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1. Introductory Remarks

Let g(#) be a regular Hausdorff weight function, and let 4, (y; x,,)
denote the m-th corresponding Hausdorff transform, evaluated at z,,, of
the sequence of partial sums of the Fourier series of y(z), where

p(t) =0, t=0
(1) = Hn—t), 0<t<2n
= y(t+2kx), k=41, £2, 43,

In [3], Szész investigated the Gibbs phenomenon for y(x) for these means.
His main results are contained in the following two theorems:

(2) TueorewM 1. If mz, -1, 0 <1 < 0, as z,, >0 and m — o0, then

1 p7T oy
bl 7,) »ff S0 % sde ().
odo S

(3) THEOREM 2. Taking the limit superior as m — co and x — 0,

sin T

du.

lim sup &,,(y; ) = maxfol {1—g(u)} ”

>0

It this maximum is attained for v = ', then
lim sup 4, (v; z) = lim A, (y; ).
ma, -7’

We will extend these results to the two dimensional case. Let g(x, v)
be a regular Hausdorff weight function, and let 4, ,(¢; #, y) denote the
mn-th corresponding Hausdorff transform of the Fourier series of the
function ¢(z, y), evaluated at (z, y). With ¢(z, y) = y(z)y(y), we prove

1 The author is indebted to Professor A. E. Livingston for suggesting a thesis topic, and

for supervising the preparation of a thesis, of which this paper is a part.
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170 Fred Ustina 2]

(4) TuEOREM 3. If Ay ,(w; ) { R, (w; y)} denotes the mm-th regular Hausdorff
transform of the function w(x) {y(y } corresﬁondmg to the weight function
glu, v), then

o, (3 @) = I (w; @)

P, (95 9) = (w3 )

where h,, ) {ha(w; y)} denotes the m-th {n-th} regular one dimensional
Hausdorff transform corresponding to the weight function g(u, 1) {g(1, v)}.

(5) THEOREM 4. If mx,, — 1,, nYy, — 75, Where 0 < 7, < 0, 1 =1, 2, and
mad, = O(1), ny? = O(1 )asm,n—>oo andxm,yn—>0,then

dsdtd2g(u, v).

"»71 s5in sy sin fv
hm,n((p’ ms yn

(6) THEOREM 5. Taking the limit superior as m, n — o0 and x, y — 0,

g, 1; u, v)dudv

lim sup %, ,(9; x, y) = max

J‘l’l sin 7, % sin T,v
71, Tg>0

00 U v
where

g1, 1w, v) = g(1, 1) —g(1, v) —g(u, 1) +g(u, v).
If this maximum is attained for v, = 1y, T, = 7,, then, taking the limit as
mz,, — 1y and ny, —> T,,

lim sup 4,, ,.(p; z, y) = im &, .(¢; 2., ¥n)-

The extension of Theorems 1 and 2 to the two dimensional case is,
of course, trivial if g(u, v) factorizes: g(u, v) = g,(u)g,(v). We will therefore
consider the case where no such factorization is possible.

Next, we quote the theorem proved in [5].

(7) THEOREM 6. Let f(x,y) be a mormalized function, periodic in each
variable, and of bounded variation in the sense of Hardy-Krause in the period
rectangle. The Gibbs phenomenon for f(x, y) at (0, 0) is the same as the Gibbs
phenomenon for the function

0/ 2,9) = — 2@ ) +& O (@) +80)p )

where

¢ = f(0%, 0F)—f(0%, 07)—f(0, 0+)+/(07, 07)

&) = (10, 9)~/(0~, )} — 5= sgny

ga(x) = ‘71; {fx, 0+)—f(x, 07)} — 507; sgn .
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[31 Gibbs phenomenon 171

Combining this theorem with Theorems 3 and 5, and Theorem 2 due
to Szasz, then yields

(8) THEOREM 7. If f(z, y) is a 2n-periodic function of bounded variation in
the sense of Hardy-Krause, with a discontinuity at the origin, and if h,, ,(f; =, y)
denotes the mn~th regular Hausdor[f transform of the sequence of partial sums
of the Fourier series of [(x, y), relative to the Hausdorff weight function g(u, v),
then, tuking the limit superior as m, n — oo and x, y — 0,

: c Jl»l sin 7y % sin 1,0

lim sup 4,, ,(f; #, ¥y) = max g1, 1; u, v)dudv

rnrs T2J 00 " v
lsin T,

,0) [ 22 (1w, 1))
0
1sin 7,v

0.0 | T2 1—g (1 0)an),
0

where ¢, g,(y) and g,(x) are defined in (7).

