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Functoriality of the Canonical Fractional
Galois Ideal

Paul Buckingham and Victor Snaith

Abstract. The fractional Galois ideal is a conjectural improvement on the higher Stickelberger ideals

defined at negative integers, and is expected to provide non-trivial annihilators for higher K-groups of

rings of integers of number fields. In this article, we extend the definition of the fractional Galois ideal

to arbitrary (possibly infinite and non-abelian) Galois extensions of number fields under the assump-

tion of Stark’s conjectures and prove naturality properties under canonical changes of extension. We

discuss applications of this to the construction of ideals in non-commutative Iwasawa algebras.

1 Introduction

Let E/F be a Galois extension of number fields with Galois group G. In seeking

annihilators in Z[G] of the K-groups K2n(OE,S) (S a finite set of places of E containing

the infinite ones), Stickelberger elements have long been a source of interest. This

began with the classical Stickelberger theorem showing that for abelian extensions

E/Q , annihilators of Tors(K0(OE,S)) can be constructed from Stickelberger elements.

Coates and Sinnott later conjectured in [12] that the analogous phenomenon would

occur for higher K-groups. However, defined in terms of values of L-functions at

negative integers, these elements do not provide all the annihilators because of the

prevalent vanishing of the L-function values.

We hope to overcome this difficulty by considering the “fractional Galois ideal”,

introduced by the second author in [32, 33] and defined in terms of leading coeffi-

cients of L-functions at negative integers under the assumption of the higher Stark

conjectures. A version more suitable for the case of Tors(K0(OE,S)) = Cl(OE,S) was

defined in [5] by the first author. Evidence that the fractional Galois ideal annihilates

the appropriate K-groups (resp. class-groups) can be found in [33] (resp. [5]). In

the first case, étale cohomology is annihilated, but this is expected to give K-theory

by the Lichtenbaum–Quillen conjecture (see [33, Section 1] for details).

With a view to relating the fractional Galois ideal to characteristic ideals in Iwa-

sawa theory, we would like to describe how it behaves in towers of number fields.

That it exhibits naturality in certain changes of extension was observed in particular

cases in [5], and part of the aim of this paper is to explain these phenomena gen-

erally. Passage to subextensions corresponding to quotients of Galois groups will be

of particular interest in the situation of non-abelian extensions because of the rela-

tively recent emergence of non-commutative Iwasawa theory in, for example, [11,15].

Consequently, the aims of this paper are the following:
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(i) to prove formal properties of the fractional Galois ideal with respect to changes

of extension, in the commutative setting first (§3.3 to §3.6);

(ii) to extend the definition of the fractional Galois ideal to non-abelian Galois ex-

tensions (§5), having previously defined it only for abelian extensions;

(iii) to show that it behaves well under passage to subextensions in the non-commu-

tative setting also (Proposition 5.3);

(iv) to show that in order for the non-commutative fractional Galois ideals to anni-

hilate the appropriate étale cohomology groups, it is sufficient that the commu-

tative ones do (§7).

We will also provide an explicit example (in the commutative case) in §6.2.1 il-

lustrating how a limit of fractional Galois ideals gives the Fitting ideal for an inverse

limit Cl∞ of ℓ-parts of class-groups. This should make clear the importance of tak-

ing leading coefficients of L-functions rather than just values, since it will be the part

of the fractional Galois ideal corresponding to L-functions with first-order vanishing

at 0 that provides the Fitting ideal for the plus-part of Cl∞.

In Section 8, we will conclude with a discussion of how the constructions in this

paper fit into non-commutative Iwasawa theory. In particular, under some assump-

tions which, compared with the many conjectures permeating this area, are relatively

weak, we will be able to give a partial answer to a question of Ardakov–Brown in [1]

on constructing ideals in Iwasawa algebras.

Since the acceptance of the paper, the authors were made aware of a potential

problem in Proposition 3.6. It has to do with the fact that the induction map on rep-

resentations is an additive homomorphism of representation rings, while the functo-

riality of L-functions refers to multiplication. While the authors have not yet com-

pletely resolved this issue, they believe that this should be possible, and that the aims

of the paper are not significantly compromised. The authors would like to thank

Andreas Nickel for bringing this to our attention.

2 Notation and the Stark Conjectures

In what follows, by a Galois representation of a number field F we shall mean a con-

tinuous, finite-dimensional, complex representation of the absolute Galois group of

F, which amounts to saying that the representation factors through the Galois group

G = Gal(E/F) of a finite Galois extension E/F. We begin with the Stark conjecture

(at s = 0) and its generalizations to s = −1,−2,−3, . . . , which were introduced in

[16] and [33] independently.

Let Σ(E) denote the set of embeddings of E into the complex numbers. For r =

0,−1,−2,−3, . . . , set

Yr(E) =
∏

Σ(E)

(2πi)−r
Z = Map(Σ(E), (2πi)−r

Z),

endowed with the Gal(C/R)-action diagonally on Σ(E) and on (2πi)−r. G acts on

Yr(E) by permuting the embeddings in Σ(E). If c0 denotes complex conjugation, the

action of c0 and G commute so that the fixed points of Yr(E) under c0, denoted by
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Yr(E)+, form a G-module. It is easy to see that the rank of Yr(E)+ is given by

rkZ(Yr(E)+) =

{
r2 if r is odd,

r1 + r2 if r ≥ 0 is even,

where |Σ(E)| = r1 + 2r2 and r1 is the number of real embeddings of E.

2.1 Stark Regulators

We begin with a slight modification of the original Stark regulator [35]. G continues

to denote the Galois group of an extension of number fields E/F. We extend the

Dirichlet regulator homomorphism to the Laurent polynomials with coefficients in

OE to give an R[G]-module isomorphism of the form

R0
E : K1(OE[t, t−1]) ⊗ R = OE[t, t−1]× ⊗ R

∼=→ Y0(E)+ ⊗ R ∼= R
r1+r2

by the formulae, for u ∈ O
×
E ,

R0
E(u) =

∑

σ∈Σ(E)

log(|σ(u)|) · σ,

R0
E(t) =

∑

σ∈Σ(E)

σ.

The existence of this isomorphism implies (see [29, § 12.1] and [35, p. 26]) that there

exists at least one Q[G]-module isomorphism of the form

f 0
E : OE[t, t−1]× ⊗ Q

∼=→ Y0(E)+ ⊗ Q.

For any choice of f 0
E , Stark forms the composition

R0
E · ( f 0

E )−1 : Y0(E)+ ⊗ C
∼=→ Y0(E)+ ⊗ C,

which is an isomorphism of complex representations of G. Let V be a finite-dimen-

sional complex representation of G, and let V∨
= HomC(V, C) with the G-action

(gθ)(v) = θ(g−1v) for θ ∈ HomC(V, C). The Stark regulator is defined to be the

exponential homomorphism V 7→ R(V, f 0
E ), from representations to non-zero com-

plex numbers, given by

R(V, f 0
E ) = det

(
(R0

E · ( f 0
E )−1)∗ ∈ AutC(HomG(V∨,Y0(E)+ ⊗ C))

)

where (R0
E · ( f 0

E )−1)∗ is composition with R0
E · ( f 0

E )−1.

For r = −1,−2,−3, . . . , there is an isomorphism of the form [25]

K1−2r(OE[t, t−1]) ⊗ Q ∼= K1−2r(OE) ⊗ Q

https://doi.org/10.4153/CJM-2010-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-054-1


1014 P. Buckingham and V. Snaith

because K−2r(OE) is finite. Therefore, the Borel regulator homomorphism defines an

R[G]-module isomorphism of the form

Rr
E : K1−2r(OE[t, t−1]) ⊗ R = K1−2r(OE) ⊗ R

∼=→ Yr(E)+ ⊗ R.

Choose a Q[G]-module isomorphism of the form

f r
E : K1−2r(OE[t, t−1]) ⊗ Q

∼=→ Yr(E)+ ⊗ Q

and form the analogous Stark regulator, (V 7→ R(V, f r
E )), from representations to

non-zero complex numbers given by

R(V, f r
E ) = det

(
(Rr

E · ( f r
E )−1)∗ ∈ AutC(HomG(V∨,Yr(E)+ ⊗ C))

)
.

