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Infinitesimal Hilbertianity of Weighted
Riemannian Manifolds

Danka Lučić and Enrico Pasqualetto

Abstract. hemain result of this paper is the following: anyweightedRiemannianmanifold (M , g , µ),
i.e., a Riemannian manifold (M , g) endowed with a generic non-negative Radon measure µ, is
inûnitesimally Hilbertian, which means that its associated Sobolev space W 1,2(M , g , µ) is a Hilbert
space.

We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any
weighted reversible Finsler manifold (M , F , µ) can be isometrically embedded into the space of all
measurable sections of the tangent bundle of M that are 2-integrable with respect to µ.

By following the same approach, we also prove that all weighted (sub-Riemannian) Carnot groups
are inûnitesimally Hilbertian.

1 Introduction

General Overview In the rapidly expanding theory of geometric analysis over met-
ric measure spaces (X, d,m) a key role is played by the notion of Sobolev spaceW 1,2

(X, d,m) that has been proposed in [11] (see also [5, 26]). In general, the spaceW 1,2

(X, d,m) has a Banach space structure, but is not necessarily a Hilbert space. hose
metric measure spaces (X, d,m) whose associated Sobolev space W 1,2(X, d,m) is
Hilbert, are said to be inûnitesimally Hilbertian [16]. his choice of terminology is
due to the fact that such requirement captures, in a sense, the property of being a
Hilbert-like space at arbitrarily small scales.

Inûnitesimally Hilbertian spaces are particularly relevant in several situations. For
instance, in the framework of synthetic lower Ricci curvature bounds (in the sense
of Lott–Villani [24] and Sturm [27, 28]) known as the CD condition, the inûnitesi-
mal Hilbertianity assumption has been used to single out the Riemannian structures
among the Finslerian ones, thus bringing forth the well-established notion of RCD
space [7, 8, 16]. We refer to the surveys [2, 29, 30] for a detailed account of the vast
literature concerning the CD/RCD conditions.

he main purpose of the present paper is to prove that any geodesically complete
Riemannian manifold (M , g) is universally inûnitesimally Hilbertian, meaning that
(M , dg , µ) is inûnitesimally Hilbertian for any Radon measure µ ≥ 0 on M, where
dg stands for the distance on M induced by the Riemannian metric g. his will be
achieved as an immediate consequence of the following result: given a geodesically
complete, reversible Finsler manifold (M , F) and a non-negative Radon measure µ
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on M, it holds that the abstract tangent module L2
µ(TM) associated with (M , F , µ)

in the sense of Gigli [18] can be isometrically embedded into the concrete space of all
L2(µ)-sections of the tangent bundle TM of M. We will also describe how to obtain
the corresponding results in the setting of weighted Carnot groups.
Motivation and Related Works Our interest in universally inûnitesimally Hilbertian
metric spaces is mainly motivated by the study of metric-valued Sobolev maps, as
we will describe. Given a metric measure space (X, dX ,m) and a complete separa-
ble metric space (Y, dY), one of the possible ways to deûne the space S2(X;Y) of
weakly diòerentiable maps from X to Y is via post-composition [21]. As shown in
[20, heorem 3.3], any Sobolev map u ∈ S2(X;Y) can be naturally associated with an
L0(m)-linear and continuous operator du ∶ L0

m(TX) → (u∗L0
µ(T∗Y))∗, where the

ûnite Borel measure µ is deûned as µ ∶= u∗(∣Du∣2m); the map du is called diòeren-
tial. (See [20, §2] for a brief summary of the terminology used above.) We underline
that the measure µ is not given a priori, but rather depends on the map u itself in a
non-trivial manner. his implies that the target module of du might possess a very
complicated structure. One of the reasons why we focus on universally inûnitesimally
Hilbertian spaces (Y, dY) is that the cotangent module L0

µ(T∗Y) is a Hilbert module
regardless of the chosen measure µ. In particular, the target space (u∗L0

µ(T∗Y))∗ of
the diòerential du is a Hilbert module as well and can be canonically identiûed with
u∗L0

µ(TY). his allows for more reûned calculus tools and nicer functional-analytic
properties; see [18] for the related discussion. Evenmore importantly, to show that the
abstract tangent module L0

µ(TY) isometrically embeds into some geometric space of
sections would provide amore concrete representation of the diòerential operator du.

he results contained in this paper were proved in [19] for the particular case in
which the Finsler manifold (M , F) under consideration is the Euclidean space Rn

equipped with any norm ∥ ⋅ ∥. In fact, the structure of our proofs follows along the
path traced by [19]. We also mention it was proved that locally CAT(κ) spaces are
universally inûnitesimally Hilbertian [13]. We recall that these are geodesic metric
spaces whose sectional curvature is (locally) bounded from above by κ ∈ R in the
sense of Alexandrov. hemotivation behind such a result is that if used in conjunction
with the notion of diòerential operator for metric-valued Sobolev maps discussed
above, it could be helpful in order to study the regularity properties of harmonicmaps
from ûnite-dimensional RCD spaces to CAT(0) spaces.
Outline of the Work In Section 2 we brie�y recall the basics of Sobolev calculus on
metric measure spaces and the language of L2-normed L∞-modules proposed by
Gigli [18].

Section 3 is entirely devoted to Finsler geometry. A�er a short introduction to a few
basic concepts, wewill be concernedwith the approximation of Lipschitz functions by
C1-functions. Our new contribution in this regard, namely heorem 3.6, constitutes
a more local version of similar results that were proved in [9, 15, 22].

he core of the paper is Section 4. In Proposition 4.2 we exploit the above-ment-
ioned approximation result to bridge the gap between the abstract Sobolev space as-
sociated with a weighted Finslermanifold (M , F , µ) and the true diòerentials of func-
tions in C1

c(M). his represents the key passage to build a quotient projection map
from the space Γ2(T∗M; µ) of all L2(µ)-sections of T∗M to L2

µ(T∗M) (Lemma 4.5,
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Proposition 4.6). We thus obtain by duality an isometric embedding of L2
µ(TM) into

the space Γ2(TM; µ) of all L2(µ)-sections of TM (heorem 4.7). As a direct corollary,
any weighted Riemannian manifold is inûnitesimally Hilbertian (heorem 4.11).

