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Additive variance and average effect with partial selfing
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Summary

The covariance of an ancestor and the average of its descendants in generation / (CPt) is formulated
for a breeding system which is a mixture of selfing and outcrossing. This covariance is partitioned
into least squares additive {aA At) and non-additive (<rD Dt) components summed over individual
loci, and the combined inbreeding effects of all loci (//'), such that CPt — (rA. At + (s/2f[aD Do + H'].
For the mth locus the covariance maA At = 2(l+F)'ZiPiai0)i<xmi, in which/^ is the frequency of
the ith allele whose additive effect (a(0) depends on the generation for which it is denned. For
distant descendants a ^ is equal to half of the derivative of the population mean with respect to
the frequency of the allele. The covariance CPco = aA.Aoo thus relates directly to permanent
selection response measured in the equilibrium population, any additional responses observed in
earlier generations being due to temporary disturbances in population genotypic structure. It is only
for these distant descendants that the least squares additive component has any direct
interpretation in terms of selection response. The definitions of a(0) and a^, lead to two distinct
definitions of the average effect of an allele substitution for a model with two alleles (Fisher, 1941),
and to a clarification of their significance for this breeding system.

1. Introduction

The concept of the average effect of an allele
substitution in a two-allele model was introduced by
Fisher (1930) as an aid to the description of the
relationship between additive genetic variance and
population response to selection under a system of
random outcrossing. Later he generalised the concept
to include partial self-fertilization (Fisher, 1941), but
showed that in this case response is not in general a
function of the variance of the effects defined for this
population. More recently Falconer (1986) has
examined some of the properties of average effect and
additive variance.

A general expression for the covariance of relatives
for an arbitrary number of non-interacting loci, each
with an arbitrary number of alleles, was given by Weir
& Cockerham (1977), and used to derive some
covariances among relatives descended from a
population in equilibrium with respect to self and
random mating by Cockerham & Weir (1984). They
also gave a partition of the genotypic variance into
least squares additive and non-additive components.
Wright & Cockerham (1985) showed that the
covariance of an ancestor and a descendant in the tth
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generation (CPt) depends on t, and that CPl evolves in
a regular manner towards an asymptotic value for the
distant descendants.

The purpose of this paper is to derive a general
expression for CPt and to show that this can be
partitioned into least squares additive {aA At) and
non-additive (aD Dt) components. This highlights the
importance of the distinction between the additive
variance of population members and their additive
covariance with distant descendants, and clarifies the
definition and role of the average effect of an allele
substitution.

2. The covariance of relatives

The covariance of diploid relatives under a general
mating system can be formulated using the methods
of Weir & Cockerham (1977). The basic model for the
genotype of an individual with alleles i and j at one
locus is

in which the mean /i0 is for an outbred reference
population, the a terms are additive effects, and d is
the dominance effect. An arbitrary number of alleles
and loci are allowed, but absence of epistasis and
linkage is assumed. In addition to the additive and
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Table 1. Quadratic components and identity measures

For one locus Sum over loci Coefficient

,a% = 2T,pka
2
k

k
a A = .

k I
£ox+y — r(i-k and j-l)

+ ^(i-( and k-l)

"xy = P{i-j-k-l)

" x y y_j a n d k_L

m k

m k

° pk is the frequency of the A:th allele at the wth locus, ak is its least squares additive effect,
and dkl is the dominance interaction of the &th and /th alleles in the non-inbred population.

* Axy is the probability that the two genes at one locus in x and a second locus in y are
equivalent by descent.

dominance variances usual with random outcrossing
(aA and a2

D), the variance of homozygous dominance
effects (D*) and their covariance with the additive
effects of the same allele (DJ are needed. There are
further contributions due to the sum of the squared
inbreeding depression effects of individual loci (//*)
and the square of the joint inbreeding effect of all loci
(H2). The coefficients of the components are measures
of the probability of identity by descent of various
combinations of alleles within and between genotypes.
The components and their coefficients in the covari-
ance of relatives x and y carrying alleles /, j and k, I
are given in Table 1.