2.2 Stark’s Conjectures

Let R(G) denote the complex representation ring of the finite group G; that is, R(G) =

K0(C[G]). Since V determines a Galois representation of F, we have a non-zero com-

plex number L∗
F(r,V ) given by the leading coefficient of the Taylor series at s = r of

the Artin L-function associated with V ([22], [35, p. 23]).

We may modify R(V, f r
E ) to give another exponential homomorphism

R f r
E
∈ Hom(R(G), C

×)

defined by

R f r
E
(V ) =

R(V, f r
E )

L∗
F(r,V )

.

Let Q denote the algebraic closure of the rationals in the complex numbers and let

ΩQ denote the absolute Galois group of the rationals. ΩQ acts on Ĝ as follows: for

γ ∈ ΩQ , χ ∈ Ĝ and g ∈ G, we have (γχ)(g) = γ(χ(g)). This action extends by

linearity to a continuous action on R(G). The Stark conjecture asserts that for each

r = 0,−1,−2,−3, . . . ,

R f r
E
∈ HomΩQ

(R(G), Q
×

) ⊆ Hom(R(G), C
×).

In other words, R f r
E
(V ) is an algebraic number for each V , and, for all z ∈ ΩQ , we

have z(R f r
E
(V )) = R f r

E
(z(V )). Since any two choices of f r

E differ by multiplication by

a Q[G]-automorphism, the truth of the conjecture is independent of the choice of f r
E

[35, pp. 28–30].

When s = 0 the conjecture that we have just formulated apparently differs from

the classical Stark conjecture of [35], therefore, we shall pause to show that the two

conjectures are equivalent. For the classical Stark conjecture, one replaces Y0(E)+ by

X0(E)+, where X0(E) is the kernel of the augmentation homomorphism Y0(E) → Z,

which adds together all the coordinates. The Dirichlet regulator gives an R[G]-mo-

dule isomorphism

R̃0
E : O

×
E ⊗ R

∼=→ X0(E)+ ⊗ R
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and choosing a Q[G]-module isomorphism

f̃ 0
E : O

×
E ⊗ Q

∼=→ X0(E)+ ⊗ Q,

we may form

R̃0
E · ( f̃ 0

E )−1 : X0(E)+ ⊗ C
∼=→ X0(E)+ ⊗ C.

Taking its Stark determinant, we obtain R̃(V, f̃ 0
E ) and finally

R̃ f̃ 0
E
(V ) =

R̃(V, f̃ 0
E )

L∗
F(0,V )

.

Proposition 2.1 Under the assumptions of §2.2,

R f 0
E
∈ HomΩQ

(R(G), Q
×

) ⊆ Hom(R(G), C
×)

if and only if

R̃ f̃ 0
E
∈ HomΩQ

(R(G), Q
×

) ⊆ Hom(R(G), C
×),

independently of the choice of f 0
E or f̃ 0

E .

Proof Given any Q[G]-isomorphism f̃ 0
E , we may fill in the following commutative

diagram by Q[G]-isomorphisms f 0
E and f

0

E. Conversely, given any Q[G]-isomorph-

isms f 0
E and f

0

E we may fill in the diagram with a Q[G]-isomorphism f̃ 0
E .

O
×
E ⊗Z Q //

f̃ 0
E

²²

OE[t, t−1]× ⊗Z Q //

f 0
E

²²

Q

f̄ 0
E

²²

X0(E)+ ⊗Z Q // Y0(E)+ ⊗Z Q // Q

Similarly, there is a commutative diagram in which the vertical arrows are re-

versed, Q is replaced by R and f̃E, fE and f E by R̃0
E, R0

E and R
0
E, respectively. Fur-

thermore R
0
E is multiplication by a rational number. The result now follows from the

multiplicativity of the determinant in short exact sequences.

We shall be particularly interested in the case when G is abelian, in which case the

following observation is important. Let Ĝ = Hom(G, Q
×

) denote the set of charac-

ters on G and let Q(χ) denote the field generated by the character values of a repre-

sentation χ. We may identify HomΩQ
(R(G), Q)with the ring Map

ΩQ
(Ĝ, Q).

Proposition 2.2 Let G be a finite abelian group. Then there exists an isomorphism of

rings

λG : Map
ΩQ

(Ĝ, Q) = HomΩQ
(R(G), Q)

∼=→ Q[G]

given by

λG(h) =
∑

χ∈bG

h(χ)eχ,
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where

eχ = |G|−1
∑
g∈G

χ(g)g−1 ∈ Q(χ)[G].

In particular, there is an isomorphism of unit groups

λG : HomΩQ
(R(G), Q

×
)

∼=→ Q[G]×.

Proof There is a well-known isomorphism of rings [21, p. 648]

ψ : Q[G] → ∏

χ∈bG

Q = Map(Ĝ, Q)

given by ψ(
∑

g∈G λgg)(χ) =
∑

g∈G λgχ(g). If ΩQ acts on Ĝ in the canonical man-

ner, as described above, then ψ is Galois equivariant and induces an isomorphism of

ΩQ -fixed points of the form

Q[G] = (Q[G])ΩQ ∼= Map
ΩQ

(Ĝ, Q) ∼= HomΩQ
(R(G), Q).

It is straightforward to verify that this isomorphism is the inverse of λG.

3 The Canonical Fractional Galois Ideal Jr
E/F in the Abelian Case

3.1 Definition of Jr
E/F

In this section we recall the canonical fractional Galois ideal introduced in [33] (see

also [5,30,32]). In [33] this was denoted merely by Jr
E, but in this paper we will need

to keep track of the base field.

As in §2.2, let E/F be a Galois extension of number fields. Throughout this section

we shall assume that the Stark conjecture of §2.2 is true for all E/F and that G =

Gal(E/F) is abelian. Therefore, by Proposition 2.2, for each r = 0,−1,−2,−3, . . . ,
we have an element

R f r
E
∈ HomΩQ

(R(G), Q
×

) ∼= Q[G]×

that depends upon the choice of a Q[G]-isomorphism f r
E in §2.2.

Let α ∈ EndQ[G](Yr(E)+ ⊗ Q) and extend this by the identity on the (−1)-eigen-

space of complex conjugation Yr(E)− ⊗ Q to give

α ⊕ 1 ∈ EndQ[G](Yr(E) ⊗ Q).

Since Yr(E) ⊗ Q is free over Q[G], we may form the determinant

detQ[G](α ⊕ 1) ∈ Q[G].

In terms of the isomorphism of Proposition 2.2, detQ[G](α ⊕ 1) corresponds to the

function that sends χ ∈ Ĝ to the determinant of the endomorphism of eχYr(E) ⊗ Q

induced by α ⊕ 1.

https://doi.org/10.4153/CJM-2010-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-054-1


Functoriality of the Canonical Fractional Galois Ideal 1017

Following [33, § 4.2] (see also [30, 32]), define I f r
E

to be the (finitely generated)

Z[1/2][G]-submodule of Q[G] generated by all the elements detQ[G](α⊕1) satisfying

the integrality condition

α · f r
E (K1−2r(OE[t, t−1])) ⊆ Yr(E).

Define Jr
E/F to be the finitely generated Z[1/2][G]-submodule of Q[G] given by

Jr
E/F = I f r

E
· τ (R−1

f r
E

),

where τ is the automorphism of the group-ring induced by sending each g ∈ G to its

inverse.

Proposition 3.1 ([33, Prop.4.5]) Let E/F be a Galois extension of number fields with

abelian Galois group G. Then, assuming that the Stark conjecture of §2.2 holds for E/F

for r = 0,−1,−2,−3, . . . , the finitely generated Z[1/2][G]-submodule Jr
E/F of Q[G]

just defined is independent of the choice of f r
E .