In Section 5 we provide an alternative proof of heorem 4.11, which does not rely
upon heorem 4.7. his approach combines the analogue of heorem 4.11 for the
Euclidean space proved in [19] with a localisation argument. Nonetheless, we pre-
ferred to follow the ûrst approach in order to place the emphasis on heorem 4.7,
because of its independent interest.
Finally, in Section 6 we recall the basic notions in the theory of Carnot groups,

we prove a smoothing result for Lipschitz functions on a sub-Finsler Carnot groupG
equipped with the induced Carnot–Carathéodory distance dCC (heorem 6.2), and
we build an isometric embedding of the tangent module L2

µ(TG) associated with a
weighted sub-FinslerCarnot group (G, dCC , µ) into the space Γ2(HG; µ) of all L2(µ)-
sections of the horizontal bundle ofG (heorem 6.3). We can thus conclude that any
weighted sub-Riemannian Carnot group is inûnitesimally Hilbertian.

2 Preliminaries on Metric Measure Spaces

2.1 Notation on Metric Spaces

Consider a metric space (X, d). Given any x ∈ X and r > 0, we denote by BXr (x) the
open ball in (X, d) with center x and radius r. More generally, we denote by BXr (E)
the r-neighbourhood of any set E ⊆ X. We shall sometimes work with metric spaces
having the property that the closure of any ball is compact: such spaces are said to be
proper.

We shall use the notation LIP(X) to indicate the family of all real-valued Lipschitz
functions deûned onX, while LIPc(X)will be the set of all functions in LIP(X) having
compact support. Given any f ∈ LIP(X), let us introduce the following quantities.

(i) Global Lipschitz constant. Let E ⊆ X be a given non-empty set. hen we denote
by Lip( f ; E) the Lipschitz constant of f ∣E , i.e., we set Lip( f ; E) ∶= 0 if E is a singleton,
and

Lip( f ; E) ∶= sup{ ∣ f (x) − f (y)∣
d(x , y) ∣ x , y ∈ E , x ≠ y}

otherwise. For the sake of brevity, we shall write Lip( f ) instead of Lip( f ; X).
(ii) Local Lipschitz constant. We deûne the function lip( f )∶ X→ [0,+∞) as

lip( f )(x) ∶= lim
y→x

∣ f (x) − f (y)∣
d(x , y)

for every accumulation point x ∈ X and lip( f )(x) ∶= 0 for every isolated point x ∈ X.
(iii) Asymptotic Lipschitz constant. We deûne the function lipa( f )∶ X → [0,+∞)

as lipa( f )(x) ∶= inf r>0 Lip( f ;BXr (x)) for every accumulation point x ∈ X and
lipa( f )(x) ∶= 0 for every isolated point x ∈ X.
It can be readily checked that lip( f ) ≤ lipa( f ) ≤ Lip( f ) is satisûed in X.
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2.2 Sobolev Calculus on Metric Measure Spaces

For our purposes, by ametric measure space we mean a triple (X, d,m), where

(2.1)
(X, d) is a complete and separable metric space and
m ≠ 0 is a non-negative Radon measure on (X, d).

In order to introduce the notion of Sobolev space W 1,2(X, d,m) proposed by
L. Ambrosio, N. Gigli, and G. Savaré [5], we need to ûx some notation. We say
that a continuous curve γ ∶ [0, 1] → X is absolutely continuous provided there ex-
ists f ∈ L1(0, 1) such that d(γt , γs) ≤ ∫

t
s f (r)dr holds for every t, s ∈ [0, 1] with

s < t. he minimal 1-integrable function (in the almost everywhere sense) that can
be chosen as f is called the metric speed of γ and is denoted by ∣γ̇∣. It holds that
∣γ̇t ∣ = limh→0 d(γt+h , γt)/∣h∣ for almost every t ∈ (0, 1) [4, heorem 1.1.2].
A test plan on X is any Borel probability measure π on C([0, 1], X) with the fol-

lowing properties.
● here exists a constant C > 0 such that (et)∗π ≤ Cm holds for every t ∈ [0, 1],
where the evaluation map et ∶ C([0, 1], X) → X is given by et(γ) ∶= γt and
(et)∗π stands for the pushforward measure of π under et .

● It holds that∬
1
0 ∣γ̇t ∣2 dt dπ(γ) < +∞, with the convention that ∫

1
0 ∣γ̇t ∣2 dt ∶= +∞

when the curve γ is not absolutely continuous.

In particular, any test plan is concentrated on the family of all absolutely continuous
curves on X.

Deûnition 2.1 ([5]) We deûne the Sobolev space W 1,2(X, d,m) as the set of all
functions f ∈ L2(m) with the following property: there exists G ∈ L2(m) such that
∫ ∣ f (γ1) − f (γ0)∣dπ(γ) ≤ ∬

1
0 G(γt) ∣γ̇t ∣dt dπ(γ) for every test plan π on X. Any

such function G is said to be a weak upper gradient of f . he minimal weak upper
gradient of the function f , intended in them-almost everywhere sense, is denoted by
∣D f ∣.

he Sobolev space W 1,2(X, d,m) is a Banach space if endowed with the norm
∥ f ∥W 1,2(X,d,m) ∶= (∥ f ∥2

L2(m)+∥∣D f ∣∥2
L2(m))1/2 for every f ∈W 1,2(X, d,m), but in gen-

eral it is not a Hilbert space. For this reason, the following deûnition is
meaningful.

Deûnition 2.2 (Inûnitesimal Hilbertianity) We say that the metric measure space
(X, d,m) is inûnitesimally Hilbertian provided its associated Sobolev space
W 1,2(X, d,m) is a Hilbert space.

An important property of minimal weak upper gradients is their lower
semicontinuity.

Proposition 2.3 ([5]) Let ( fn)n∈N ⊆W 1,2(X, d,m) satisfy fn → f in L2(m) for some
f ∈ L2(m). Suppose also that ∣D fn ∣ ⇀ G weakly in L2(m) for some G ∈ L2(m). hen
f ∈W 1,2(X, d,m), and the inequality ∣D f ∣ ≤ G holds m-almost everywhere in X.
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We point out thatW 1,2(X, d,m) contains all Lipschitz functions on X having com-
pact support. More precisely, given any function f ∈ LIPc(X) it holds that

(2.2) ∣D f ∣ ≤ lip( f ) in them-almost everywhere sense.

On proper spaces, Lipschitz functions with compact support are dense in energy in
W 1,2(X, d,m).

heorem 2.4 (Ambrosio–Gigli–Savaré [6]) Suppose (X, d,m) is a proper metric
measure space. Fix any Sobolev function f ∈ W 1,2(X, d,m). hen there exists a se-
quence ( fn)n∈N ⊆ LIPc(X) such that fn → f and lipa( fn) → ∣D f ∣ in L2(m) as n →∞.

2.3 Abstract Tangent and Cotangent Modules

Consider a metric measure space (X, d,m). We assume that the reader is familiar
with the language of L2(m)-normed L∞(m)-modules [17, 18].

