea compact subgroup
such that GjH is non-discrete and metrisable. Then if A is a measure on
GfH with the required properties, I/J'(A) is a measure on G with the same
properties.

3. The Construction in a Metrisable Group

In the following lemmas m and n denote positive integers.

Lemma 5. If

then pm¥=pni

„ , » 2 r - l « 2 r - l
Proof. Pn= n - 5 — ^ 77 ^ — =Pm.
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Lemma 6. Let p be an integer ^ 3, and let v be the integral part of -. Then if

r=-v (n — rp)l (n+rp) !'

Proof. Write u> = cos (- i sin —. Then
P P

CTn= - * £ /^-' + i + ^ r - V = -*£ COS2" —.
P » = 0 \ * 4/ p«=0 2*

It follows that am <an if m> w ; for each term in the sum for erm is less than

the corresponding term in the sum for on, with the exception of those corres-

ponding to s = 0, and s— ^ (if present). (If p==2 then an — \ for all n).

Lemma 7. / / a>0,b >0 , a^b, a + b = l, and v is the integral part of - ,

and if

an-2rb2r, •y
Tn~rio(2r)\ (n-2ry.

then rmi=Tnifm^n.

Proof. rn = J(l + (a-6)»).
Lemma 8. Let {Nn} be a basic set of compact neighbourhoods of e such that,

for n> 1, N^sNn-!. For each n, let /j,n be a positive measure of norm 1 whose
support is contained in Nn. Then

converges to a positive measure /A of norm 1 whose support is contained in N\,
while for each positive integer r,

converges to fj,r.

The convolution-products converge both in the weak* topology of 9JI(<3) and
in the strong topology of operators on LX(G) {but not in general in the norm
topology of W{G)).

Proof. Writing

and (if m> n)

it is easy to see that, for each /c C«>(G) and e>0 , there is an integer m0 such
that

uniformly for % e G, m, n^m0. Since
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it follows that
|An(/)-Anam ; n+/) | = |An(/)-Am(/) |<e for m,n^m0.

Hence, as n-* oo, An(/) tends to a limit; if this is denoted by (J.(f), then it is
immediate that /u, is a bounded linear functional on Ca>(G), i.e., a measure.
The other properties asserted are easily established.

In order to establish the strong convergence of An to p., let g be a continuous
function of compact support. Since

Il*m.»*0-0||-»O

as m, ?i-> oo, it follows that

\\K*g-K*9\\-+o
as m, TO->OO. Since continuous functions of compact support are dense in
L^G), the result follows.

Suppose now that for each n, /xn is a positive measure of norm 1 ; and
that En, E'n are disjoint sets such that

/*«(#„) = « and fin(E'n) = l-a

where 0 <a < 1. Writing

it is clear that the support of An is the union of all sets of the form

E = EW=F1F2...Fn,

where, for each r, Fr is either Er or E'r. Let

wr(E) = 1 if Fr = Er,
= 0 if Fr = E'r,

W(E)=~ltwr(E).

Lemma 9. Given e> 0, rj> 0, there exists m0 such that if m ^ m0 and

the union being over all S<m> such that

\ W(Elm>)-a\<e,
then

Proof. If t is a positive integer, and E(t) is the union of all sets 2J(m) for

which W(S<m>)= - , then evidently
Tib

Writing t = sm, this is asymptotically equal to

{2nms(l-S))-i K{±^t°Xm
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for fixed s, as m-* oo. Now the function

,. . /o\» / 1 -

has a unique maximum at s = a ; at this maximum the function takes the
value 1. Hence there is a positive real number k, less than 1, such that

if | s - a |>e .

From this it follows that

Am(#\.#<m>) = O(ra*/fcm)->0 as m-* oo,

which yields the desired conclusion.
Before proceeding to a proof of Theorem 1, it is convenient to classify the

groups considered as follows. Let Jt be the set of integers n such that every
neighbourhood of e contains an element of order > n. Write

p = sup n

We distinguish three cases :

(i)p=co.
(ii) 2<p<co.

(Hi) p = 2.

In case (i), for every neighbourhood N of e and every integer n there is in N
an element of order ^ n. In cases (ii) and (Hi), for every neighbourhood N of e
there is in N an element of order p. For, in N there is a neighbourhood N'
which contains no element of order > p ; and if there were in N' no element of
order p then sup n would be <p, a contradiction.

Since G is non-discrete, the three cases listed above are the only possible
ones.

If xlt ..., xn are any points of G, write

where the union is over all sets of integers {ar} such that

n for

The set H is evidently finite.
In view of the Corollary to Lemma 4, it is enough to prove Theorem 1

in the metrisable case. We treat Case (i), p~oo, and indicate in parentheses
the modifications required in the other cases (Case (ii), 2 <p<co ; Case (Hi),
p = 2).