3.2 Naturality Examples

Given an extension E/F of number fields satisfying the Stark conjecture at s = 0

and a finite set of places S of F containing the infinite places, let J(E/F, S) denote the

fractional Galois ideal as defined in [5], which is a slight modification of the one just

defined so that we can take into account finite places. Let us consider the following

situation: ℓ is an odd prime, En = Q(ζℓn+1 ) for a primitive ℓn+1th root of unity ζℓn+1

(n ≥ 0), and S = {∞, ℓ}. The descriptions below of J(En/Q, S) and J(E+
n /Q, S) are

provided in [5, § 4]:

J(En/Q, S) =
1
2
e+ annZ[Gn](O

×
E+

n ,S/E+
n ) ⊕ Z[Gn]θEn/Q,S(3.1)

J(E+
n /Q, S) =

1
2

annZ[G+
n ](O

×
E+

n ,S/E+
n )(3.2)

where Gn = Gal(En/Q), G+
n = Gal(E+

n /Q), E+
n is the Z[G+

n ]-submodule of O
×
E+

n ,S

generated by −1 and (1 − ζℓn+1 )(1 − ζ−1
ℓn+1 ), and θEn/Q,S is the Stickelberger element at

s = 0. Also, e+ =
1
2
(1 + c) is the plus-idempotent for complex conjugation c ∈ Gn.

It is immediate from these descriptions that the natural maps Q[Gn] → Q[G+
n ],

Q[Gn] → Q[Gn−1], and Q[G+
n ] → Q[G+

n−1] give rise to a commutative diagram

(3.3) J(En/Q, S) //

²²

J(E+
n /Q, S)

²²

J(En−1/Q, S) // J(E+
n−1/Q, S).

(O×
E+

n−1,S
/E+

n−1 embeds into O
×
E+

n ,S/E+
n , and Stickelberger elements are well known

(e.g., [18]) to map to each other in this way.)
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Now suppose that ℓ ≡ 3 mod 4, so that En contains the imaginary quadratic field

F = Q(
√
−ℓ). Again, letting SF consist of the infinite place of F and the unique place

above ℓ, J(En/F, SF) has a simple description. Indeed, if Hn = Gal(En/F), then

(3.4) J(En/F, SF) =
1

µn
annZ[Hn](O

×
En,S

/En),

where En is generated over Z[Hn] by ζℓn+1 and (1 − ζℓn+1 )µnθ̃n . Here, µn = |µ(En)| and

θ̃n =

∑

σ∈Hn

ζEn/Q,S(0, σ−1)σ ∈ Q[Hn],

a sort of “half Stickelberger element” obtained by keeping only those terms corre-

sponding to elements in the index two subgroup Hn of Gn. (Note that µnθ̃n ∈ Z[Hn].)

Comparing (3.2) and (3.4), we get the following without too much difficulty.

Proposition 3.2 The isomorphism Φn : Q[Hn] → Q[G+
n ] identifies J(En/F, SF) with

2Φn(θ̃n)J(E+
n /Q, S).

We now explain the above phenomena by proving some general relationships be-

tween the Jr
E/F under natural changes of extension.

3.3 Behaviour Under Quotient Maps Gal(L/F) → Gal(K/F)

Suppose that F ⊆ K ⊆ L is a tower of number fields with L/F abelian. The inclusion

of K into L induces a homomorphism

SK1−2r(OK [t, t−1]) → K1−2r(OL[t, t−1]).

When r = 0
K1(OK [t, t−1])

Torsion
∼= OK [t, t−1]

×
/µ(K)

maps injectively to the Galois invariants of OL[t, t−1]
×

/µ(L) sending t to itself. For

strictly negative r,
K1−2r(OK [t, t−1])

Torsion
∼= K1−2r(OK )

Torsion

embeds into the Gal(L/K)-invariants of
K1−2r(OL[t,t−1])

Torsion
. There is a homomorphism

Yr(K) → Yr(L) that sends nσ · σ to nσ · (
∑

(σ ′|F)=σ σ ′), which is an isomorphism

onto the Gal(L/K)-invariants Yr(L)Gal(L/K). For r = 0,−1,−2,−3, . . . there is a

commutative diagram of regulators in §2.1

K1−2r(OK [t, t−1]) ⊗Z R

Rr
K

//

²²

Yr(K)+ ⊗Z R

²²

K1−2r(OL[t, t−1]) ⊗Z R

Rr
L

// Yr(L)+ ⊗Z R
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We may choose f r
K and f r

L as in §2.1 to make the corresponding diagram of Q-vector

spaces commute

(3.5) K1−2r(OK [t, t−1]) ⊗Z Q

f r
K

//

²²

Yr(K)+ ⊗Z Q

²²

K1−2r(OL[t, t−1]) ⊗Z Q

f r
L

// Yr(L)+ ⊗Z Q

Let V be a one-dimensional complex representation of Gal(K/F) and let W =

Inf
Gal(L/F)

Gal(K/F)
(V ) denote the inflation of V . Then

HomGal(L/F)(W
∨,Yr(L)+ ⊗ C) = HomGal(L/F)(W

∨, (Yr(L)Gal(L/K))+ ⊗ C)

= HomGal(K/F)(V
∨,Yr(K)+ ⊗ C)

and these isomorphisms transport (Rr
L · ( f r

L )−1)∗ into (Rr
K · ( f r

K )−1)∗ by virtue of the

above commutative diagrams. Furthermore, since the Artin L-function is invariant

under inflation, L∗
F(r,V ) = L∗

F(r,W ). On the other hand, the inflation homomor-

phism

Inf
Gal(L/F)

Gal(K/F)
: R(Gal(K/F)) → R(Gal(L/F))

induces the canonical quotient map

πL/K : Q[Gal(L/F)]× → Q[Gal(K/F)]×

via the isomorphism of Proposition 2.2. Hence πL/K (R f r
L
) = R f r

K
.

Let α ∈ EndQ[Gal(L/F)](Yr(L)+ ⊗ Q) satisfy the integrality condition of §3.1

α · f r
L (K1−2r(OL[t, t−1])) ⊆ Yr(L).

Extend this by the identity on the (−1)-eigenspace of complex conjugation Yr(L)−⊗
Q to give

α ⊕ 1 ∈ EndQ[Gal(L/F)](Yr(L) ⊗ Q).

The endomorphism α commutes with the action by Gal(L/K) so there is α̂ ∈
EndQ[Gal(K/F)](Yr(K)+ ⊗ Q) making the following diagram commute

Yr(K)+ ⊗Z Q
α̂

//

²²

Yr(K)+ ⊗Z Q

²²

Yr(L)+ ⊗Z Q
α

// Yr(L)+ ⊗Z Q.
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Therefore, α̂ satisfies the integrality condition of §3.1

α̂ · f r
K (K1−2r(OK [t, t−1])) ⊆ Yr(K).

We may choose a Z[1/2][Gal(K/F)] basis for Yr(K) ⊗ Z[1/2] consisting of em-

beddings σi : K → C for 1 ≤ i ≤ m. Let σ ′
i be an embedding of L that ex-

tends σi for 1 ≤ i ≤ m. Then a Z[1/2][Gal(L/F)] basis for Yr(L) ⊗ Z[1/2]

is given by {σ ′
1, σ

′
2, . . . , σ

′
m}. The embedding of Yr(K) into Yr(L) is given by

σi 7→
∑

g∈Gal(L/K) g(σ ′
i ) which implies that the m×m matrix for α̂ with respect to the

Z[1/2][Gal(K/F)] basis of σi ’s is the image of the m × m matrix for α with respect

to the Z[1/2][Gal(L/F)] basis of σ ′
i ’s under the canonical surjection

Q[Gal(L/F)] → Q[Gal(K/F)].

This discussion has established the following result.

Proposition 3.3 Suppose that F ⊆ K ⊆ L is a tower of number fields with L/F

abelian. Then, in the notation of §3.1, the canonical surjection

πL/K : Q[Gal(L/F)] → Q[Gal(K/F)]

satisfies πL/K (Jr
L/F) ⊆ Jr

K/F.

Proposition 3.3 explains the existence of the maps in (3.3).

