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A COMPACTIFICATION FOR CONVERGENCE
ORDERED SPACES

BY
D. C. KENT AND G. D. RICHARDSON

ABSTRACT. Compactifications are constructed for convergence
ordered spaces and topological ordered spaces with extension prop-
erties that resemble those of the Stone-Cech compactification.

0. Introduction. One of the authors [4] introduced a convergence space
compactification with an extension property similar to that of the topological
Stone-Cech compactification. We later showed in [2] that the compactification
of [4] gives rise to a topological compactification with an interesting lifting
property.

This work is concerned with convergence ordered spaces, a natural generali-
zation of the topological ordered spaces of Nachbin [3]. By ‘“‘convergence
ordered space” we mean a partially ordered set with a convergence structure
generated by filters which have bases of convex sets. A preliminary section
gives a brief introduction to such spaces.

In Section 2, a convergence ordered compactification is constructed for an
arbitrary convergence ordered space by defining an appropriate partial order
on a class of filters and using a “Wallman-type’’ construction similar to that of
[4]. The extension properties of this compactification are examined in Section
3; in addition to generalizing the extension results of [4], conditions are found
subject to which ours is the largest convergence ordered compactification. The
last section applies the results of the preceding sections to obtain a topological
ordered compactification with similar lifting properties.

Choe and Park [1] have constructed a Wallman ordered compactification for
the topological setting. It is shown, under certain assumptions, that our
topological ordered compactification is larger than that by Choe and Park.

1. Preliminaries. Let (X, <) be a partially ordered set (or poset) equipped
with a convergence structure. A convergence structure on X is a relation —
between the set F(X) of all filters on X and X which satisfies the following
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conditions:
(C,) For each xe X, x — x, where x denotes the fixed ultrafilter generated
by {x}.

(Cy) If F—>x and F< G, then & — x.

(C;) If — x, then FNx— x.

Starting with A € X, let /(A)={xe X: for some ac A, e<x}, and d(A)=
{x € X :for some ac A, x<a}. If A ={a}, we shall write ((a) and £(a) in place
of /(&) and d({a}). If A =/(A) (respectively, A =d(A)), then A is called an
increasing (respectively, decreasing) set. For any A € X, let A”=/(A)Nd(A);
if A=A", then A is said to be a convex set. For ¥ € F(X), %" denotes the filter
generated by {F":Fe@}; if §=%", then § is called a convex filter.

By a convergence ordered space (abbreviated c.0.s.), we shall mean a poset
(X, =) along with a convergence structure — on X that satisfies the condition:
%" — x whenever § — x. We shall commonly refer to a convergence ordered
space (X, =, —) simply as X.

In working with a c.0.s. X, we shall make use of two “order relations” on
F(X). The first is set inclusion: F<® means “® is finer than §’ or “® is
coarser than &.” By &v &, we shall always mean the least upper bound (if it
exists) of % and & relative to inclusion; in other words, ¥v® is the filter
generated by {FNG:Fe®, G € ®}, assuming all such intersections are non-
empty. A second order relation (actually a preorder relation) on F(X) is
defined as follows: F=G iff (F) =S and L(S)<F, where (F) is the filter
generated by {/(F):Fe®} and 4(¥) is defined dually. The relation “<” is
always reflexive and transitive, and is antisymmetric when restricted to convex
filters.

Let F~(X) be the set of all convex filters on X. Both of the relations < and <
are partial orders of F"(X). The maximal elements of F"(X) relative to the
relation < will be called maximal convex filters; these obviously include the
fixed ultrafilters. The set of all non-convergent, maximal convex filters on a
c.0.s. X will be denoted by X'. A useful characterization of maximal convex
filters is given by the first proposition.

ProposiTion 1.1. A filter € F~(X) is maximal iff, whenever A and B are
convex sets and AUBc®, either AcE or BeR.