Proof of Theorem 1. Let Nv N'2, ••• be a basic set of neighbourhoods
of e. Let JVj be a compact symmetric neighbourhood of e, contained in Nv

and let xx e Nv Suppose that Nlt ..., Nn and xx, ..., xn have been chosen.
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Then choose iVn+1 to be a compact symmetric neighbourhood of e such that

tf.iSJC, (1)
N^nH^x, xn)={e} (2)

Nl+lsNn (3)

and then choose xn+1 e Nn+1, of order ^ n +1 (order p ; order 2).
For each n, let fin be the measure with mass £ at e, J at xn, J at a;"1 (£ at e,

£ at a;.n, \ at a;"1; £ at e, f at .rn). In view of (1) and (3), by Lemma 8 the
convolution-product

n = l

converges, say to /x ; and for each m the convolution-product

converges to /^m.
Let P(/x) be a polynomial in fi, of degree h ; say

) = 1 o r / 4 '
r = 0

It is convenient to write, for w ^ 1,

Then for 0 ^ i ^ h , and each n^l, we have

U-l (2r)\
rr-i (r-sp)! (r

- L i J
By Lemma 5 (Lemma 6 ; Lemma 7)

vr
n({e})*v%({e}) if

Writing

#„ = {*},
E n = { z n + h > •••' x n + h > x n + h > • • • >

for each w, we are in the situation of Lemma 9. Let

min K({e}
0<r<iJ<A

and, using the notation of Lemma 9, let EflJ be the union of all sets Eim>

such that
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By Lemma 9, for given ij> 0 there exists M such that

( M A
* Sn) (E^P)> 1-r,

n = l /

for 0<r ^ h , m'^m1. Write

Then since

A M+h

n = l n = h + l

for 0 < r < A, it is clear that for these values of r,

^(E'rt()>l-V.

Now, the sets E're are disjoint. Tor, suppose
x, •••xM+h V — x, •••XM+h z>

where

and y, zeN%+h + l; then

, . - 1 , _ ~oi - ^ i

y z-xx --^

Hence, by (2),
,>.<>,-3, "M+h
xl •••xM+h

But this implies aM+h = {SM+ll, hence aM+il-1 = pM+h-i> •••> hence
by repeated use of (2). So, if r^R, the sets Ere and 2J^£ are disjoint, since
evidently E^, E($ are disjoint ii

We then have

Since -q was arbitrary,

But clearly the reverse inequality holds, hence

as required. This completes the proof.

4. The Asymmetry of 2R((?).

Theorem 2. 2R(C?) is symmetric if and only if G is discrete.

Proof. It is trivial that if G is discrete then $(?((?) is symmetric : for then
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If 6 is not discrete, let /J, be a measure satisfying the conditions of Theorem 1,
and consider

where now e is the unit element of 9Jt(G). Since

the spectral radius of v is 1 ; there is thus a multiplicative linear functional m'
such that

|«i»| = l,

which implies
m'( /x 2 )=- l ,

and hence
m'{(i)= ±i.

In either case

so that 3Ji{Gr) is not symmetric.

Remark. If fj, is as above, and m'(/x) = i, and if A = |(e — ijx), then m'(A) = 1
whereas m'(X) = 0.

Theorem 3. The fundamental maximal ideals constitute the Silov boundary
of the maximal ideals of W.(G) if and only if G is discrete.

Proof. If G is discrete then 9Jt((?) = L^G) and so every maximal ideal of
$R((?) is fundamental.

If G is not discrete, let /x, v and TO' be as in Theorem 2. Then, since fx is
Hermitian, m(/x) is real for each fundamental homomorphism m, hence

for all such m. Since | w'(i/)| = 1, the conclusion is immediate.

Remark. I t may be worth while to point out why m(fx) is real for each
fundamental homomorphism m, whereas it is not real for all homomorphisms.
It is easily seen that if m is any homomorphism, m(fj,n) is real for each n, where
fxn is as in the proof of Theorem 1. But it does not follow in general that m(/x)
is real; since the convolution-product is not convergent to fi in the norm
topology of 9JJ((T), it is not in general true that

m(/x)= lim 77 m(fj.n).

However, if there exists / € L^G) such that m ( / ) # 0 , which is so if and only
if m is fundamental, then

( p \ P

"X" fJLn*f )=m(f) l i m n m(fin),
n — \ ) p-^x n = l

by Lemma 8, and the desired conclusion follows in this case.
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Theorem 4. | m(X)\ ^ c > 0 for each fundamental homomorphism, m implies
the existence, of A"1 if and only if G is discrete.

Proof. If G is no t discrete, and /J,, m' are as in Theorem 2, then clearly

so that (e + fj?) has no inverse, whereas

for each fundamental homomorphism m.
If G is discrete, every homomorphism is fundamental.

Acknowledgments

The writer wishes to place on record his gratitude to Professor Edwin
Hewitt, and to Dr I. T. Adamson, for advice and criticism.

Added in proof: A much less complicated proof of Theorem 1 has been
obtained by W. Rudin (Bull. Amer. Math. Soc, 65 (1959), 227-247).
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