3.4 Behaviour Under Inclusion Maps Gal(L/K) → Gal(L/F)

As in §3.3, suppose that F ⊆ K ⊆ L is a tower of number fields with L/F

abelian. The inclusion of Gal(L/K) into Gal(L/F) induces an inclusion of group-

rings Q[Gal(L/K)] into Q[Gal(L/F)]. In terms of the isomorphism of Proposition

2.2, as is easily seen by the formula, this homomorphism is induced by the restriction

of representations

Res
Gal(L/F)

Gal(L/K)
: R(Gal(L/F)) → R(Gal(L/K)).

If V is a complex representation of Gal(L/F), then

R f r
L
(Res

Gal(L/F)

Gal(L/K)
(V )) =

R(Res
Gal(L/F)

Gal(L/K)
(V ), f r

L )

L∗
K(r, Res

Gal(L/F)

Gal(L/K)
(V ))

=

R(Res
Gal(L/F)

Gal(L/K)
(V ), f r

L )

L∗
F(r, Ind

Gal(L/F)

Gal(L/K)
(Res

Gal(L/F)

Gal(L/K)
(V )))

=

R(Res
Gal(L/F)

Gal(L/K)
(V ), f r

L )

L∗
F(r,V ⊗ Ind

Gal(L/F)

Gal(L/K)
(1))

.
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If Wi ∈ Ĝal(L/F) for 1 ≤ i ≤ [K : F] is the set of one-dimensional representations

that restrict to the trivial representation on Gal(L/K), then Ind
Gal(L/F)

Gal(L/K)
(1)) =

⊕
i Wi .

By Frobenius reciprocity,

HomGal(L/K)(Res
Gal(L/F)

Gal(L/K)
(V )∨,Yr(L)+ ⊗ C)) =

HomGal(L/F)(
⊕

i

(V ⊗Wi)
∨,Yr(L)+ ⊗ C)),

so that

R(Res
Gal(L/F)

Gal(L/K)
(V ), f r

L ) =
∏

i

R(V ⊗Wi , f r
L )

and

R f r
L
(Res

Gal(L/F)

Gal(L/K)
(V )) =

∏
i

R f r
L
(V ⊗Wi).

Let H ⊆ G be finite groups with G abelian. It will suffice to consider the case in

which G/H is cyclic of order n generated by gH. Let W ⊗ Q be a free Q[G]-module

with basis v1, . . . , vr. Then W ⊗ Q is a free Q[H]-module with basis {gavi | 0 ≤ a ≤
n − 1, 1 ≤ i ≤ r}. Set S = {0, . . . , n − 1} × {1, . . . , r}; then for u = (a, i) ∈ S, we

set eu = gavi . If α̃ ∈ EndQ[H](W ⊗ Q), we may write

α̃(ew) =
∑

u

Au.weu

so that A is an nr × nr matrix with entries in Q[H].

Now consider the induced Q[G]-module IndG
H(W ⊗Q). It is a free Q[G]-module

on the basis {1 ⊗H eu | u ∈ S}. Hence the nr × nr matrix, with entries in Q[G], for

1 ⊗H α̃ with respect to this basis is the image of A under the canonical inclusion of

φH,G : Q[H] → Q[G]. In particular

φH,G(detQ[H](α̃)) = detQ[G](Q[G] ⊗Q[H] α̃)

and, by induction on [G : H], this relation is true for an arbitrary inclusion H ⊆ G

of finite abelian groups.

This discussion yields the following result.

Proposition 3.4 Suppose that F ⊆ K ⊆ L is a tower of number fields with L/F

abelian. Then, in the notation of Susbsection 3.1, the canonical inclusion

φK/F : Q[Gal(L/K)] → Q[Gal(L/F)]

maps Jr
L/K onto the Z[1/2][Gal(L/K)]-submodule

Z[1/2][Gal(L/K)]〈detQ[Gal(L/F)](Q[Gal(L/F)] ⊗Q[Gal(L/K)] (α ⊕ 1))τ (R̂ f r
L
)−1〉.

Here, in terms of Proposition 2.2, R̂ f r
L
∈ Q[Gal(L/F)]× is given by

R̂ f r
L
(V ) = R f r

L
(V ⊗ Ind

Gal(L/F)

Gal(L/K)
(1)),

and α ∈ EndQ[Gal(L/K)](Yr(L)+ ⊗ Q) runs through endomorphisms satisfying the inte-

grality condition of x3.1.
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3.5 Behaviour Under Fixed-Point Maps

As in §3.3, suppose that F ⊆ K ⊆ L is a tower of number fields with L/F abelian.

Let eL/K = [L : K]−1(
∑

y∈Gal(L/K) y) denote the idempotent associated with the

subgroup Gal(L/K). There is a homomorphism of unital rings of the form

λK/F : Q[Gal(K/F)] → Q[Gal(L/F)]

given, for z ∈ Gal(L/F), by the formula

λK/F(z Gal(L/K)) = (1 − eL/K ) + z · eL/K ∈ Q[Gal(L/F)].

From Proposition 2.2, it is easy to see that, in terms of group characters

Map(Ĝal(K/F), Q) → Map(Ĝal(L/F), Q),

this sends a function h on Ĝal(K/F) to the function h ′ given by

h ′(χ) =

{
h(χ1) if Inf

Gal(L/F)

Gal(K/F)
(χ1) = χ,

1 otherwise.

Sending a complex representation V of Gal(L/F) to its Gal(L/K)-fixed points

V Gal(L/K) gives a homomorphism

Fix : R(Gal(L/F)) → R(Gal(K/F)).

In terms of one-dimensional respresentations (i.e., characters) the above condition

Inf
Gal(L/F)

Gal(K/F)
(χ1) = χ is equivalent to Fix(χ) = χ1.

Let V be a one-dimensional complex representation of Gal(L/F) fixed by

Gal(L/K). Then we have isomorphisms of the form

HomGal(L/F)((V Gal(L/K))∨,Yr(L)+ ⊗ C) = HomGal(K/F)(V
∨, (Yr(L)Gal(L/K))+ ⊗ C)

= HomGal(K/F)(V
∨,Yr(K)+ ⊗ C)

and, by invariance of L-functions under inflation, L∗
F(r,V ) = L∗

F(r,V Gal(L/K)). There-

fore, by the discussion of §3.3,

R f r
L
(V ) = R f r

K
(V Gal(L/K)).

On the other hand, if V Gal(L/K)
= 0, then R f r

K
(V Gal(L/K)) = 1 since both L∗

F(r, 0) and

the determinant of the identity map of the trivial vector space are equal to one. This

establishes the formula

λK/F(R f r
K
) = (1 − eL/K ) + R f r

L
· eL/K .
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Now consider an endomorphism

α ∈ EndQ[Gal(K/F)](Yr(K)+ ⊗ Q)

satisfying the integrality condition of §3.1

α fr,K(K1−2r(OK [t, t−1])) ⊆ Yr(K)+ ∼= (Yr(L)+)Gal(L/K).

Let v1, v2, . . . , vd be a Z[1/2][Gal(L/F)]-basis of Yr(L)[1/2] so that

{( ∑

y∈Gal(L/K)

y
)

vi

∣∣∣ 1 ≤ i ≤ d
}

is a Z[1/2][Gal(K/F)]-basis of the subspace (Yr(L)+)Gal(L/K)[1/2] ∼= Yr(K)[1/2].

To construct the generators of Jr
K/F , as in §3.1, we must calculate the determinant

of α ⊕ 1 on Yr(K)+ ⊗ Q ⊕ Yr(K)− ⊗ Q = Yr(K) ⊗ Q with respect to the basis

{(
∑

y∈Gal(L/K) y)vi} and divide by τ (R f r
K
).

Let α̂ ∈ EndQ[Gal(L/F)](Yr(L) ⊗ Q) be given by α on Yr(L)Gal(L/F) ⊗ Q and the

identity on (1 − eL/K )Yr(L) ⊗ Q . Hence α̂ satisfies the integrality condition

α̂ · f r
L (K1−2r(OL[t, t−1]))Gal(L/F) ⊆ Yr(L)Gal(L/F),

because, as in §3.3, f r
K may be assumed to extend to f r

L . Therefore

eL/K

det(α̂)

τ (R f r
L
)
∈ eL/KJr

L/F ⊂ Q[Gal(L/F)].