(9) Remarks. In general, v, and v, cannot be restricted to positive values
in the statement of Theorem 7. Note also that the apparent restriction of
the statement of Theorems 6 and 7 to the origin is readily removed by a
translation of the axes.

2. Proof of Theorem 3
In the sequel, g(«, v) is a regular Hausdorff weight function satisfying
(10) glw, 0) = g(u, 0%) = g(0,v) = g(0%,v) = 0

so that g(1, 1) = 1. The restrictions on the weight function are adequate
to insure that g(u, 1) and g(1, v) are regular Hausdorff weight functions
in the one dimensional case.

If si(y; x) and s ,(p; 2, y) denote the A-th and kl-th partial sums of
the Fourier series of y(z) and ¢(z, y), then

¥ sin iz
se(p; x) = Z -
(11) =t
11 % gin (k—l-—%)sd
§x+§f0 sin 4s s
and
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kE sindx ! sinjy
S ERIED) 2

=1 1‘ j=1 7

‘ Y sin (k+3)s }

(12) - : '2'x+'§fo sin ls ds
v sin (l-{—?

{ %y f sin gt t}

Then by [4], theorem 5,

hanri ) = 3 (7) (7) suwsn) [ we—srsar1—op-targ(s, o

&, 1=0 ,0

m

= 3 (}) setwi ) f W (1—w)m*dg(w, 1)

k=0
=ha(y;

where we have used the fact that dg(«, 0) = 0. This proves half of Theorem
3. The other half is proved in a similar manner.

3. Some Preliminary Lemmas

In this section we collect a few lemmas which we will use in the proof
of Theorem 4. In the case of Lemmas 1 and 3, the integral [§:3{ }dsd¢ is to be
interpreted in the improper sense in the event that the integrand is not
defined over the entire rectangle [z, y; 0, 0]. The improper integral clearly
exists under the stated hypothesis.

Note, also, that p(z), v(y) and ¢(z, y) are all odd, perlodJc functions
of period 2. It follows that to investigate the Gibbs phenomenon for these
functions, it is sufficient to investigate it in the region 0 =,y =< =n.
We will assume this restriction on the variables z, y in the sequel without
further explicit mention.

(13) DEeFINITION. Let
p1Sin « = #usin s, pyCOSa = 1—u+tucoss
psSin f = wvsin ¢, ps COS = 1—v+4wvcos i,
sothat 0 < p;, po = lfor 0 <wu, v <1, and 0 <s,¢t < a. Then also
pr€* = 1—u-tue*
pee¥ = 1— v+ ve',
(14) LemwMma 1. If g(u, v) is a regular Hausdorff weight function and if
f(m, n; s, t, u, v) = O(s”t9), . 9> —1,
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[5] Gibbs phenomenon 173
uniformly in m, n, u and v, and if | is continuous tn u and v, then

f fvzf m, n; s, t,u, v)dsdtd*g(u, v)

— O(x”“y"“) — O(z”“) — O(y‘”‘l),
mm=1,23,--

ProoF. Lemma. 1 is obvious since 0 < z, y =< = and g(w, v) is of bounded
variation.