Proof. If ¥ is a maximal convex filter, the condition is easily proved by
considering the traces of % on A and B. Conversely, if & is not maximal, then
there is a convex set G not belonging to &% such that & has a trace on G. Since
G =/G)Nd(G), either «(G) or 4(G) is not in F. If /(G)¢ K, then it is also
true that X—4(G)¢ & (since § has a trace on «(G)). If A=/G) and B=
X —4(G), then A and B are convex sets and A UB €, but neither A nor B is
in% O

We next consider some separation axioms. A convergence space X is said to
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be T, if each singleton set is closed, and T, if each convergent filter has a
unique limit. X is regular if cly& — x whenever § — x (where cly denotes the
closure operator); a regular T, space is called a T space. If X is a convergence
ordered space, then X is said to be T;-ordered if ;(x) and #(x) are closed sets
for each x € X. If x <y whenever § — x, & — y, and F=@O, then X is defined
to be T,-ordered. Clearly a T;-ordered c.o.s. is T; and a T,-ordered c.o.s. is
T,. Alternate characterizations of a T,-ordered c.o.s. are given in the next
proposition.

ProrosiTioN 1.2. For a c.o.s. X, the following statements are equivalent.

(1) X is Ty-ordered.

(2) The set R={(x,y):x=y} is a closed subset of the product space X X X.
B)IF—>x, &>y and (FXG)NR# D for all FeF, Ge®, then x=<y.

An additional separation property will be needed for what follows. A c.o.s.
X satisfies condition S if the following hold:

S) If F—x, e X', and =G, then () < x.

Sy I F—x, e X', and E=<F, then (&) < x.

a T, (respectively, T,) c.o.s. X which satisfies condition S is said to be strongly
T,-ordered (respectively, strongly T,-ordered).

A function f from a poset X into a poset Y is increasing if f(x)=f(y)
whenever x<vy. If X and Y are convergence ordered spaces, f an order
isomorphism and homeomorphic embedding, Y compact, and f(X) dense in Y,
then (Y, f) will be called a convergence ordered compactification of X.

2. The compactification. Throughout this section, X is assumed to be a
convergence ordered space. Let X*={x :x € X}U X', and define a partial order
=* on X* as follows: =@ iff =<, where the relation ‘“<” between filters
is defined in Section 1. Since the elements of X™* are all maximal convex filters,
the relation =* can be described in several equivalent ways.

ProposiTION 2.1. for %, & in X*, the following statements are equivalent:

(1) F=6G; (2) (B <G; 3) 4(®)=F; (4) (F) vd(®) exists.

The natural map ¢ : X — X*, defined by ¢(x) =x for all x € X, is one-to-one
and increasing.

If Ac X, define A*={Fec X*: A eF}; if e F(X), let F* be the filter on X*
generated by {F*: Fe &}. Observe that A*| ¢(X)=¢(A) and ¢ "} (A% =A. It
is easy to see that A*=B* iff A=B.

In the next proposition, the first inequality is trivial, and the second follows
directly from Proposition 1.1.

ProrosiTioN 2.2. If A and B are convex subsets of X, then (ANB)*=
A*NB* and (AUB)*=A*UB*.
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In X*, the increasing and decreasing set operators will be denoted by * and
d*, respectively. We omit the straightforward proof of the next proposition.

ProposiTION 2.3. (a) For any subset A of X, ¢*(A*) < (A)* and d*(A*) <
(d(A)*. (b) If A is a convex subset of X, then A* is a convex subset of X*.

Having established some basic properties of the poset (X* =*), we next
define a convergence structure => on X* as follows:

oA 5 % e dp(X) iff there is F— x such that F*< oA,
A GeX iff §Fco.

The verification that = is a convergence structure is easy and will be omitted.
Proposition 2.3(b) can be applied to show that X* is c.o.s.

If o is an ultrafilter on X*, let %, be the filter on X generated by all convex
sets A such that A*e of. If of, B are two arbitrary filters on X*, we shall use
the notation & <*% to mean H(A4) =B and L*(B) = A.

Lemma 2.4. (a) If o is an ultrafilter on X*, then ., is a maximal convex
filter on X.
(b) If A <*RB in F(X¥), then Fy=xg in F(X).