On the other hand, it is clear that λK/F(det(α ⊕ 1)) = det(α̂).

This discussion has established the following result.

Proposition 3.5 Suppose that F ⊆ K ⊆ L is a tower of number fields with L/F

abelian and let

λK/F : Q[Gal(K/F)] → Q[Gal(L/F)]

denote the unital ring homomorphism of §3.5. Then,

λK/F(Jr
K/F) ⊆ (1 − eL/K )Q[Gal(L/F)] + eL/KJr

L/F.

3.6 Behaviour Under Corestriction Maps

As in §3.3, suppose that F ⊆ K ⊆ L is a tower of number fields with L/F abelian.

There is an additive homomorphism of the form

ιK/F : Q[Gal(L/F)] → Q[Gal(L/K)]

called the transfer or corestriction map. In terms of Proposition 2.2, it is induced by

the induction of representations

Ind
Gal(L/F)

Gal(L/K)
: R(Gal(L/K)) → R(Gal(L/F)).
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That is, the image ιK/F(h) of h ∈ HomΩQ
(R(Gal(L/F)), Q) is given by

ιK/F(h)(V ) = h
(

Ind
Gal(L/F)

Gal(L/K)
(V )

)
.

For each V ∈ R(Gal(L/K)), there is an isomorphism

HomGal(L/F)

(
(Ind

Gal(L/F)

Gal(L/K)
V )∨,Yr(L)+ ⊗ C

)
= HomGal(L/K)(V

∨,Yr(L)+ ⊗ C).

Also, L∗
F(r, Ind

Gal(L/F)

Gal(L/K)
(V )) = L∗

K (r,V ), so that ιK/F(R f r
L
) = R f r

L
.

Now consider an endomorphism

α ∈ EndQ[Gal(L/F)](Yr(L)+ ⊗ Q)

satisfying the integrality condition of §3.1

α fr,L(K1−2r(OL[t, t−1])) ⊆ Yr(L)+.

Then it is straightforward to see from Proposition 2.2 that detQ[Gal(L/F)](α ⊕ 1), the

determinant of α ⊕ 1 as a map of Q[Gal(L/F)]-modules, is mapped via ιK/F to

detQ[Gal(L/K)](α ⊕ 1), the determinant of α ⊕ 1 as Q[Gal(L/K)]-modules.

This discussion has established the following result.

Proposition 3.6 Suppose that F ⊆ K ⊆ L is a tower of number fields with L/F

abelian, and let

ιK/F : Q[Gal(L/F)] → Q[Gal(L/K)]

denote the additive homomorphism of §3.6. Then

ιK/F(Jr
L/F) ⊆ Jr

L/K .

3.7 Lifting of Extensions

We can now explain the second example in §3.2, i.e., Proposition 3.2. Let us work

more generally to begin with. E and F can be any number fields, and we suppose we

have a diagram

E
C

ÄÄ
ÄÄ

ÄÄ
ÄÄ H

??
??

??
??

L
G ′

??
??

??
?

F

ÄÄ
ÄÄ

ÄÄ
Ä

K

satisfying the following: E/K is Galois (though not necessarily abelian), LF = E,

L ∩ F = K, the extension L/K is abelian (and hence so is E/F), and L/K and E/F
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satisfy the Stark conjecture. We let G = Gal(E/K), and the Galois groups of the other

Galois extensions are marked in the diagram. We observe that C need not be abelian

here.

Owing to the natural isomorphism G/C → H, each character ψ ∈ Ĥ extends to

a unique one-dimensional representation ψ̂ : G → C× which is trivial on C . Denote

by ch(G) the set of irreducible characters of G. Then having chosen a Q[G]-module

isomorphism f as in §2.1, we can define an element Ω
f ∈ C[H]× by

Ω
f
=

∏

χ∈ch(G)r{1}

( ∑

ψ∈bH

R
f

E/K
(χψ̂)dχ eψ

)
,

where for a character χ of G, dχ is the multiplicity of the trivial character of H in

ResG
H(χ). We have opted to denote by R

f

E/K
the group-ring element R fE

defined in

§3.1, to emphasize which extension is being considered.

The following lemma shows that the group-ring element R
f

E/F
for the extension

E/F is related, via Ω
f , to the corresponding element for the extension L/K.

Lemma 3.7 Ω
f has rational coefficients, and the image of R

f

E/F
under the isomor-

phism Φ : Q[H] → Q[G ′] is R
f ′

L/K
Φ(Ω f ), where f ′ is the Q[G ′]-module isomorphism

making diagram (3.5) commute.

The proof of the lemma is little more than a combination of §§ 3.3 and 3.6.

In the situation of Proposition 3.2 (with L = E+ and K = Q now), we find that the

element 2θ̃ occurring there is just τ (Ω f )−1 (for any choice of f in this case). Indeed,

let ρ ∈ Ĝ be the unique non-trivial character extending the trivial character of H.

Then the only χ ∈ ch(G)r{1} with dχ 6= 0 is ρ, and dρ = 1, so

Ω
f

=

∑

ψ∈bH

R
f

E/Q
(ρψ̂)eψ

=

∑

ψ∈bG
ψeven

R
f

E/Q
(ρψ)eψ|H

.

However, for ψ even, ρψ is odd so that R f (ρψ) = LE/Q,S(0, ρψ)−1. Using the easily

verified fact that (1 − c)θ̃ = θE/Q,S, where c ∈ G is complex conjugation, we see that

LE/Q,S(0, ρψ) = 2ψ|H(τ θ̃), from which the assertion follows.

Applying Lemma 3.7 now justifies the appearance of 2Φn(θ̃n) in Proposition 3.2.

4 The Passage to Non-Abelian Groups

4.1 Explicit Brauer Induction

In this section, we shall use the Explicit Brauer Induction constructions of [31,

pp. 138–147] to pass from finite abelian Galois groups to the non-abelian case.

Let G be a finite group and consider the additive homomorphism
∑

H⊆G

IndG
H Inf H

Hab :
⊕

H⊆G

R(Hab) → R(G).
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Let N ⊳ G be a normal subgroup and let π : G → G/N denote the quotient ho-

momorphism.

Define a homomorphism

αG,N :
⊕

J⊆G/N

R( Jab) → ⊕
H⊆G

R(Hab)

to be the homomorphism that sends the J-component R( Jab) to the H = π−1( J)-

component R(π−1( J)ab) via the map

Inf π−1( J)ab

Jab (R( Jab)) → R(π−1( J)ab).

Lemma 4.1 In the notation of this subsection, the following diagram commutes.

⊕
J⊆G/N R( Jab) //

αG,N

²²

R(G/N)

Inf G
G/N

²²⊕
H⊆G R(Hab) // R(G)

Proof Since the kernel of π−1( J) → J and that of π : G → G/N coincide, both

being equal to N, we have

Inf G
G/N Ind

G/N
J = IndG

π−1( J) Inf π−1( J)
J .

Therefore, given a character φ : Jab → Q
×

in the J-coordinate, we have

IndG
π−1( J) Inf π−1( J)

π−1( J)ab αG,N (φ) = IndG
π−1( J) Inf π−1( J)

π−1( J)ab Inf π−1( J)ab

Jab (φ)

= IndG
π−1( J) Inf π−1( J)

J Inf J
Jab (φ)

= Inf G
G/N Ind

G/N
J Inf J

Jab (φ),

as required.

4.2 The Homomorphisms A∗
G and B∗

G

The homomorphism αG,N is invariant under group conjugation and therefore in-

duces an additive homomorphism of the form

BG :
( ⊕

H⊆G

R(Hab)
)

G
→ R(G),

where XG denotes the coinvariants of the conjugation G-action. This homomor-

phism is a split surjection whose right inverse is given by the Explicit Brauer Induc-

tion homomorphism

AG : R(G) →
( ⊕

H⊆G

R(Hab)
)

G
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constructed in [31, §4.5.16]. We shall be interested in the dual homomorphisms

[31, §4.5.20]

B∗
G : HomΩQ

(R(G), Q) →
( ⊕

H⊆G

HomΩQ
(R(Hab), Q)

)G

and

A∗
G :

( ⊕
H⊆G

HomΩQ
(R(Hab), Q)

)G → HomΩQ
(R(G), Q),

where XG denotes the subgroup of G-invariants.