(16) LEMMA 2. If g(u, v) is a regular Hausdorff weight function, then
1,1 py,2 s ’
f f pr sin ma cot Py dsdtd?*g(u, v) = O(y), m=1,23,+--.
Proor. Under the hypothesis, the integral in the lemma equals
1 pz s
yf j py sin ma cot — dsdg(u, 1).
0v0 2

The problem then reduces to proving that this last integral is O(1),
m=1,2 3, Observe first that

é:o (ZL) sin (k+3)su*(1—u)m-*
(16) — Im {(1—u-+ueis)meits/n}

= Im plPei(ma+(s/2))
. s .S
= py’ {sm me COS > -+ cos ma sin E} .
Then with s, ,(y; ) = si(y; ), where s,(y; %) is given by (11),

By ) = mz,u (n)(r:) Sx, 1 () 1’lu"(l—u)"'—"-u‘(l—v)n—ldzg('u,, v)

ko \! 0,0
m k 1
= —bo+43 (m)f SHISI(T;’%_ f W+ (L— ) dg(u, 1)
0 0
k 1—u m—k
= —§x+gf J Igosm (k+3) —(mT%l—deg(u' 1)

——%:H—%—f f T {sin mo cot % -+cos moc} dsdg(u, 1)
0Jo

1 pz
= %f f Py sin ma cot % dsdg(u, 1)+0(1)
0vo0
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where the last step follows the observation that 0 < p; < 1. Also, the
change in the order of integration and summation is clearly justified since
all quantities are finite. The lemma now follows, since 4,, , (y; ) is a regular
transform of a bounded sequence, and hence the sequence {#,, ,(y; %)}
is bounded uniformly in m, =.

(17) CororLaryY 1. If g(u, v) is a regular Hausdorff weight function, then
m,n Y, % Q3 k 1 1,1

(") (m)f Sm,(—fi)—sdsdtf W (1 —10) ot (1—v) 1 d2g (u, v) = O(y),
%, 1=0 k] Joo sings 0,0

mon =123 -

(18) CorOLLARY 2. If g(u, v) is a regular Hausdorff weight function, then

J f Smm“dsdtd2g(u,v):0(y), m—1,22,

Proor. Corollary 1 follows immediately from the proof of Lemma 2.
Corollary 2 also follows from Lemma 2 after observing that

2 2

coti—~§—, 0<s<n.
2 S 4
Then
1,1 pv,
f f p7 sin ma cot — dsdtdzg(u )
0,040,0
——ZJ f  SI 7o dsdtd?g(u, v)
f pT sin ma {cot ra ——} dsdtd?g{u, v)
= 0
by Lemma 1.

(19) REMARKS. Lemmas 1 and 2 are also valid under the less restricted
hypothesis requiring only that g(u, v) is of bounded variation (in the sense
of Hardy-Krause) in the square [1, 1; 0, 01, for then the Hausdorff method
corresponding to g(u,v) will take bounded sequences into bounded sequences.
The proof of Lemma 1 is again immediate. The proof of Lemma 2 requires
a minor modification. We prove the next lemma under this less restricted

hypothesis.

(20) LeEmmA 3. If g(«, v) is of bounded variation and if y(n; ¢, v) = O(t?),
$ > —1, is continuous in v and uniformly bounded in #, v, then

f J‘ sm ma y(n; t, v)dsdtdig(u, v) = O(y™"), mn=1273, "
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ProOF. As a function of bounded variation, g(», v) may be expressed
as the difference of its positive and its negative variation functions, each of
which is positively monotonic 2 on the square [1, 1; 0, 0], and each part
may then be considered separately. Hence without loss of generality,
we may assume that g(u, v) is already positively monotonic on the unit
square. Also, since otherwise we could split ¥(#; ¢, v) into its positive and
negative parts and treat each part separately, we may assume that
y(n; t, v) is already non-negative. We write

(21) azf(n; y, u, v) = f:y(n; ¢, v)dt - d*g(u, v),
and since y(n; ¢, v) = O(¢*), we have
0=y t,v) < M'tr

for some constant M’. Then also

(22) Vi) < My*V(g), fo=1Ff(ny wv),
and
(23) afn; y, u,v) < My*1d2g(u, v),

where (p+1)M = M’ and V (k) denotes the total variation of the function
h in the unit square. Thus for each fixed y, there exists a function
f(n; y, u, v) for which (21) is satisfied, and the sequence of total variations
of these functions, {V(f,)}, is bounded uniformly in » for 0 < y < #. The
sequence of Hausdorff transformation methods, corresponding to the
sequence of weight functions {f(»; y, #, v)}, then take bounded sequences
into sequences which are bounded uniformly in #.