We just recall that there is a unique couple (L2
m(T∗X), d), where L2

m(T∗X) is an
L2(m)-normed L∞(m)-module called the cotangent module and d ∶ W 1,2(X, d,m) →
L2
m(T∗X) is a linear operator called the diòerential, such that the following two con-
ditions are satisûed.

● It holds that ∣d f ∣ = ∣D f ∣ in the m-almost everywhere sense for every f ∈
W 1,2(X, d,m).

● he set {d f ∶ f ∈W 1,2(X, d,m)} generates L2
m(T∗X) in the sense of modules.

hemodule dual of L2
m(T∗X) is called the tangentmodule and is denoted by L2

m(TX).
A fundamental property of the diòerential, which follows from Proposition 2.3, is

that it is a closed operator [18, heorem 2.2.9].

Proposition 2.5 (Closure of d) Let ( fn)n∈N ⊆W 1,2(X, d,m) be a sequence satisfying

fn ⇀ f , weakly in L2(m), d fn ⇀ ω, weakly in L2
m(T∗X),

for some f ∈ L2(m) and ω ∈ L2
m(T∗X). hen f ∈W 1,2(X, d,m) and d f = ω.

he following result is taken from [18, Proposition 2.2.10].

Proposition 2.6 (Re�exivity of the Sobolev space) he following conditions are
equivalent.
(i) he Sobolev space W 1,2(X, d,m) is re�exive.
(ii) Given any bounded sequence ( fn)n∈N ⊆ W 1,2(X, d,m), there exist f ∈

W 1,2(X, d,m) and a subsequence ( fnk)k∈N such that ( fnk , d fnk) ⇀ ( f , d f )weakly
in L2(m) × L2

m(T∗X).
In particular, if L2

m(T∗X) is re�exive, then W 1,2(X, d,m) is re�exive.

Finally, we point out that

(2.3) W 1,2(X, d,m) is a Hilbert space⇐⇒ L2
m(TX) is a Hilbert module,

as proved in [18, Proposition 2.3.17].
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3 Some Properties of Finsler Manifolds

3.1 Definition and Basic Results

For our purposes, by amanifoldwe shall alwaysmean a connected diòerentiableman-
ifold of class C∞. Given a manifold M and a point x ∈ M, we denote by TxM the
tangent space of M at x and by expx the exponential map at x. We make use of the
notation TM = ⊔x∈M TxM to indicate the tangent bundle ofM. Moreover, we denote
by T∗

x M and T∗M the cotangent space of M at x and the cotangent bundle of M, re-
spectively. We now brie�y report the deûnition of a Finsler structure over a manifold;
see [10] for a thorough account about this topic.

Let V be a given ûnite-dimensional vector space over R. hen aMinkowski norm
on V is a functional F ∶ V → [0,+∞) having the following properties.

(i) Positive deûniteness. Given any v ∈ V , we have that F(v) = 0 if and only if v = 0.
(ii) Triangle inequality. It holds that F(v +w) ≤ F(v) + F(w) for every v ,w ∈ V .
(iii) Positive homogeneity. We have that F(λv) = λF(v) for every v ∈ V and λ ≥ 0.
(iv) Regularity. he function F is continuous on V and of class C∞ on V ∖ {0}.
(v) Strong convexity. Given any v ∈ V ∖ {0}, it holds that the quadratic form

(3.1) V ∋ w z→ 1
2
d2(F2)v[w ,w]

is positive deûnite. (he expression in (3.1) stands for the second diòerential of
F2 at v.)

In particular, any Minkowski norm is an asymmetric norm.

Deûnition 3.1 (Finsler manifold) A Finsler manifold is a couple (M , F), where M
is a given manifold and F ∶ TM → [0,+∞) is a continuous function satisfying the
following properties.

(i) he function F is of class C∞ on TM ∖ {0}.
(ii) he functional F(x , ⋅ ) ∶ TxM → [0,+∞) is aMinkowski norm for every x ∈ M.

Moreover, we say that (M , F) is reversible provided each function F(x , ⋅ ) is
symmetric, i.e.,

(3.2) F(x ,−v) = F(x , v) for every x ∈ M and v ∈ TxM .

Condition (3.2) is equivalent to requiring that each F(x , ⋅) is a (symmetric) norm on
TxM.

We point out that any Riemannian manifold is a special case of a reversible Finsler
manifold. (his is an abuse of notation. More precisely, if (M , g) is a Riemann-
ian manifold, then (M , F) is a reversible Finsler manifold, where we set F(x , v) ∶=
gx(v , v)1/2 for every x ∈ M and v ∈ TxM.)

Deûnition 3.2 (Finsler distance) Let (M , F) be a reversible Finslermanifold. Given
any piecewise C1-curve γ ∶ [0, 1] → M, we deûne its Finsler length as ℓF(γ) ∶= ∫

1
0

F(γt , γ̇t)dt. hen we deûne the Finsler distance dF(x , y) between two points
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x , y ∈ M as

(3.3) dF(x , y) ∶= inf{ ℓF(γ) ∣ γ ∶ [0, 1] → M piecewise C1 with γ0 = x and γ1 = y} .

A Finsler geodesic is a C1-curve on M that is locally a stationary point of the length
functional.

Remark 3.3 When (M , F) is a (not reversible) Finsler manifold, one has that for-
mula (3.3) deûnes a quasi-distance on M, rather than a distance in the usual sense.
Our main approximation result, namelyheorem 3.6, still holds true even in the case
of general Finsler manifolds (this can be achieved with minor modiûcations of the
arguments, as we shall see). Nevertheless, we prefer to focus our attention on the re-
versible case, the reason being that the language of Sobolev calculus and (co)tangent
modules is so far available just for metric structures.

For a proof of the ensuing result in the Finsler case, see [10, heorem 6.6.1].

heorem 3.4 (Hopf–Rinow) Let (M , F) be a reversible Finsler manifold. hen the
following four conditions are equivalent.
(i) he Finsler manifold (M , F) is geodesically complete, i.e., any constant speed

geodesic can be extended to a geodesic deûned on the whole real line.
(ii) he metric space (M , dF) is complete.
(iii) Given any x ∈ M, it holds that the exponential map expx is deûned on the whole

TxM.
(iv) he metric space (M , dF) is proper.

3.2 Smooth Approximation of Lipschitz Functions

In the sequel, we shall need the following result concerning the biLipschitz behaviour
of the exponential map on suõciently small balls.

heorem 3.5 (Deng–Hou [12]) Let (M , F) be a reversible Finsler manifold. Fix a
point x ∈ M and some constant ε > 0. hen there exists a radius r > 0 such that the
exponential map expx ∶ BTxM

r (0) → BM
r (x) is a (1+ ε)-biLipschitz C1-diòeomorphism.