As in [31, Def. 4.5.4], denote by Q{G} the rational vector space whose basis con-

sists of the conjugacy classes of G. There is an isomorphism [31, Prop. 4.5.14]

ψ : Q{G} ∼=→ HomΩQ
(R(G), Q)

given by the formula ψ(
∑

γ mγγ)(ρ) =
∑

γ mγTrace(ρ(γ)).

When G is abelian, we have Q{G} = Q[G], and, under the identification

HomΩQ
(R(G), Q) = Map

ΩQ
(Ĝ, Q)

of Proposition 2.2, we have ψ(g) = (χ 7→ χ(g)), which is a ring isomorphism inverse

to λG.

5 Jr
E/F in General

Let G denote the Galois group of a finite Galois extension E/F of number fields.

Hence each subgroup of G has the form H = Gal(E/EH), whose abelianization

is Hab
= Gal(E[H,H]/EH) where [H, H] is the commutator subgroup of H. For

each integer r = 0,−1,−2,−3, . . . , we have the canonical fractional Galois ideal

Jr
E[H,H]/EH ⊆ Q[Hab] as defined in §3.1.

Definition 5.1 In the notation of Section 5, define a subgroup Jr
E/F of Q{G} by

Jr
E/F = (B∗

G)−1
( ⊕

H⊆G

Jr
E[H,H]/EH

)
.

Lemma 5.2 In Section 5 and Definition 5.1, when G = Gal(E/F) is abelian then Jr
E/F

coincides with the canonical fractional Galois ideal of §3.1.

Proof The H-component of B∗
G has the form

Q[Gal(E/F)]
iEH /F→ Q[Gal(E/EH)]

π
E/E[H,H]

→ Q[Gal(E[H,H]/EH)],

which maps Jr
E/F to Jr

E[H,H]/EH by Proposition 3.3 and Proposition 3.6 so that

Jr
E/F ⊆ (B∗

G)−1
( ⊕

H⊆G

Jr
E[H,H]/EH

)
.

On the other hand, the G-component of B∗
G is the identity map from Q[G] to itself.

Therefore if z ∈ Q[G]rJr
E/F , then B∗

G(z) 6∈ ⊕
H⊆G Jr

E[H,H]/EH , as required.
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Proposition 5.3 Suppose that F ⊆ K ⊆ L is a tower of finite extensions of num-

ber fields with L/F and K/F Galois. Then, for r = 0,−1,−2,−3, . . . , the canonical

homomorphism

πL/K : Q{Gal(L/F)} → Q{Gal(K/F)}
satisfies πL/K (Jr

E/F) ⊆ Jr
K/F .

Proof This follows immediately from Proposition 3.3, Lemmas 4.1 and 5.2, and Def-

inition 5.1.

Definition 5.4 Let F be a number field and L/F a (possibly infinite) Galois exten-

sion with Galois group G = Gal(L/F). For r = 0,−1,−2,−3, . . . , define Jr
E/F to be

the abelian group

Jr
E/F = lim

←H
Jr

LH/F,

where H runs through the open normal subgroups of G.

6 Jr
E/F and the Annihilation of H2

ét(Spec(OL,S), Zℓ(1 − r))

6.1 A Conjecture

Let ℓ be an odd prime. We continue to assume the Stark conjecture as stated in §2.2

for r = 0,−1,−2,−3, . . . . Replacing Q by Qℓ in §3.1 and Definition 5.1 we may

associate a finitely generated Zℓ-submodule of Qℓ{Gal(E/F)}, again denoted by Jr
E/F ,

to any finite extension E/F of number fields.

In this section we are going to explain a conjectural procedure to pass from Jr
E/F

to the construction of elements in the annihilator ideal of the étale cohomology of

the ring of S-integers of E,

annZℓ[G(E/F)]

(
H2

ét(Spec(OE,S(E)), Zℓ(1 − r))
)
,

where S denotes a finite set of primes of F including all archimedean primes and all

finite primes that ramify in E/F, and S(E) denotes all the primes of E over those in S.

This conjectural procedure was first described in [33, Thm. 8.1].

We shall restrict ourselves to the case when r = −1,−2,−3, . . . . In several ways,

this is a simplification of the case when r = 0. In this case, H1
ét(Spec(OE,S(E)),

Zℓ(1 − r)) is independent of S(E), while it is related to the group of S(E)-units when

r = 0. Also, when r ≤ −1, H2
ét(Spec(OE,S(E)), Zℓ(1 − r)) is a subgroup of the cor-

responding cohomology group when S(E) is enlarged to S ′(E), but when r = 0, the

class-group of OE,S ′(E) is a quotient of that of OE,S(E). Furthermore (see [5], [35]),

there are subtleties concerning whether or not to use the S-modified L-function in

Section 2 when r = 0, while for r ≤ −1 this is immaterial.

When r = 0, the annihilator procedure is similar to the other cases, but the addi-

tional complications have prompted us to omit this case.

Write G = Gal(E/F), and for each subgroup H = Gal(E/EH) ⊆ G, let S(EH)

denote the set of primes of EH above those of S. Then Hab
= Gal(E[H,H]/EH), where

[H, H] denotes the commutator subgroup of H. The following conjecture originated

in [30, 32, 33].
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Conjecture 6.1 In the notation of §6.1, when r = −1,−2,−3, . . . , we have

(i) Integrality:

Jr
E[H,H]/EH · annZℓ[Hab](TorsH1

ét(Spec(OE[H,H],S), Zℓ(1 − r))) ⊆ Zℓ[Hab],

(ii) Annihilation:

lJr
E[H,H]/EH · annZℓ[Hab](TorsH1

ét(Spec(OE[H,H],S), Zℓ(1 − r)))

⊆ annZℓ[Hab](H2
ét(Spec(OE[H,H],S), Zℓ(1 − r))).

(We have adopted the shorthand: OE[H,H],S = OE[H,H],S(E[H,H]).)

6.2 Evidence

Conjecture 6.1(i) is analogous to the Stickelberger integrality, which is described in

[33, §2.2]. Stickelberger integrality was proven in certain totally real cases in [8,9,14,

20] for r = 0. In general, when r = 0, it is part of the Brumer conjecture [4]. The

novelty of Conjecture 6.1(ii), when it was introduced in [32, 33], was the annihilator

prediction when the L-function vanishes at s = r. For the part of the fractional ideal

corresponding to characters whose L-functions are non-zero at s = r, generated by

the higher Stickelberger element at s = r, (ii) is the conjecture of [12].

Let us consider the cyclotomic example Jr
L/Q

(r < 0) when L = Q(ζ) for some

root of unity ζ , and suppose ℓ is an odd prime dividing the order of ζ . In this case,

Jr
L/Q

splits into plus and minus parts for complex conjugation, i.e.,

Jr
L/Q

= er
+Jr

L/Q
⊕ er

−Jr
L/Q

,

where er
+ =

1
2
(1 + (−1)rc), er

− =
1
2
(1 − (−1)rc), and c ∈ G = Gal(L/Q) is complex

conjugation. By the proof of [33, Thm. 6.1], er
−Jr

L/Q
is generated by the Stickelberger

element θL/Q,S(r) defined in terms of L-function values at s = r. However, by [14],

annZℓ[G](Tors(H1
ét(Spec OL,S, Zℓ(1 − r))))θL/Q,S(r) ⊆ Zℓ[G].

Further, the proof of [33, Thm. 7.6] shows that er
+Jr

L/Q
⊆ Zℓ[G]. In fact, [33,

Thm. 6.1] also shows that Conjecture 6.1(ii) holds in this case (with E = Q and

H = G), the intersection “
⋂

Zℓ[G]” found in the statement of that theorem being

unnecessary.