Proof. (a) If A and B are convex sets such that AUBe®,, then by
Proposition 2.2, A*U B* e &, and so one of these is in &, which implies that A
or B is in §,. Thus ¥, is maximal convex by Proposition 1.1.

(b) If AeRy then A¥eof and F(A¥)eB.

By Proposition 2.3(a), (<(A))*e %, which implies ((A)e F5. The proof that
ABa) S Fy is similar. O

THEOREM 2.5. If X is any convergence ordered space, then (X*, ) is a
convergence ordered compactification of X.

Proof. We have already observed that X™ is a c.o.s. and that ¢ is an order
isomorphism. From the definition of <> and the fact that ¢ () = & for any
¥ e F(X), it follows easily that ¢ : X — X* is a homeomorphism. Each filter of
the form &*, where % € F(X), has a trace on ¢(X), and this implies that ¢(X)
is dense in X*.

To show that X™* is compact, consider an ultrafilter & on X*. Then &% < A,
and %, is maximal convex by Lemma 2.4. If ¥, — x in X, then o -5x; if
Xa€X', then A5F,. O

The next three propositions concern separation properties of the compactifi-
cation space; we omit the straightforward proofs of the first two.

ProOPOSITION 2.6. X* is T, (respectively, T,) iff X is T, (respectively, T5).

ProposITION 2.7. If X is strongly T,-ordered, then X* is Ty-ordered.
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PrOPOSITION 2.8. X* is T,-ordered iff X is strongly T,-ordered.

Proof. Assume X is strongly T,-ordered, and let 45> B5G, and
A<*R. If § and & are both in X', then F*c o, E*<RB, and if FeF and
G e@®, then #(F*)NG* # . Using Proposition 2.3(a), we deduce that F<®
in F(X) or, equivalently,  =*® in X*. If =% and & =y, then F, — x and
Fs —y in X; by Lemma 2.4(b), F,=<FKa, and since X is T,-ordered, x <y,
which implies x =* y. For the last case, assume & = x and &€ X'. Then F,; — x
and F4 = ©, which implies F, <@ ; the desired conclusion, x =* &, follows by
condition S.

Conversely, let X* be T,-ordered. Since this property is hereditary, X is also
T,-ordered, and so it remains only to verify that X satisfies condition S. Let
% — x and F<G, where & € X". Since F*5x, * 5@, and X* is T,-ordered,
we must have x =*@®, which implies /(&)< x. O

3. Lifting properties.

ProposiTiON 3.1. Let X and Y be posets, and let f: X — Y be an increasing
function.

(@) If =G in F(X), then f(F) < f(®) in F(Y).

(b) If ¥ is a maximal convex filter on X, then f(%)" is a maximal convex filter
onY.

Let f: X — Y be a continuous, increasing function, where X and Y are
convergence ordered spaces and Y is compact and T,-ordered. If ¥ is a
maximal convex filter on Y, then # necessarily converges to a unique limit;
converges because it can be expressed in the form # = %" for some ultrafilter
# on Y, and the uniqueness of the limit is a consequence of Y being T,. It
follows by Proposition 3.1(b) that, for each & e X*, f(F)" converges to a unique
element of Y which we denote by yg. Let f,: X™— Y be defined by f.(¥) = yx
for all ¥ X*. In case & = x, note that fy(%) =f(x), and so f, is an extension of
f to X*.

ProrposiTioN 3.2. Let X, Y, and f conform to the assumptions of the preceding
paragraph. Then f,:X*— Y is an increasing function. Furthermore, if A is a
subset of X, then f(A*) < clyf(A).

Proof. Let F<"® in X™. By Proposition 3.1, f(F) <f(®) in Y, and yz=yg
since Y is T,-ordered. Thus f is increasing.