We now present a new result about regularisation of Lipschitz functions on a re-
versible Finsler manifold (M , F). Roughly speaking, it states that any Lipschitz func-
tion f ∶ M → R can be uniformly approximated by functions of class C1 whose Lips-
chitz constant is locally controlled by that of f . his represents a local variant of the
approximation theorem proved in [15].

heorem 3.6 Let (M , F) be a reversible Finsler manifold. Fix a Lipschitz function
f ∈ LIP(M) and some constants δ, ε, λ > 0. hen there exists a function g ∈ C1(M)
with spt(g) ⊆ BM

δ (spt( f )) such that

(3.4) ∣g(x) − f (x)∣ ≤ ε and lipa(g)(x) ≤ Lip( f ;BM
δ (x)) + λ

for every x ∈ M.
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Proof We divide the proof into several steps.

Step 1: Set-up. Fix any r > 0 such that r ≤ δ/2 and

(3.5) (2r + r2) Lip( f ) + r ≤ λ.

heorem 3.5 grants that for any x ∈ M we can pick a radius rx ∈ (0, r) such that the ex-
ponential map expx ∶ BTxM

rx (0) → BM
rx (x) is a (1 + r)-biLipschitz C1-diòeomorphism.

Hence we can choose a sequence (x i)i∈N ⊆ M such that the family (B i)i∈N, where we
set B i ∶= BM

rxi
(x i) for all i ∈ N, is a locally ûnite open covering of M. Given any i ∈ N,

we ûx a linear isomorphism I i ∶ Rn → Tx i M, where n ∶= dim(M). Let us deûne the
norm ∥ ⋅ ∥i on Rn as

∥v∥i ∶= F(x i , I i(v)) for every v ∈ Rn .

Since any two norms on Rn are equivalent, there exists C i ≥ 1 such that

(3.6)
1
C i

∥v∥i ≤ ∣v∣ ≤ C i ∥v∥i for every v ∈ Rn .

We deûne the chart φ i ∶ B i → Rn as

φ i(x) ∶= (expx i
○ I i)−1(x) for every x ∈ B i .

herefore, φ i is a (1 + r)-biLipschitz C1-diòeomorphism from (B i , dF) to (φ i(B i),
∥ ⋅ ∥i). Moreover, let us ûx a smooth partition of unity (ψ i)i∈N subordinated to the
covering (B i)i∈N.
● he functions ψ i belong to C∞c (M).
● 0 ≤ ψ i ≤ 1 and spt(ψ i) ⊆ B i for every i ∈ N.
● ∑i∈N ψ i(x) = 1 holds for every x ∈ M.

Finally, for any i ∈ N, we call Ai ∶= { j ∈ N ∶ B j ∩ B i ≠ ∅}, we denote by n i ∈ N
the cardinality of the set Ai , and we deûne m i ∶= max{n j ∶ j ∈ Ai} ∈ N. hen it is
immediate to check that

(3.7) n i ≤ m j for every i ∈ N and j ∈ Ai .

Step 2: Construction of g. First ûx a family (ρk)k∈N of smooth molliûers on Rn .
● he functions ρk are symmetric and belong to C∞c (Rn).
● ρk ≥ 0 and spt(ρk) ⊆ BR

n

1/k(0) for every k ∈ N.
● ∫Rn ρk(v)dv = 1 holds for every k ∈ N.

For any i ∈ N we can choose a McShane extension f i ∶ (Rn , ∥ ⋅ ∥i) → R of f ○ φ−1
i ∶

φ i(B i) → R, namely f i is a Lipschitz function with Lip( f i) ≤ (1 + r)Lip( f ;B i) that
coincides with f ○ φ−1

i on the set φ i(B i). Now we deûne f ki ∶ Rn → R for any i , k ∈ N
as

f ki (v) ∶= ( f i ∗ ρk)(v) = ∫
Rn
f i(v +w)ρk(w)dw for every v ∈ Rn .

It is well known that each function f ki is of class C∞. Pick a sequence (k i)i∈N ⊆ N
such that for every i ∈ N,
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(1 + r) Lip( f ;B i)C i

k i
≤ ε,

Lip(ψ i) (1 + r) Lip( f ;B i)C i

k i
≤ r

m i
.

(3.8)

hen we deûne g i ∶= f k i
i for all i ∈ N and

(3.9) g(x) ∶= ∑
i∈N

ψ i(x)(g i ○ φ i)(x) for every x ∈ M .

Clearly g belongs to the space C1(M).
Step 3: Properties of g. Given i ∈ N and v ∈ Rn , it holds that

∣g i(v) − f i(v)∣ = ∣ ∫
Rn
f i(v +w)ρk i (w)dw − ∫

Rn
f i(v)ρk i (w)dw∣

≤ ∫
Rn

∣ f i(v +w) − f i(v)∣ρk i (w)dw

≤ Lip( f i)∫
BRn
1/ki

(0)
∥w∥i ρk i (w)dw

(3.6)
≤ (1 + r) Lip( f ;B i)C i

k i
∫
Rn

ρk i (w)dw

= (1 + r) Lip( f ;B i)C i

k i

(3.8)
≤ ε.

(3.10)

Accordingly, one has that

∣g(x) − f (x)∣ (3.9)= ∣∑
i∈N

ψ i(x)(g i ○ φ i − f )(x)∣ ≤ ∑
i∈N

ψ i(x)∣g i − f ○ φ−1
i ∣(φ i(x))

(3.10)
≤ ε∑

i∈N
ψ i(x) = ε,

which proves the ûrst line of (3.4). Moreover, calling S the set of all i ∈ N such that
the center of the ball B i does not lie in BM

r (spt( f )), we have for any i ∈ S that f ∣B i
≡

0⇒ f i ≡ 0⇒ g i ≡ 0, whence accordingly g = ∑i∈N∖S ψ i g i ○ φ i . his shows that

spt(g) ⊆ ⋃
i∈N∖S

B i ⊆ BM
2r(spt( f )) ⊆ BM

δ (spt( f )).

Step 4: Properties of lipa(g). Given i ∈ N and v ,w ∈ Rn , it holds that

∣g i(v) − g i(w)∣ ≤ ∫
Rn

∣ f i(v + u) − f i(w + u)∣ρk i (u)du

≤ (1 + r) Lip( f ;B i)∥v −w∥i .