Let {s.(x)} be any non-negative, bounded sequence which is independent
of y. Again, we assume the non-negative property as a matter of con-
venience only. Relative to the weight function g(«, v), the mn-th Hausdorff
transform of this sequence is given by

i (g @) = kg (’;) (’:) 50 () f:: (1 — )=yl (1—v)n—1d2g (u, v).

Now relative to a function f(7; y, 4, v) of the sequence {f(n; y, u, v)}, it is
given by

2 A function g(u, v) is said to be positively monotonic on the domain D if

8lay, by)—glag, by)—¢(ar, by) +gla;, b)) = 0

whenever (a,, b)), (a,, b;) are in D and a, = @, and b, = b,.
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bnlfid) = S G) (’:) 52(2) fl’luk(l—u)m—kvl(l—v)ﬂ—tdzf(i; y, %,0)

k,1=0 0,0

m,n 1,1
= My Yy (n) (m) sk(x)f w*(1—u)™* 9t (1—v)"td2g(u, v)
k,1=0 l k 0,0

= My**1h, .(g; ),

where we have used (23) and the assumption that all the terms on the right
are non-negative. Next, noting that 4, ,(g; ) is a regular transform of a
bounded sequence so that 4, ,(g; z) = O(1), m,n =1,2,3,- -, we have

(24) o, u(fy; ®) = O(y"*).

To complete the proof of the lemma, for the sequence {s;(z)}, we take
the sequence {s,(y; )}, where s,(y; x) is given by (11). Then

ooy e\ m ®sin (k+4)s }
h’”’"(f"’x)_k,zzo(l) (k){ 2x+§fo sin 1s o

. fl’l wb(1—u)™* ! (1—v)* 42 f(n; y, u, v)

0,0

1,1
= —%xf azf(n; y, u, v)
0,0

m (m\ (®sin (k4-§)s b1
1— m—de Ty, u,
3 ()] ] wewm ey o
= gf f oY smmoccot—dsd2 fn; y, u, )
% f pT cos madsd?f(n; y, u, v)+O0 (y™1)
0,040

L1 ez s 2 2
= %f f P sin ma {cot; — — 4 ~} dsd*f(n;y, u, v)+0(y*+)
s s

f n S m“y(n t, v)dsdtdze(u, v) -0 (y"+)

— 0 yl’-{-—l)

where we have used (16), (23), (21) and (24). This completes the proof of
the lemma.

(25) CoROLLARY. If g(u, v) is of bounded variation and if y(n;t, v) is a
function which is continuous in v and uniformly bounded in n,t and v, then

N v, T
f f o Smm“y(ntv)dsdtdzg(u v) = O0y), mmn=123,--
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(26) REMARKS. In the applications which we have in mind, the functions
y(n; ¢, v) are continuous in ¢ and in v. However, for the purposes of the
lemma, continuity in £ is not required, and continuity in v may be relaxed
to require continuity only at points of discontinuity of the function g(x, v).

The next five lemmas are either due to Szasz [3] or are trivial extensions
of some of his results. We indicate a proof in cases where it is not immediately
obvious how a result as stated here follows from his result. The number
following the lemma number indicates the page of his article on which the
stated result may be found.

(27) LEMMA 4. (444)
o7 — 1—dym(l—pd) = 14+0(ms?)
o = 1—Tn(l—p}) = 140(ut2)
where 0 < Ay, A, < 1.