Let yef (A®). If y=f.(x), then f(x)=1y, and yef(A). If y=1.(®) for
Fe X', then A e and f(A) € f(F). But f(F) — yin Y, and so yeclyf(A). O

TueoreM 3.3. If X is a c.o.s., Y a compact, regular, T,-ordered c.o.s., and

f:X — Y a continuous, increasing function, then there is a unique, continuous,
increasing extension f,: X*—Y.
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Proof. It remains only to verify that f, is continuous. Let > in X*. If
¥ =x%, then there is & —>x in X such that &*c . By continuity of f,
f(®)— f.(x)=f(x), and by Proposition 3.2, clyf(®)<f.(G*). Since Y is
regular, clyf(®) — f(x),and consequently f () — f£(F) = f(x).Incase Fe X', we
have F* = o, f(F) = yx=F+(&) in Y, and cl,f(F) — yx as well. Again applying
Proposition 3.2, clyf(R¥) < f(F*) < f.(f), and thus f.(f) — f.(&). O

The preceding theorem shows that, whenever X* is regular and T,-ordered,
(X™*, ¢) is the largest such compactification of X. Unfortunately, X* is very
rarely T;. It is, however, “relatively-T5,”” and we shall show that relative to this
weaker property, (X*, ¢) is the largest convergence ordered compactification
of X if X is also strongly T,-ordered.

If (Y,f) is a T, compactification of a space X, and AcCY, let py(A)=
A U{(clyA)—f(X)}. If o is a filter on Y, let py () be the filter generated by
{py(A): A e} A T, compactification (Y, f) of X is relatively-T5 if p(f) —y
whenever & —y in Y.

Lemma 3.4. If X is a c.o.s. and A a convex subset of X, then cly«(A*) =
cly=p(A) = d(clx(A)UA', where A'=A*NX.

Proof. It is clear that ¢(clxA)UA' S cly=dp(A) < clx=A*. Let & e cly=A™*.
Since A*=¢p(A)UA’, cly+A* = cly=p(A) U cly=A’.

Case 1. & ecly«p(A). There is o> such that ¢(A)e sf, which implies
A =¢(H) for some # in F(X), where Ac¥. If &=x, then ¥ — x, and
therefore x € ¢(clx(A)). If e X', then &*< o, implying B<H and Ac®
(since A is convex and & is a maximal convex filter). Thus & e A’.

Case 2. & ecly-A’. There is an ultrafilter & 25> such that A’ e of. If & =x
there is a maximal convex filter # —x in X such that #*<«. Thus
A'NH' # & for all He ¥, and it follows that A € #. Hence x e clxA, and
xed(clyA). If &€ X', then we can again conclude that A € ®, and thus that
GeA'. O

For the compactification (X*, ¢) of a T, c.o.s. X, we shall write p* in place of
px+ for the “partial closure operator” defined above. If A < X is convex, then
Lemma 3.4 implies that p*(A*) = A*U{clx+A*— dp(X)} = A¥UA’'= A*, Thus
for every convex filter ¥ on X, p*(F*) = &*; since filters of this type form a
base for the convergence structure of X* we have established the following
results.

CoOROLLARY 3.5. If X is a T, c.o.s., then (X*, ¢) is a relatively-T5 compactifi-
cation of X.
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If (Y, f) and (Z, g) are T, convergence ordered compactification of a c.o.s.
X, we shall, following usual conventions, say that (Y, f)=<(Z, g) if there is a
continuous, increasing function h:Z — Y such that hog=f.

THEOREM 3.6. If X is a T, c.o.s. and (Y, f) is a T,-ordered, relatively T,
convergence ordered compactification of X, then (Y, f)=(X*, ¢).

Proof. Let f, : X* — Y be defined as in the paragraph preceding Proposition
3.2. By the latter proposition, f, is increasing. We next assert that, for A = X,
f(AF)YS pyf(A). For if yef(A*) and y =f.(x), then xe A and yef(A). If
Vo =f+(®), for e A’, then yge cly(f(A))—f(X) = pyf(A); for otherwise &
would converge to f'(yg) in X, contradicting the assumption e A’.