(3.11)

Now ûx x ∈ M and denote Ix ∶= {i ∈ N ∶ x ∈ B i}. Pick any i ∈ Ix and notice that
Ix ⊆ Ai . Since the set Ix is ûnite, we can choose a radius sx > 0 satisfying BM

sx (x) ⊆ B j
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for all j ∈ Ix . Hence for every y, z ∈ BM
sx (x) one has that

∣g(y) − g(z)∣ ≤ ∣ ∑
j∈Ix

[ψ j(y) − ψ j(z)](g j ○ φ j − f )(y)∣

+ ∣ ∑
j∈Ix

ψ j(z)[(g j ○ φ j)(y) − (g j ○ φ j)(z)]∣

≤ ∑
j∈Ix

∣ψ j(y) − ψ j(z)∣ ∣(g j ○ φ j − f )(y)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶(A)

+ ∑
j∈Ix

ψ j(z) ∣(g j ○ φ j)(y) − (g j ○ φ j)(z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶(B)

.

We estimate the quantities (A) and (B) separately. First, observe that

(A)
(3.10)
≤ dF(y, z) ∑

j∈Ix

Lip(ψ j)
(1 + r) Lip( f ;B j)C j

k j

≤ dF(y, z) ∑
j∈Ai

Lip(ψ j) (1 + r) Lip( f ;B j)C j

k j

(3.8)
≤ dF(y, z) ∑

j∈Ai

r
m j

(3.7)
≤ r dF(y, z).

Furthermore, we have that

(B)
(3.11)
≤ (1 + r) ∑

j∈Ix

ψ j(z) Lip( f ;B j)∥φ j(y) − φ j(z)∥ j

≤ (1 + r)2 dF(y, z) ∑
j∈Ix

ψ j(z) Lip( f ;B j)

≤ (1 + r)2 dF(y, z) Lip( f ;BM
2r(x)) ∑

j∈Ix

ψ j(z)

≤ [Lip( f ;BM
δ (x)) + (2r + r2) Lip( f )]dF(y, z).

herefore, we ûnally conclude that, for any y, z ∈ BM
sx (x), it holds that

∣g(y) − g(z)∣ ≤ [Lip( f ;BM
δ (x)) + (2r + r2)Lip( f ) + r]dF(y, z)

(3.5)
≤ [Lip( f ;BM

δ (x)) + λ]dF(y, z).

his shows that lipa(g)(x) ≤ Lip(g;BM
sx (x)) ≤ Lip( f ;BM

δ (x)) + λ for every x ∈ M,
thus proving the second line in (3.4). Hence the statement is achieved. ∎

Remark 3.7 On general Finsler manifolds the exponential map is only of class C1.
Moreover, as proved by Akbar-Zadeh [1], the exponential map is of class C2 if and
only if it is smooth. he family of those Finsler manifolds having this property (that
are said to be of Berwald type) contains all Riemannian manifolds. We observe that if
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(M , F) is of Berwald type, then the approximating function g in heorem 3.6 can be
chosen to be smooth (by the same proof).

4 Main Result

Let us consider a geodesically complete, reversible Finslermanifold (M , F) and a non-
negative Radon measure µ on the metric space (M , dF), which will remain ûxed for
the whole section.

Remark 4.1 Observe that (M , dF , µ) is ametricmeasure space, in the sense of (2.1).
Indeed, the metric space (M , dF) is complete (by heorem 3.4) and separable (as the
manifold M is second-countable by deûnition).

4.1 Density in Energy of C1 Functions

Let f ∈ C1
c(M) be given. hen we denote by d f its diòerential, which is a continuous

section of the cotangent bundle T∗M. For brevity, let us set

∣d f ∣(x) ∶= F∗(x , d f (x)) for every x ∈ M ,

where F∗(x , ⋅ ) stands for the dual norm of F(x , ⋅ ). Observe that the function f can
be viewed as an element of the Sobolev spaceW 1,2(M , dF , µ) and that

(4.1) ∣d f ∣ ≤ ∣d f ∣ in the µ-almost everywhere sense,

as a consequence of (2.2) and the fact that lip( f ) = ∣d f ∣.

Proposition 4.2 (Density in energy of C1 functions) Let f ∈ W 1,2(M , dF , µ) be
given. hen there exists a sequence ( fk)k∈N ⊆ C1

c(M) such that fk → f and ∣d fk ∣ → ∣d f ∣
in L2(µ) as k →∞.

Proof First of all, we know from heorem 2.4 that there exists a sequence (gk)k∈N ⊆
LIPc(M) such that gk → f and lipa(gk) → ∣d f ∣ in L2(µ). (Recall that (M , dF) is
proper by heorem 3.4.) Now ûx k ∈ N and observe that heorem 3.6 provides us
with a sequence (g i

k)i∈N ⊆ C1
c(M) with

(4.2)
∣g i

k(x) − gk(x)∣ ≤
1
i
, spt(g i

k) ⊆ BM
1/i(spt(gk)),

lipa(g i
k)(x) ≤ Lip(gk ;BM

1/i(x)) +
1
i

for every i ∈ N and x ∈ M. Notice that the ûrst two lines in (4.2) yield

lim
i

∥g i
k − gk∥L2(µ) ≤ lim

i
µ(BM

1 (spt(gk)))1/2/i = 0,

while the third one grants that limi ∣dg i
k ∣(x) = limi lipa(g i

k)(x) ≤ lipa(gk)(x) for
every x ∈ M. Since we also have that

∣dg i
k ∣ ≤ χBM

1 (spt(gk))(Lip(gk) + 1) ∈ L2(µ) for all i ∈ N,
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it follows from the reverse Fatou lemma that limi ∥∣dg i
k ∣∥L2(µ) ≤ ∥ lipa(gk)∥L2(µ).

herefore, a diagonal argument gives us a sequence (ik)k∈N ⊆ N such that the func-
tions fk ∶= g ik

k satisfy fk → f in L2(µ) and

(4.3) lim
k→∞

∥∣d fk ∣∥L2(µ) ≤ ∥∣d f ∣∥L2(µ) .