Proor.
m—1
1—p]' = (1—py) 1p’{ = m(l—p;) < m(l—pj})

k=

Hence
1—pp =Aim(l—p%), 0 < 2, <1
or
pr = 1—Aym(l—pj)
Now by (13),
N
1 —p? = 4u(1—u) sin? 0 = s2,

so that

py = 140(ms?).
(28) LEMMA 5. (445)
sin moa = sin msu-+2 cos g (x4us) sin O (mus3)
= sin msu—+ O (mus3)

(29) LemmMa 6. (446)
T = e—(m/z)(l—pf)_mﬂl(l_pg) e—{(m/2)(1-p})
= st o _mp, (1—pf)te-tmm0=sb, 0 < f, < 1.
(30) LEmma 7.
pr = e~ (m2u-w’ L O (ms4),

0=u=1 0=s =<z and O(ms*) = O(1).
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ProoF. Observe that
s\? s s\2 st s8 s\4
— —sin2 — = _— — —_— = —_—— — e —_ .
Oé(z) sin® = (2) 3(1—cos 5) 1}‘4! 6!+ }é%(z)

Then if a = 0,
eats/D -asin’sj2__ ] < go/2/n_)
— ea/z(s/z)‘{l_e- a/2(a/2)‘} < hd _3_)450/20/2)‘
2 \2
= Ofas?), Ofas?) = O0(1).
Then

gasine/2 — p—a (/2’4 O)(gst),

and with @ = 2mu(l—u),

(31) e—2mu(l—u)sin®s/2 __ e—(m/2)u(1—u)s’+0(msi).
Next,
2 S s\2
(—)gsin2——5(—), 0s==m
1 2 2
so that

25\ 2
(2) w0 = 19t < i1
4

and
s (1—p) e maoeh
< mBystu?(1—u)2e-2mis/m ud—u)
= O(ms?).
This, together with (29) and (31), implies the lemma.

(32) LEMMA 8. (451)

e—(m/2)u(1—u)s S —> —,
0 N

J"m . Sin msu 7

uniformly in 0 <e<u <1, and boundedly in 0 <u <1, as m — oo,
Z,, — 0 and mz,, — 0,

(33) REMARKS. It is clear that the above lemmas remain valid if we replace
« m, p;, S, w and x by B, n, p,, ¢, v and y respectively, and conversely.
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4. Proof of Theorem 4

In this section we prove two preliminary theorems which, taken
together, will imply Theorem 4.

(34) THEOREM 4a. If mx, - 1, < 00, ny, — 1, < O as m, n — 0 and
Ty Yp — O, then

dsdtd*g(u, v).

7e 71 sin su sin v
B ®5 Ty Yn)

Proor. By (12) and Corollary 1 of Lemma 2,

P, (95 2,Y) = 3 b5 (n) (m) {xy—yj: sin (k+3)s ;o r Mi

K=o \l/ \E sin s o sin 3t

+J‘W‘ sin (k+4)s sin (I+4)¢

in 1
0,6 SIngs sin 3¢

L1 \
dsdi} f W (1 —mym~ot (1—v)"~t d2g (u, v)

0,0

v, e m n l
~1 J ( )( ) sin(kt§)s sin {3y _ymoror(1 —oj-tdsdedg
0,0 3k, 1=0 sin s sin 4¢

+0(x)+0(y)
1,1 py, s
= %f f Py Py {sin ma cot — —+ cos moc}
0,0¥0,0 2
14
{sin nf cot 7 + cos nﬂ} dsdtd*g(u, v)+0(x)+0(y)
by (16);
¢
f f pY Py Sin mo sin nf cot % cot 7 dsdtd?g(u, v)

x)+0(y)

by Lemma 1 and Lemma 3, since

f ’ f pY p3 sin ma cos nf cot — dsdtdzg(u )
0,04 0,0

: 2
f pL ph sin ma cos nf {cot 2 5 + } dsdtd?g(u, v)
0,0 s

1,1 py,
= ZS s P Sin p5 cos nf dsdtd®g(u, v)

2
f py py sin ma cos nf {cot % -— ?} dsdtd*g(u, v)

= Ofy
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by Lemma 3 with p = 0, and by Lemma 1. Then

smmasmnﬂ
hm,n(w;w,y)=f f 3 dsdtdtg(u, v)
+712f f S st v) dsdtdig(u, v)

(35) + %f f o SID nﬂ y(m; s, u)dsdtd?g(u, v)

+%f f pm; s, W)y (n; 1, v) dsdtdrg (u, 9)+0(2) +0(y)

sin ma sin nﬁ
P1 Pz

by Lemmas 1 and 3, since

dsdtd?g(u, v)+0(x)+0(y)