Turning now to the case r = 0, with the field En as in §3.2, we have a similar sce-

nario for J(En/Q, S), where S = {∞, ℓ}. Indeed, we see from (3.1) that J(En/Q, S)

again splits into plus and minus parts, with the minus part being generated by the

Stickelberger element θEn/Q,S defined at s = 0. Stickelberger’s theorem then implies

that

annZℓ[Gn](µ(En))e−J(En/Q, S) ⊆ Zℓ[Gn],

and e+J(En/Q, S) is already in Zℓ[Gn]. The roles of the plus and minus parts of

J(En/Q, S) will become clear in §6.2.1 below.
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6.2.1 An Iwasawa-Theoretic Example

Equation (3.1) can be used to provide an example of the relationship of J(En/Q, S) to

Iwasawa theory, with an inverse limit of the J(En/Q, S) over n giving rise, in a suitable

way, to Fitting ideals of both the plus and minus parts of an inverse limit of class-

groups (Proposition 6.2). Given n ≥ 0, let Q(n)/Q be the degree ℓn subextension of

the (unique) Zℓ-extension Q(∞) of Q . We then have the field diagram

En

∆n

||
||

||
||

Γn

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

Q(n)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

E0

∆~~
~~

~~
~

Q

in which Q(n) ∩ E0 = Q and Q(n)E0 = En, so that the Galois group Gn = Gal(En/Q)

is the internal direct product of ∆n and Γn. S will denote the set of places {∞, ℓ}
of Q .

By virtue of the natural isomorphism ∆n → ∆, characters of ∆n correspond to

characters of ∆. If δ ∈ ∆̂, we let δn denote the corresponding character in ∆̂n. Now,

since Gn is the direct product of Γn and ∆n, we can view the group-ring C[Gn] as

C[Γn][∆n]. Indeed, the isomorphism C[Gn] → C[Γn][∆n] is given by extending

linearly over C the map sending an element in Gn to the corresponding product of

elements in Γn and ∆n. In doing this, we can define a projection πn(δ) : C[Gn] →
C[Γn] by extending δn linearly over C[Γn].

Finally, fix an isomorphism ν : Cℓ → C and let ω : ∆ → C× be the composition

of the Teichmüller character ∆ → C
×
ℓ with ν : C

×
ℓ → C×. Then, given δ ∈ ∆̂, δ∗

will denote ωδ−1. Observe that since ω is odd, δ is even if and only if δ∗ is odd.

Proposition 6.2 Let Cl∞ = lim←n Cl(En) ⊗Z Zℓ, and let δ ∈ ∆̂. (δ may be even or

odd.) Then

FittZℓ[[Γ∞]](eδ∗Cl∞) =





lim
←n

Zℓπn(δ∗)(J(En/Q, S)) if δ 6= 1,

lim
←n

Zℓπn(δ∗)((1 − (1 + ℓ)σ−1
n )J(En/Q, S)) if δ = 1,

where σn = (1 + ℓ, En/Q).

Proof This stems from (3.1), which we reproduce for convenience:

J(En/Q, S) =
1
2
e+ annZ[Gn](O

×
E+

n ,S/E+
n ) ⊕ Z[Gn]θEn/Q,S.
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Let us deal with even characters δ ∈ ∆̂ first. For simplicity, we will assume that

δ 6= 1, though in fact the case δ = 1 is similar. Equation (3.1) tells us that for

each n ≥ 0, Zℓπn(δ∗)(J(En/Q, S)) = Zℓ[Γn]πn(δ∗)(θEn/Q,S). However, Iwasawa’s

construction of ℓ-adic L-functions (see [19] and [39, Chpt. 7]) shows that this lies in

Zℓ[Γn] and that the inverse limit of these ideals is generated by the algebraic ℓ-adic

L-function corresponding to the even character δ. Mazur and Wiles’ proof (see [23])

of the Main Conjecture of Iwasawa theory, and later Wiles’ generalization of this (see

[40]), show that this in turn is equal to the Fitting ideal appearing in the statement of

the proposition.

Now we turn to odd characters δ ∈ ∆̂. Referring to (3.1) again, we find that

Zℓπn(δ∗)(J(En/Q, S)) = πn(δ∗)(FittZℓ[Gn]((O×
E+

n ,S/E+
n ) ⊗Z Zℓ)).

This uses that (O×
E+

n ,S/E+
n ) ⊗Z Zℓ is cocyclic as a Zℓ[Gn]-module so that, since Gn is

cyclic, the Fitting and annihilator ideals of (O×
E+

n ,S/E+
n ) ⊗Z Zℓ agree. [13, Thm. 1] says

in particular that this Fitting ideal is equal to that of Cl(E+
n ) ⊗Z Zℓ. Combining the

above and passing to limits completes the proof.

We observe the importance here of taking leading coefficients of L-functions at

s = 0 rather than just values. For δ even (i.e., δ∗ odd), πn(δ∗)(J(En/Q, S)) concerns

L-functions which are non-zero at 0, and we get the usual Stickelberger elements

which are related to minus parts of class-groups via ℓ-adic L-functions. However,

when δ is odd (i.e., δ∗ is even), πn(δ∗)(J(En/Q, S)) is concerned with L-functions

having simple zeroes at 0, which are related to plus parts of class-groups via cyclo-

tomic units.

7 Jr
E/F and Annihilation

Let ℓ be an odd prime. Given α ∈ Jr
E/F and H ⊆ G = Gal(E/F), choose any

β ∈ annZℓ[Hab]

(
TorsH1

ét(Spec(OE[H,H],S), Zℓ(1 − r))
)
.

Then the H-component B∗
G(α)H lies in Qℓ[Hab]NGH , the fixed points under the con-

jugation action by NGH, the normalizer of H in G. Assuming Conjecture 6.1(i),

B∗
G(α)H · β ∈ Zℓ[Hab]NGH . Choose zH,α,β ∈ Zℓ[H] such that

π(zH,α,β) = B∗
G(α)H · β.

Consider the composition

H2
ét(Spec(OE,S(E)), Zℓ(1 − r))

Tr
E/E[H,H]

→ H2
ét(Spec(OE[H,H],S), Zℓ(1 − r))

B∗

G (α)H ·β→ H2
ét(Spec(OE[H,H],S), Zℓ(1 − r))

j→ H2
ét(Spec(OE,S(E)), Zℓ(1 − r))

in which j is induced by the inclusion of fields and TrE/E[H,H] denotes the transfer

homomorphism.
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Assuming Conjecture 6.1(ii), this composition is zero. However, by Frobenius

reciprocity for the cohomology transfer, for all a ∈ H2
ét(Spec(OE,S(E)), Zℓ(1 − r))

0 = j(π(zH,α,β)TrE/E[H,H] (a)) = j · TrE/E[H,H] (zH,α,β · a)

=

( ∑

h∈Gal(E/E[H,H])

h
)

zH,α,β · a.

Definition 7.1 In the situation of §6.1 and Section 7, let I(E/F, r) ⊆ Zℓ[G] denote

the left ideal generated by the elements (
∑

h∈Gal(E/E[H,H]) h)zH,α,β as α, H, and β vary

through all the possibilities above.

Theorem 7.2 If Conjecture 6.1 is true for all abelian intermediate extensions

E[H,H]/EH of E/F, then the left action of the left ideal I(E/F, r) annihilates

H2
ét(Spec(OE,S(E)), Zℓ(1 − r)).

Remark If G is abelian in Definition 7.1 and Theorem 7.2, then

I(E/F, r) = Jr
E/F · annZℓ[G](TorsH1

ét(Spec(OE,S(E)), Zℓ(1 − r))).

That is, I(E/F, r) equals the left hand side of Conjecture 6.1(ii).

Proposition 7.3 In Definition 7.1, I(E/F, r) is a two-sided ideal in Zℓ[G].