In particular, both the sequences (∣d fk ∣)k and (∣d fk ∣)k are bounded in L2(µ) by (4.3)
and (4.1). hus (up to subsequence) it holds that ∣d fk ∣ ⇀ h and ∣d fk ∣ ⇀ h′ weakly for
some h, h′ ∈ L2(µ). hen Proposition 2.3 grants that ∣d f ∣ ≤ h ≤ h′ holds µ-almost
everywhere in M. Given that in

∥∣d f ∣∥L2(µ) ≤ ∥h′∥L2(µ) ≤ lim
k→∞

∥∣d fk ∣∥L2(µ)

≤ lim
k→∞

∥∣d fk ∣∥L2(µ)
(4.3)
≤ ∥∣d f ∣∥L2(µ) ,

all inequalities are actually equalities, it holds that ∥h′∥L2(µ) = ∥∣d f ∣∥L2(µ) = limk

∥∣d fk ∣∥L2(µ). Hence, we conclude that h′ = ∣d f ∣ in the µ-almost everywhere sense and
accordingly ∣d fk ∣ → ∣d f ∣ in L2(µ). ∎

4.2 Concrete Tangent and Cotangent Modules

We deûne the concrete tangent/cotangent modules associated with (M , dF , µ) as

Γ2(TM; µ) ∶= space of all L2(µ)-sections of TM ,

Γ2(T∗M; µ) ∶= space of all L2(µ)-sections of T∗M .

he space Γ2(TM; µ) has a natural structure of L2(µ)-normed L∞(µ)-module if en-
dowed with the usual vector space structure and the following pointwise operations

( f v)(x) ∶= f (x)v(x) ∈ TxM and ∣v∣(x) ∶= F(x , v(x))

for µ-almost every x ∈ M and for any v ∈ Γ2(TM; µ) and f ∈ L∞(µ). Similarly,
Γ2(T∗M; µ) is an L2(µ)-normed L∞(µ)-module.

Standard veriûcations show that the modules Γ2(TM; µ) and Γ2(T∗M; µ) have
local dimension equal to n ∶= dim(M), whence they are separable [25, Remark 5].
Furthermore, it holds that

Γ2(T∗M; µ) is the module dual of Γ2(TM; µ),
Γ2(TM; µ) is the module dual of Γ2(T∗M; µ).

In particular, they are both re�exive as Banach spaces [18, Corollary 1.2.18]. It can also
be readily proved that

(4.4) {d f ∶ f ∈ C1
c(M)} generates Γ2(T∗M; µ) in the sense of modules,

where each element d f can be viewed as an element of Γ2(T∗M; µ) as it is a continu-
ous section of the cotangent bundle T∗M and its associated pointwise norm ∣d f ∣ has
compact support.
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Remark 4.3 We emphasise that in (4.4) it is essential to consider C1-functions (as
opposed to Lipschitz functions). he reason is that C1-functions are everywhere dif-
ferentiable, thus, in particular, µ-almost everywhere diòerentiable (independently of
the chosen measure µ), while a Lipschitz function might be not diòerentiable at any
point of a set of positive µ-measure.

Lemma 4.4 If (M , F) is a Riemannian manifold, then Γ2(TM; µ) is a Hilbert
module. Conversely, if Γ2(TM; µ) is a Hilbert module and spt(µ) = M, then (M , F) is
a Riemannian manifold.

Proof First suppose that (M , F) is a Riemannian manifold, i.e., that each norm
F(x , ⋅ ) satisûes the parallelogram identity. hen for any v ,w ∈ Γ2(TM; µ), it holds
that for µ-almost every x ∈ M,

∣v +w∣2(x) + ∣v −w∣2(x) = F(x , (v +w)(x))2 + F(x , (v −w)(x))2

= 2 F(x , v(x))2 + 2 F(x ,w(x))2

= 2 ∣v∣2(x) + 2 ∣w∣2(x),

thus showing that Γ2(TM; µ) is a Hilbert module.
Now suppose that the concrete tangentmodule Γ2(TM; µ) is aHilbertmodule and

spt(µ) = M. Let U be the domain of some chart on M. hen one can easily build a
sequence (v i)i∈N of continuous vector ûelds on U such that

(4.5) (v i(x))i∈N is dense in TxM for every x ∈ U .

Hence, for µ-almost every x ∈ U , we have that the identity

F(x , (v i + v j)(x))2 + F(x , (v i − v j)(x))2 = ∣v i + v j ∣2(x) + ∣v i − v j ∣2(x)
= 2 ∣v i ∣2(x) + 2 ∣v j ∣2(x)
= 2 F(x , v i(x))2 + 2 F(x , v j(x))2

holds for every i , j ∈ N. Since the function F ∶ TM → [0,+∞) is continuous and
any set of full µ-measure is dense in M, we deduce from property (4.5) that the norm
F(x , ⋅ ) satisûes the parallelogram identity for every point x ∈ U . By arbitrariness of
U , we thus conclude that (M , F) is a Riemannian manifold. ∎

4.3 The Isometric Embedding L2
µ(TM) ↪ Γ2(TM; µ)

he aim of this concluding subsection is to investigate the relation between the ab-
stract (co)tangent module and the concrete one. he argument goes as follows: the
natural projection map P ∶ Γ2(T∗M; µ) → L2

µ(T∗M) (Lemma 4.5) is a quotient map
(Proposition 4.6), whence its adjoint operator ι ∶ L2

µ(TM) → Γ2(TM; µ) is an isomet-
ric embedding (heorem 4.7). As a consequence, the Sobolev spaceW 1,2(M , dF , µ)
is a Hilbert space as soon as (M , F) is a Riemannian manifold (heorem 4.11). Such
results are essentially taken from [19], where the Euclidean case has been treated; in
any case , we provide their full proof here for completeness.
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In light of inequality (4.1), there is a natural projection operator P from the con-
crete cotangentmodule Γ2(T∗M; µ) to the abstract cotangentmodule L2

µ(T∗M). he
characterisation of such an operator is the subject of the following result.

Lemma 4.5 (he projection P) here exists a unique L∞(µ)-linear and continuous
operator P ∶ Γ2(T∗M; µ) → L2

µ(T∗M) such that P(d f ) = d f for every f ∈ C1
c(M).

Moreover, it holds that

(4.6) ∣P(ω)∣ ≤ ∣ω∣ µ-almost everywhere, for every ω ∈ Γ2(T∗M; µ).