. s 2
y(m; s, u) = }py sin ma {cot 7 —}

M
ZO(I)’ m=172»3’.";

with y(n; ¢, v) expressed in a similar manner. Then, using Lemma 4

0,0+ 0,0

11 py,x
bl 9) = [ [ (4 00ms -0 T T dsdratglu, o

+0(-'v)+0(y
J‘" #sin ma sin nﬁ

dsdtd*g(u, v)

f n SID nﬂ O(s)dsdtd*g(u, v)
—I—nf f m S0 72 O(t)dsdtd?g(u, v)

Lo f " O(st) dsdtd2g(u, v)+0 (@) +0(y)
0,0
J‘" * sin ma sin nﬂ

dsdtd?g(u, v)

+0(W'62 +0("y )+0(mm23/2)+0(x)+0(?/)

by Lemmas 1 and 3 with p = 1. Now let z,,,y, > 0 as m, # — oo, and
as mzx,, - v, < oo and ny, - v, << co. Then
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vm¥m gin mo sin nf

dsdtd?g(u, v),

m ’ﬂ(q)Y m?» yn - J‘
and by Lemma 5,
B (@5 T, Y1) = j " m{sin msu-+0 (mus3) }{sin ntv+0 (nvt3) }

ds at
——ﬂﬂ v)

dsdtd?g(u, v)

Yn, :t,,, 1 .
+f f Sn dsdtd?g(u, v)
0,0 t

Yn,Tm
f 0 mot2) S stz (u, v)
S

J‘”" »Em sin msy sin uiv

Yn, Tm
f O (mnuvs?t?)dsdtd?g(u, v)

NYn, MEm t
_ Jv J‘ sin su sin fv dsdtd? (u, v)-}-O(x)—!—O(?/)
0,0

dsdtd?g(u, v)

f’z 1 sin sw sin fv

since mx,, — T, < 00, nY, —> Ty << . Here we again applied Lemmas 1
and 3, observing that under the assumed conditions, O (mnuvs2s2) = O(st),
O(mus?) = O(s) and O(nvt?) = O(t). This proves Theorem 4a.

(36) TurEOREM 4b. If mz, — ©, ny, - o, mxl = O(1), ny2 = O(1) as
m, n — o0 and x,,, Y, —> O, then
7Z2

hm,n(¢; Ty Yu) = %’ m, n — 00.

Proor. Applying Lemma 7, we write
sin ma sin nf e m/Du(1—w g (n/2)0 (1) sin ma sin nf
s ¢ s t

m n

P1 P2

sin ﬂ  SID 70

+ O (nt5)p™ + O (mnss13)

+0(ms?)p?

sin nﬁ

= y(m, n;s, t, u, v)+0(ms3)py

x +O{mns33).

+O ()
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Substituting in (35), we obtain

1,1 py,z
VN (A7) =f f wim, n; s, t, u, v)dsdtd?g(u, v)
0,0v0,0

1,1 py,2 nﬂ
+ 0(ms3)p dsdtd®g(u, v)
0,070,0
1,1 pv,2
+ O (nt3)p7" SN s dtd*g(u, v)
0,090,0
L,1 pv,2
+5 5 O{mns3P)dsdidtglu, v)1-0(x)-Oly)
0,0/0,0
L1
= w(m, n; s, ¢, u, v)dsdtd®g(u, v)+O(mzt)
0,0

+ 0(ny*)+-0(mnzty*)+-0(x) +0(y)
by Lemmas 1 and 3. Now let #,,, ¥, — 0 as m, # — o0 in such a manner
that ma?, = O(1), ny? = O(1). Then
Yms Tn