The covariance of any specific pair of relatives is
then obtained by substitution of the appropriate
identity measures in the general formula given by Weir
& Cockerham (1977)

Cxy =

3. Partial selling

In a breeding system in which reproduction of all
individuals takes place with a probability s of selfing
and (1 — s) of random outcrossing, two distinct types
of covariance between ancestor and descendant can be
envisaged. In the first case, only the maternally derived
offspring are considered, the contribution of out-
crossing male gametes being ignored, so that the
descendants are defined strictly through the maternal

line. This type of covariance is appropriate for the
prediction of the response to selection which maintains
no control over the male gametes, such as with
naturally produced maternal families (Wright &
Cockerham, 1985, 1986). For most other applications
it is appropriate to define a covariance for all the
descendant genotypes, including those produced at
each generation by the outcrossing male gametes. This
is equivalent to the doubling of parent-offspring
covariances when there is complete outcrossing.
Covariances of this type can be extended over an
arbitrary number of generations, and are appropriate
for the case when parental selection is carried out prior
to reproduction, and also to follow the long term
results of earlier selection over subsequent cycles of
population reproduction without selection (Wright &
Cockerham, 1985).

The average inbreeding coefficient in a population
in equilibrium remains constant from generation to
generation at F = s/(2—s). The transition equations
for other identity coefficients under this system are
simple and these evolve in a very regular manner
(Table 2). The covariance between a parent and the
mean value of its descendants in any generation t is
then obtained by substitution of the appropriate
values of the identity coefficients into the general
formula given above:

-F)a%+ F[F+(\ -
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Table 2. The identity coefficients necessary for the expression of the covariance of a parent and all its
descendants in the tth generation, CPt

Identity
coefficient

Initial
value

Transition
equation Transitory value

F

ypt F
F
F

F(\+2F)/(2 + F)

(Constant)
(Constant)
(Constant)

In this expression

H' = {H2-H*)[F(l-F2)]/(2 + F)

is the joint inbreeding contribution of all pairs of loci
to the population variance due to their correlated
genotypic distribution.

The behaviour of the identity coefficients also leads
to the following relationship among the covariances
which was noted by Wright & Cockerham (1985)
CPt = CPm + (a2

G-CPao)(s/2y,

in which a% is the population genotypic variance but
can be regarded as equivalent to the covariance in
generation zero (CP0).

4. A least squares partition of the covariance

Cockerham & Weir (1984) gave a least squares
partitioning of the genotypic variance into additive
and non-additive (dominance) portions. For the mth
locus

moAP = (1 +F)mo*A+4FrnD1+sFmD*,

and

ma%F = (\-F)[mal+(s/2)mD*+FmH*],

in which all components are denned for the single locus
considered. Although this partition cannot be applied
as it stands to the covariance with any later
generations, it does suggest that a more general
definition of an additive covariance ma A At may exist.
This partition may be achieved by solving for values
of <x(0)( and <x(t)i for one locus which minimize the
residual covariance in CPt

u - 2a(0)( -n] [yu - 2a(t)i-fi
r[

t. =

in which y is a random descendant of x, and // and ft'
are the means of parental and descendant generations.
The details of this procedure are given in the
Appendix, but the results are

and

and with fi = /i' as expected. Here xt

x..='Li'LjPipjxij and x_='Zipixii, and the sub-
scripts Pt refer to descent measures between parent
and tth generation descendant (Table 2).

The terms a(0)( and oc(m are the effects of allele i
when measured in the parental and the descendant
populations respectively. These can be expressed in
terms of the genotypic model, for which
xu = A) + 2ai + du a n d xi.