Proof We denote by V the vector space of all elements of Γ2(T∗M; µ) that can be
written in the form∑k

i=1 χE i d f i , where (E i)k
i=1 is a Borel partition ofM and ( f i)k

i=1 ⊆
C1
c(M). Recall that V is dense in Γ2(T∗M; µ) by (4.4). Since P is required to be

L∞(µ)-linear and to satisfy P(d f ) = d f for all f ∈ C1
c(M), we are forced to set

(4.7) P(ω) ∶=
k
∑
i=1
χE i d f i , for every ω =

k
∑
i=1
χE i d f i ∈ V.

he well posedness of such a deûnition stems from the validity of the µ-almost every-
where inequality

(4.8) ∣
k
∑
i=1
χE i d f i ∣ =

k
∑
i=1
χE i ∣d f i ∣

(4.1)
≤

k
∑
i=1
χE i ∣d f i ∣ = ∣

k
∑
i=1
χE i d f i ∣,

which also ensures that the map P ∶ V → L2
µ(T∗M) is linear continuous and accord-

ingly can be uniquely extended to a linear continuous operator P ∶ Γ2(T∗M; µ) →
L2

µ(T∗M). Another consequence of (4.8) is that P satisûes the inequality (4.6). Fi-
nally, by suitably approximating any element of the space L∞(µ) with a sequence of
simple functions, we deduce from (4.7) that the map P is L∞(µ)-linear. his com-
pletes the proof of the statement. ∎

Given any ω ∈ L2
µ(T∗M), we infer from (4.6) that ∣ω∣ ≤ ∣ω∣ holds µ-almost every-

where for any ω ∈ Γ2(T∗M; µ) such that P(ω) = ω, so that the estimate

(4.9) ∣ω∣ ≤ ess inf
ω∈P−1(ω)

∣ω∣ holds µ-almost everywhere in M .

he next result shows that the inequality in (4.9) is actually an equality, thus proving
that the operator P is a quotient map. he proof relies upon Proposition 4.2.

Proposition 4.6 (P is a quotient map) he operator P satisûes the following property.

(4.10) For any ω ∈ L2
µ(T∗M), there exists ω ∈ P−1(ω) such that ∣ω∣ = ∣ω∣ in the

µ-almost everywhere sense.
In particular, it holds that the map P is surjective.

Proof We divide the proof into three steps.
Step 1: (4.10) for ω = d f . Let f ∈ W 1,2(M , dF , µ) be ûxed. By Proposition 4.2, we
can pick a sequence ( fk)k∈N ⊆ C1

c(M) such that fk → f and ∣d fk ∣ → ∣d f ∣ in L2(µ).
In particular, it holds that (d fk)k∈N is bounded in Γ2(T∗M; µ). Since Γ2(T∗M; µ)
is re�exive, we have (up to subsequence) that d fk ⇀ ω weakly in Γ2(T∗M; µ) for
some ω ∈ Γ2(T∗M; µ). Since the map P is linear and continuous, it holds that
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d fk = P(d fk) ⇀ P(ω) weakly in L2
µ(T∗M). hen Proposition 2.5 grants that

P(ω) = d f . Moreover, the µ-almost everywhere inequality ∣d f ∣ = ∣P(ω)∣ ≤ ∣ω∣ follows
from (4.6). Hence, from ∥∣ω∣∥L2(µ) ≤ limk ∥∣d fk ∣∥L2(µ) = ∥∣d f ∣∥L2(µ) we deduce that
∣d f ∣ = ∣ω∣ is satisûed in the µ-almost everywhere sense. his proves the claim (4.10)
for all ω = d f with f ∈W 1,2(M , dF , µ).
Step 2: (4.10) for ω simple. Let ω ∈ L2

µ(T∗M) be of the form ω = ∑k
i=1 χE i d f i ,

where (E i)k
i=1 is a Borel partition of M and ( f i)k

i=1 ⊆ W 1,2(M , dF , µ). From Step 1
we know that there exist elements ω1 , . . . ,ωk ∈ Γ2(T∗M; µ) such that P(ω i) = d f i
and ∣d f i ∣ = ∣ω i ∣ µ-almost everywhere for all i = 1, . . . , k. Now let ω ∶= ∑k

i=1 χE i ω i ∈
Γ2(T∗M; µ). hen the L∞(µ)-linearity of P ensures that P(ω) = ω, which together
with the µ-almost everywhere identity

∣ω∣ = ∣
k
∑
i=1
χE i d f i ∣ =

k
∑
i=1
χE i ∣d f i ∣ =

k
∑
i=1
χE i ∣ω i ∣ = ∣

k
∑
i=1
χE i ω i ∣ = ∣ω∣

grant that the claim (4.10) holds whenever ω is a simple 1-form.

Step 3: (4.10) for general ω. Fix ω ∈ L2
µ(T∗M). Since simple 1-forms are dense in

L2
µ(T∗M), we can choose a sequence (ωk)k∈N ⊆ L2

µ(T∗M) of simple 1-forms con-
verging to ω. Given k ∈ N, there exists an element ωk ∈ Γ2(T∗M; µ) such that
P(ωk) = ωk and ∣ωk ∣ = ∣ωk ∣ µ-almost everywhere by Step 2. In particular, the se-
quence (ωk)k∈N is bounded in the re�exive space Γ2(T∗M; µ), whence there exists
ω ∈ Γ2(T∗M; µ) such that (up to subsequence) we have ωk ⇀ ω. Since P is linear and
continuous, we deduce that ωk = P(ωk) ⇀ P(ω). On the other hand, it holds that
ωk → ω by assumption, thus necessarily P(ω) = ω. Finally, we have ∣ω∣ = ∣P(ω)∣ ≤ ∣ω∣
µ-almost everywhere by (4.6) and

∥∣ω∣∥L2(µ) ≤ lim
k→∞

∥∣ωk ∣∥L2(µ) = lim
k→∞

∥∣ωk ∣∥L2(µ) = ∥∣ω∣∥L2(µ) ,

so that ∣ω∣ = ∣ω∣ in the µ-almost everywhere sense. his shows the claim (4.10) for any
ω ∈ L2

µ(T∗M). ∎

Ourmain result is the following: the adjoint operator ι of themap P is an isometric
embedding of the abstract tangentmodule L2

µ(TM) into the concrete tangentmodule
Γ2(TM; µ). his is achieved by duality in the ensuing theorem, as a consequence of
the fact that P is a quotient map.

heorem 4.7 (he isometric embedding ι) Let (M , F) be a geodesically complete,
reversible Finsler manifold and µ a non-negative Radon measure on (M , dF). Let us
denote by ι ∶ L2

µ(TM) → Γ2(TM; µ) the adjoint map of P ∶ Γ2(T∗M; µ) → L2
µ(T∗M),

i.e., the unique L∞(µ)-linear and continuous operator satisfying

(4.11) ω(ι(v)) = P(ω)(v), µ-almost everywhere, for every v ∈ L2
µ(TM) and

ω ∈ Γ2(T∗M; µ).
hen it holds that

(4.12) ∣ι(v)∣ = ∣v∣, µ-almost everywhere, for every v ∈ L2
µ(TM).
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In particular, the operator ι is an isometric embedding and L2
µ(TM) is a ûnitely-

generated module.