Proof In the notation of Section 7, it suffices to show that

w
( ∑

h∈Gal(E/E[H,H])

h
)

zH,α,βw−1

lies in I(E/F, r). Consider

w
( ∑

h∈Gal(E,E[H,H])

h
)

w−1
=

∑

h∈Gal(E/E[wHw−1 ,wHw−1])

h

and wzH,α,βw−1. Since zH,α,β lies in Zℓ[H] and maps to B∗
G(α)β in Zℓ[Hab], we see

that wzH,α,βw−1 lies in Zℓ[wHw−1] and maps to wB∗
G(α)Hw−1wβw−1 in Zℓ[Hab].

However, wB∗
G(α)Hw−1

= B∗
G(α)wHw−1 and wβw−1 lies in

annZℓ[(wHw−1)ab](TorsH1
ét(Spec(O

E[wHw−1 ,wHw−1],S), Zℓ(1 − r))),

completing the proof.

Proposition 7.4 Suppose that F ⊆ K ⊆ E is a tower of number fields with E/F and

K/F Galois. Then for r = −1,−2,−3, . . ., the canonical homomorphism

πE/K : Zℓ[Gal(E/F)] → Zℓ[Gal(K/F)]

satisfies

πE/K (I(E/F, r)) ⊆ I(K/F, r).

Proof This follows easily from Lemma 4.1 and Propositions 5.3 and 7.3.
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8 Relation to Iwasawa theory

As discussed in the Introduction, the motivation for examining the behaviour of the

fractional Galois ideal under changes of extension is to facilitate investigating a possi-

ble role in Iwasawa theory. Via the relationship of the fractional ideal with Stark-type

elements (e.g., cyclotomic units in the case r = 0 and Beilinson elements in the case

r < 0, discussed in [5] and [32] resp.), one might hope that an approach involving

Euler systems would be fruitful here. A general connection of the fractional Galois

ideal to Stark elements of arbitrary rank was demonstrated in [6], and the link of

Stark elements with class-groups using the theory of Euler systems was discussed in

[24, 28], so that a strategy as above seems promising.

We conclude the paper with some speculation concerning what the non-commu-

tative Iwasawa theory of Fukaya–Kato [15], Kato (unpublished), and Ritter–Weiss

[26] suggests about Jr
E/F of Definition 5.4 and I(E/F, r) of Definition 7.1.

It is worth pointing out, before we begin the recapitulation proper, that [15, 26]

often restrict to the situation where the extension fields are totally real, which tends

to involve only one of the eigenspaces of complex conjugation acting on Jr
E/F and

I(E/F, r). We have tried to give some examples (for example, §6.2.1) which illustrate

the expected role and properties of the other eigenspace.

Further, in this area there is an immense litany of conjectures (see [7,15]) of which

Stark’s conjecture is approximately the weakest. All the constructions we have made

are contingent only on the truth of Stark’s conjecture, which is crucial for us but also

seems fundamental; it is assumed, for example, in [27].

Let ℓ be an odd prime (denoted p there), F a totally real number field, and F∞ a

totally real Lie extension of F containing Q(ζℓ∞)+. Here, Q(ζℓ∞)+ is the union of the

totally real fields Q(ζℓn )+
= Q(ζℓn + ζ−1

ℓn ) over all n ≥ 1. Let G = Gal(F∞/F), and

assume that only finitely many primes of F ramify in F∞. Fix a finite set Σ of primes

of F containing the ones which ramify in F∞/F. Define Λ(G) to be the Iwasawa

algebra of G, given by Λ(G) = Zℓ[[G]] = lim←U Zℓ[G/U ], where the limit runs over

all open normal subgroups of G.

Let C denote the cochain complex of Λ(G)-modules given by

RHom(RΓét(OF∞
[1/Σ], Qℓ/Zℓ), Qℓ/Zℓ),

so that H0(C) = Zℓ with trivial G-action and H−1(C) = Gal(M/F∞), the Galois

group of the maximal pro-ℓ abelian extension of F∞ unramified outside Σ. The other

Hi(C)’s are zero and Gal(M/F∞) is a finitely generated torsion (left) Λ(G)-module.

Let Fcyc ⊆ F∞ denote the cyclotomic Zℓ-extension and set H = Gal(F∞/Fcyc) ⊆ G

so that G/H ∼= Zℓ. As in [11], let

S = { f ∈ Λ(G) | Λ(G)/Λ(G) f is finitely generated as a Λ(H)-module}.

Then S is an Ore set, which means that its elements may be inverted to form the lo-

calized ring Λ(G)S, and there is an exact localization sequence of algebraic K-groups

K1(Λ(G)) → K1(Λ(G)S)
∂→ K0(Λ(G),Λ(G)S) → K0(Λ(G)) → K0(Λ(G)S).

https://doi.org/10.4153/CJM-2010-054-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-054-1


1034 P. Buckingham and V. Snaith

By [17], Iwasawa’s conjecture concerning the vanishing of the µ-invariant implies

that the cohomology of the perfect complex C vanishes when S-localized. This gives

rise to a class [C] ∈ K0(Λ(G),Λ(G)S). In the case of finite Galois extensions the class

[C] accounts for the Stickelberger phenomena (c.f. [33]), but, on the other hand, so

do values of Artin L-functions. The main conjecture of non-commutative Iwasawa

theory, described below following Kato (unpublished), makes this relation clear in

terms of Λ(G)S-modules.

There is an ℓ-adic determinantal valuation that assigns to f ∈ K1(Λ(G)S) and a

continuous Artin representation ρ a value f (ρ) ∈ Qℓ∪{∞}. The main conjecture of

non-commutative Iwasawa theory asserts that there exists ξ ∈ K1(Λ(G)S) such that

(i) ∂(ξ) = −[C] and (ii) ξ(ρκr) = LΣ(1 − r, ρ) for any even r ≥ 2, where κ is the

ℓ-adic cyclotomic character and LΣ(s, ρ) is the Artin L-function of ρ with the Euler

factors at Σ removed.

The main conjecture of Iwasawa theory was formulated in [27] and studied in

the series of papers [26] when the Lie group G has rank zero or one. The case of

G = GL2(Zℓ) is of particular interest in the study of elliptic curves E/Q without

complex multiplication [11] and was proven for the ℓ-adic Heisenberg group by Kato

(unpublished). For a comprehensive survey, see [15].

Motivated by the main conjecture of Iwasawa theory, and more generally by the

role of Λ(G) in the arithmetic geometry of elliptic curves and their Selmer groups,

there has been considerable ring-theoretic activity concerning Λ(G) and Ω(G) =

Λ(G)/ℓΛ(G) (see [1–3, 36–38]). The rings Λ(G) and Ω(G) are examples of “just-

infinite rings” which both satisfy the Auslander–Gorenstein condition and are thus

amenable to Lie theoretic analysis.

In the survey article [1], a number of questions are posed. In particular, the con-

structions of Section 7 are directly related to [1, Question G]: “Is there a mechanism

for constructing ideals of Iwasawa algebras which involves neither central elements

nor closed normal subgroups?”

Proposition 8.1 If F∞/F is any ℓ-adic Lie extension of a number field F with Galois

group G, then, under the assumption of Section 7 for the finite intermediate subexten-

sions E/F for r = −1,−2,−3, ldots, we may define a two-sided ideal

I(F∞/F, r) = lim
←E

I(E/F, r)

in Λ(G), where the limit is taken over finite Galois subextensions E/F of F∞/F.

In view of the annihilation discussion in Section 7, Proposition 8.1 suggests the

following.

Question 8.2 What is the intersection of the canonical Ore set S of [11] with

I(F∞/F, r)?

In many ways the most interesting case is when G = GL2(Zℓ) (ℓ ≥ 7), arising

from the tower of ℓ-primary torsion points on an elliptic curve over Q without com-

plex multiplication [10, 11]. In this case, one has particularly strong information

concerning two-sided primes ideals of Λ(G), see [3]. An alternative approach to the
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construction of fractional Galois ideals in Qℓ[Gal(K/Q)] is possible based on assum-

ing that a type of Stark conjecture holds for the Hasse–Weil L-function of the elliptic

curve [34]. It would be interesting to know whether this leads to the same two-sided

ideal as in Proposition 8.1.
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