Then

and generally

Since the one locus contribution to the mean
population genotypic value can be written as

then

5y/5pt = 2(1 -F)xt.+Fxtt =

Thus, by the time that sufficient generations have
elapsed for the descendant alleles of any individual
ancestor to be randomly distributed in the population,
the average effect of any allele is equal to twice the
population derivative with respect to that allele. The
significance of this result will be expanded later in
terms of the two-allele genotypic model.

The additive covariance for the locus is obtained as
the sum of products of the values of a(0)i and <x(04

.fA.At = (1 -

= 2(l+F)I,pi<x{0)iam

\a( + dliypi/(\+F)]

GRH SO
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When / = 0, yPjj = F and this reduces to the additive
variance of the parental population already given by
Cockerham & Weir (1984). The residual covariance
for a single locus is found by difference to be

twice the allele frequency, the additive variance can be
written as

. ot = - F)[ s/2) mD\ + FmH*}

It follows that the total covariance over all loci can be
written as

The coefficient of the non-additive components
disappears as t approaches infinity so that for the
distant descendants

CPo0 = OA.AOO = (l+F)maA+F(3 + F)mD1

and has no non-additive component.

5. Two-allele case

When there are two alleles 1 and 2 with frequencies
p and q = (1 — p), then from the general model,
pa.x + qa2 = 0, so that ô  = qa. and a2 = — pa. Thus
the two effects can both be described in terms of a
single parameter a, which is the difference a = al — a2.
This is the average effect of an allele substitution as
defined by Fisher (1930, 1941). As before this effect
can be defined for any generation. Writing the
genotypic values for the two allele model as B1B1 = b,
B1B2 = h and B2B2 — —b, the equivalence of the effects
for the two models is

! = q[b + h(q-p)], = - p[b + h(q - p)],

and d22 = —2p2h.

Thus, for the general case ô , and those of most
interest:

Of = ar - a2 + {dx t - d22) yP;/( 1 + F)
= b + h(q-p)[l-2yp-t/(\+F)]

so that

and

The additive covariance for this model is

m°A.At = 2(l+F)E/>ia(o)fa(Oi = 2(\+F)pqao«t.

Falconer (1986) has shown that a,, is the coefficient
of regression of genotypic value onto allele doseage
and that the least squares additive population variance
is the variance in genotypic value accounted for by the
regression. Since allele doseage in diploids is equal to

= o%(b
xlp

)* = a%bplxbxlv,

in which a2
p(=pq[l+F]/2) is the variance in allele

frequency and b denotes a regression coefficient. When
there is random mating, the distinct paths from
genotype to allele and back to genotype help to clarify
the role of additive variance in the determination of
selection response due to changes in allele frequency.
With partial selfing, however, the response to selection
is a simple function of changes in allele frequency only
for the distant descendants of the selections. In this
case response is a function of the additive covariance

maA.A<a = ™p = °z "p/x

in which y is the descendant population mean. The
equivalence of a^ to byjv has already been shown in
terms of the general model as it equals one-half of the
differential of the equilibrium descendant mean with
respect to p, or the whole differential with respect to
allele doseage.

The related quantity, average excess, was shown by
Falconer (1986) to be equal to (l + F ) ^ and is
evidently the average effect adjusted to take account
of the increased variance in allele frequency with
inbreeding so as to relate directly to the selection
differential applied to the locus. In the light of the
above interpretation of the roles of a,,, a^ and a2

p, it
can be considered an unnecessary and probably
confusing concept.

6. Discussion

In general the response to selection with partial selfing
is not a function of the additive variance in the
parental population. The only selection response
which relates directly to a component of variance or
covariance associated with individual alleles is that
measured when all changes in population genotypic
structure are due only to changes in allele frequency,
and with partial selfing this is the case only in distant
generations when the selected population has regained
its characteristic inbreeding structure. Any additional
gain which may be observed in earlier generations is
due to temporary alterations in the genotypic structure
of the population when there is dominance, and this
is gradually lost as equilibrium is regained. Although
it has been possible to define and formulate least
squares additive effects for all intermediate genera-
tions, and express their covariance with the parental
effects, these have no direct interpretation in terms of
response.