We now know that py(f(®)) < f.(&F*) for each Fe F(X). The proof that f, is
continuous can be completed by following the steps in the proof of Theorem

3.3, replacing “clyf(®)” by “pyf(&).” O

CoroLLARY 3.7. If X is a strongly-T, c.o.s., then (X*, ¢) is the largest
relatively-T;, convergence ordered compactification of X.

4. A topological ordered compactification. In [2], we showed that the con-
vergence space compactification of [4] gives rise to a topological compactifica-
tion with interesting properties. A similar procedure is used here to construct a
topological ordered compactification of an arbitrary topological ordered space.

If (X, =, 7) is a poset equipped with a topology 7 with the property that open
monotone members of 7 form a subbase for 7, then the resulting space X will
be called a topological ordered space (abbreviated t.0.s.). Since any topological
ordered space has an open base of convex sets, such a space is a special case of
a c.o.s. Furthermore, every c.o.s. gives rise to a t.0.s. in a natural way. If X is a
c.0.s., a subset U is open in X if, whenever & — x in X and x € U, it follows
that Ue@. The set of all open sets forms a topology on X and the resulting
topological space, often denoted by AX, is called the topological modification of
X. For our purposes we consider not AX, but rather the topological space oX,
equipped with the topology whose subbase consists of all open, monotone sets
in X, and also equipped with the same partial order defined on X. In general,
oX has a coarser topology than AX; oX will be called the topological-ordered
modification of a convergence ordered space X. (In the case of the trivial order
relation on X, note that ¢X and AX coincide.)

ProposITION 4.1. If X is a T;-ordered c.o.s., then o X is also T;-ordered.

Proof. Sets of the form «(x) and &(x), for x € X, are closed relative to X.
Their complements are subbasic open sets in oX, and consequently ¢(x) and
d(x) are also closed in oX. O
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ProrosiTiON 4.2. If X and Y are convergence ordered spaces and f: X — Y is
continuous and increasing, then f: 0 X — oY is also continuous and increasing.

Proof. The inverse image of an open, monotone set under a continuous,
increasing function is again an open, monotone set. [

THEOREM 4.3. If X is a c.o.s., then o X™* is a topological-ordered compactifica-
tion of oX. If X is strongly T,-ordered, then o X* is a T,-ordered compactifica-
tion of oX.

Proof. Let Y be the t.o.s. obtained by restricting o X™* to the set ¢(X). Then
¢ :0X — Y is continuous by Proposition 4.2. If A is closed and monotone in
X, then by Lemma 3.4, A* is closed in X*. It is straightforward to verify that
A* is monotone in X* and thus ¢(A) is closed relative to Y. It follows that
¢ :0X — Y is a homeomorphism, and thus ¢X™ is a compactification of oX.
The second assertion follows by Propositions 2.7 and 4.1. O

The corollary is obtained by considering the case X =oX.

CoROLLARY 4.4. Let X be a topological ordered space. Then (ocX*, ) is
topological ordered compactification of X which is Ti-ordered if X is strongly
T,-ordered. If Y is a compact, T,-ordered t.o.s., and f: X — Y is continuous and
increasing, then there is a unique, continuous, increasing extension f,.:oX*— Y.

If X has the trivial order relation, then (6 X*, ¢) is the topological compac-
tification described in [2]. Note that when oX* is T,, this compactification
coincides with the topological Stone Cech compactification. However oX* is
rarely T,; for circumstances under which this occurs, see Theorem 2.5, [2].

The T,-order (T,-order) property is referred to as semi-closed (closed) order
by Choe and Park [1]. It is shown in [1] that a T,-ordered t.0.s. X has an order
compactification (Wy(X), /), where W(X) is a T, topological space, with the
unique extension property of continuous increasing maps from X into T,-
ordered, compact topological spaces. Let X be a t.o.s. such that (W,(X), <) is a
T,-ordered compactification of X. It follows from Corollary 4.4 that there
exists a unique, continuous, increasing extension of i t0 ¢y :0X™* — Wy(X)
such that iyo¢ = ¢. In this sense, (6X*, ¢) is a larger ordered compactification
of X than (Wy(X), ¢).
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