(B7) lp,ulp; 2, ¥,) ~> f w(im,n;s, ¢, u,v)dsdtd*g(u,v), m,n— .
We remark that this restriction still permits that mx,, — o, ny, — o as
m, n — oo and z,,, ¥, > 0. Now by Lemma 5,

sin ma sin nf = sin msu sin ntv+ O (n£3) sin ma+ O (ms3) sin nf+ O (mnsdt3),

and so
) it
(n/20(1—oyt S MSU SID 78V

s t

t
p(m, n; s, t, u, v) = e~ (m/Dull—u)s o~
. Sin ma

+ 0 (”tZ)e—(m/z)u(l—u)x
S

+0 (ms?)e—tn/2rwi1-n)et ir_l;ﬁ + O (mns®#%)

mo

= xlm, n; 5,1, u, v)+0 (n82) (p]"+ O (ms4)) smS
sin ﬂ

O (ms?)(p3+O(ntt)) + O (mns?t?)

sin ma

= x(m, n; s, t, u, v)+0(ni?)py"

sin nﬂ

+0 (ms?)p? 10 (nt2ms®) -+ (O (msns)

+0 (mns2t?).
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Then substituting in (37),

YUns Lm
T3 % ) f 2m, 155, 8, w, v)dsdid®g(u, v)

f e Smm“owz)dsdng(u %)

Vn,Tm
f » SIN "ﬂ O (ms?) ds dtd?g (u, v)
Vn Tm
J O (mns2t®)dsdtd2g(u, v), 0s,tsm,

J% zmx(m, n;s, t,u,v)dsdtd®g(u, v)+0(z,)+0(y,)

by Lemmas 1 and 3, since by our hypothesis, #2 = O(1) = ms?, and also
mns?t: = O(1), m, n - oco. Then as m,n - c© and z,, ¥, > 0, taking

0<ég,e <],
Yns Tm
B (P Sy Yn) = f xlm, n; s, t, w, v)dsdid?g(u, v)
1,6 £4,1 £4,8,
SIRRI e
£, 8 £,,0 0,6 0,0
VYn, Tm
f x(m, n; s, t, u, v)dsdid®g(u, v)

1,1 pv,,2,
::f f xlm, n; s, ¢, u, v)dsdtdig(u, v)
&by

+o( f @0, 9)]) +0( f #(w, )

+0 ( j R v)!)

0,0
since by Lemma 8,

< M << .

VYn, Em
f x(m, n; s, ¢, u, v)dsdt

0,0
Now let ¢, and ¢, tend to zero. Then, again by Lemma 8,
1,0%

2 rL1
Pnn@im 1) > (3) [ eetwo+0([ " e, )
o+, 0% o+, 0

+o( | " g, )l) +0 ( f:oo @, )]} = (—"25)2

0,0t
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since g(u, v} is a regular Hausdorff weight function, so that each of the last
three terms is equal to zero. This completes the proof of Theorem 4b.

(38) ReMARKS. For the case where as m, n — 0 and z,,, y, > 0, mx,, > 7,
and ny, — 7,, where 7, < o and 7, < o0, or where 1, = 0 and 7, = o0,
mat, < o, ny? < o, Theorem 4 now follows immediately from Theorems
4a and 4b. Strictly speaking, to complete the proof of Theorem 4 we should
also consider the case where 7; = o0 and 7, << 00, and 7, << o and 7, = 0.
However, it is clear that this would involve both methods of proof in a
predictable manner, and it is equally obvious what the conclusion would be.
We avoid the details and conclude Theorem 4.

5. Proof of Theorem 5

By Theorem 4, if 7,, 7, < o and mx — 7, ny — 7,, as m, # — 00 and
z, y — 0, then

—— —— dsdtd®g(u, v)

73" 1% gin § sin ¢
T () f

Integrating by parts [6, p. 38],

RN L L N P

1,1 d2f

. . 11 .

1 gin 7, % sin 7,0 1 gin 7, 4 sin 7,v

= dudv — g(u, 1)dudv
00 U v u

L1sin 7, % sin 7,0

1,v)dud
o m ” g(1,v)dudv

I .
1 sin 7, % sin 7,v
f g(u, v)dudv

0,0 U v

11
sint % smt2
= g1, 1; u, v)dudv
00 ® v

where
g(L, Lu,v) = g(1, 1) —g(u, 1)—¢(1, v)+¢g(u, v).
This completes the proof of Theorem 5.
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