Fisher (1941) and Kempthorne (1957) show that the
population additive variance can predict the immedi-
ate response to selection for a single locus with two
alleles only if a certain relationship among the
homozygote and heterozygote frequencies is retained.
In the present notation, this requires that the quantity

https://doi.org/10.1017/S001667230002334X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230002334X


Additive variance and average effect 67

F/[pq(\ —F)2] remains unchanged after selection and
reproduction. However, while the prediction of
response on the basis of additive variance in the
presence of dominance has to assume that the change
in frequency of individual alleles is very small, this
condition requires thatp undergoes a change of similar
order of magnitude as does F. Equating mo2

AF to
m CP1 yields no simple expressions even in terms of the
two-allele model. On the other hand, the use of a\F

to predict the final response can be tested by
comparing ot(0) and a^j , showing that this would
require selection to be accompanied by a permanent
increase in the rate of selfing to a new value of
S' = 25/(1+5).

Although he took care to refer to the offspring or
descendant population, Fisher (1941) clearly thought
of the average effect of an allele substitution as a
regression of individual genotypes onto allele doseage,
as he defined it as 'the partial regression, in the
population as actually constituted, of the genotypic
measurement on the numbers of genes in each
genotype'. This view can now be seen to be
inappropriate when attempting to predict or explain
selection response, as the product of average effects
defined for parents and descendants in aA Aa> bears
out the important principle that while selection
operates to discriminate among genotypes, its effects
are observed on populations. It is only with random
mating that the average effect is unique and can be
defined as the effect of changes in allele doseage either
on individual genotypic values within the population,
or on the population mean itself, so that the additive
variance is also unambiguous. In elaboration of
Fisher's earlier definitions, the terms a^ and a^ can
now be referred to as the genotypic and population
effects, respectively, of an allele substitution, and it
may be that of all the interesting properties of random
mating noted by Fisher (1930) and others, their
equality is the most important and fundamental.
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Appendix

The least squares partition of the covariance of
ancestor and the mean of its descendants, CPt.

For a single locus, the residual variance which is to be
minimised can be written as the sum of separate
contributions from the inbred and non-inbred frac-
tions of the population:

4 [ -M- A

- (1 -F)'ZIlpipj[xi}-xi-x}-fx],

in which ytj is the mean genotype of the descendants
of parent xtj from the population with allele
frequencies pt and/7;, and solutions are required for Oj,
aj, fi and /j,'. Differentiating:

and

when

since Ilipi<xi = 0, and in which x. = YlipixH and
x.. ='

'i = - 2Fp([xu - 2a4 - n]
- 2( 1 - F) I pfrxy -Oi-ciLj-n],

iand

when

in which x( =
These two solutions are complete, but for the others

the descendant genotypic values yti have to be
expanded in terms of the probabilities of occurrence
of different genotypes expressed in terms of descent
measures. These are

k I

+ 2(0u -

- 490t i+28-6+i) x.

k I

Yii xu + 2(0 n - yrd xt. + (1 - 26 n + y,i) x...
5-2
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Alleles k and / are random population alleles
non-identical to / or / The descent measures differ
from those given in Table 2 since they are defined
separately for inbred and non-inbred parents, as
indicated by the / and 0 subscripts. It follows that

y.. = 1yaix + (1 -2yoi)x and

y. = ?/«"*.+(i-?«)*..•

Differentiating first and then substituting for yi}

and

when

and

= - 2FPi[yu - 2o< - /

when

+ 0-F)(60t-y0i)](xL-x..))}/(l+F),

and, since

F0It + (\ -F)90t = 0Pt and Fyli+(\ -F)yoi = ypi,

< = [yptixu ~x)+ 2(9Pt - yPi) (xL - x,.)]/(1 + F).
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