Proof First the µ-almost everywhere inequality ∣P(ω)(v)∣ ≤ ∣ω∣∣v∣, which is granted
by (4.6), shows that the element ι(v) in (4.11) is well deûned and that the map ι is
L∞(µ)-linear continuous. he same inequality also implies that ∣ι(v)∣ ≤ ∣v∣ holds
µ-almost everywhere for any ûxed v ∈ L2

µ(TM). On the other hand, pick any ω ∈
L2

µ(T∗M) such that ∣ω∣ ≤ 1 µ-almost everywhere in M. Proposition 4.6 provides us
with some element ω ∈ Γ2(T∗M; µ) satisfying P(ω) = ω and ∣ω∣ = ∣ω∣ in the µ-almost
everywhere sense. herefore,

ω(v) = P(ω)(v) ≤ ess sup
∣ω′∣≤1

P(ω′)(v) (4.11)= ess sup
∣ω′∣≤1

ω′(ι(v))

= ∣ι(v)∣ µ-almost everywhere in M ,

whence accordingly we conclude that

∣v∣ = ess sup
∣ω∣≤1

ω(v) ≤ ∣ι(v)∣ µ-almost everywhere in M .

his proves that the identity (4.12) is satisûed. he last statement now directly follows
from the fact that the module Γ2(TM; µ) has local dimension equal to n. ∎

Remark 4.8 In general, the isometric embedding ι ∶ L2
µ(TM) → Γ2(TM; µ) pro-

vided by heorem 4.7 might not be an isomorphism. More precisely, we have that

(4.13) ι is an isomorphism if and only if ∣d f ∣ = lip( f )holds µ-almost everywhere
for every f ∈ C1

c(M).

Indeed, it can be readily checked that ι is surjective if and only if P is injective, which
is in turn equivalent to saying that P preserves the pointwise norm. Moreover, it is
suõcient to check the latter condition on the elements of {d f ∶ f ∈ C1

c(M)}, as these
are generators of Γ2(T∗M; µ). Finally, we recall that, for any function f ∈ C1

c(M), we
have that P(d f ) = d f and ∣d f ∣ = lip( f ). All in all, we can conclude that the property
(4.13) is veriûed.

We now provide an example in which ι fails to be an isomorphism, even if themea-
sure µ has full support. Choose any sequence (ak)k∈N of positive real numbers such
that∑∞

k=0 ak < +∞, enumerate the rational numbers as (qk)k∈N, and deûne the ûnite
Borel measure µ on R as µ ∶= ∑∞

k=0 ak δqk , where δqk is the Dirac delta at qk . here-
fore, W 1,2(R, dEucl , µ) = L2(µ) and all its elements have null minimal weak upper
gradient [5, Remark 4.12]. hus, in particular, ∣d f ∣ = 0 holds for every f ∈ C1

c(M). On
the other hand, there clearly exist functions f ∈ C1

c(M) such that
lip( f ) > 0 on some Borel set having positive µ-measure. hanks to (4.13) we con-
clude that the map ι is not an isomorphism.

Corollary 4.9 Let (M , F) be a geodesically complete, reversible Finsler manifold. Let
µ be a non-negative Radonmeasure on (M , dF). hen the Sobolev spaceW 1,2(M , dF , µ)
is re�exive.
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Proof heorem 4.7 says that L2
µ(TM) is ûnitely generated, whence it is

re�exive [18, heorem 1.4.7]. his implies that W 1,2(M , dF , µ) is re�exive by
Proposition 2.6. ∎

Remark 4.10 We point out that Corollary 4.9 can be alternatively deduced as a
consequence of a result by Ambrosio, Colombo, and Di Marino [3, Corollary 7.5], as
we shall sketch.
Fix x ∈ M. We call Mk the closed ball of radius k ∈ N centered at x and we

set µk ∶= µ∣Mk
. By properness of (M , dF) and the Bishop–Gromov inequality we

know that each metric space (Mk , dF) is doubling; accordingly,W 1,2(Mk , dF , µk) is
re�exive for every k ∈ N by [3, Corollary 7.5]. Now pick a bounded sequence ( f i)i∈N
in W 1,2(M , dF , µ). A diagonalisation argument together with Proposition 2.6 and
[16, Proposition 2.6] grant the existence of a function f ∈W 1,2(M , dF , µ) and of a (not
relabeled) subsequence of ( f i)i∈N such that ( f i , d f i) ⇀ ( f , d f ) in the weak topology
of L2(µ)×L2

µ(T∗M). his yields the re�exivity ofW 1,2(M , dF , µ) by Proposition 2.6.

We conclude by focusing on the special case of Riemannianmanifolds. By combin-
ing heorem 4.7 with Lemma 4.4 we can immediately obtain the following result. (A
word on notation: given a Riemannianmanifold (M , g), we denote by dg the distance
induced by the metric g.)

heorem 4.11 (Weighted Riemannian manifolds are inûnitesimally Hilbertian) Let
(M , g) be a geodesically complete Riemannian manifold. Fix any non-negative Radon
measure µ on (M , dg). hen the metric measure space (M , dg , µ) is inûnitesimally
Hilbertian.

Proof Let us deûne F(x , v) ∶= gx(v , v)1/2 for every x ∈ M and v ∈ TxM, so that
(M , F) is a reversible Finsler manifold (and dF = dg). Consider the embedding
ι ∶ L2

µ(TM) → Γ2(TM; µ) provided by heorem 4.7. Since ι preserves the pointwise
norm and Γ2(TM; µ) is a Hilbert module (by Lemma 4.4), we deduce that L2

µ(TM)
is a Hilbert module as well. his grants that the Sobolev space W 1,2(M , dF , µ) is a
Hilbert space by (2.3), thus proving the statement. ∎

5 Alternative Proof of Theorem 4.11

Herewe provide an alternative proof ofheorem4.11. Instead of deducing it as a corol-
lary of heorem 4.7, we rather make use of the following fact that has been achieved
in [19].

(5.1) Let (V , ⟨ ⋅ , ⋅ ⟩) be a ûnite-dimensional scalar product space. Let ν ≥ 0 be
any Radon measure on (V , ⟨ ⋅ , ⋅ ⟩). hen (V , ⟨ ⋅ , ⋅ ⟩, ν) is inûnitesimally
Hilbertian.

(Actually, the result is proved for V = Rd equipped with the Euclidean distance, but,
as observed in [19, Remark 2.11], the very same proof works for any ûnite-dimensional
scalar product space.)
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Let f , g ∈ W 1,2(M , dg , µ) be ûxed. In order to prove the claim, it is enough to
show that

(5.2) ∣D( f + g)∣2 + ∣D( f − g)∣2 = 2 ∣D f ∣2 + 2 ∣Dg∣2

holds µ-almost everywhere on M. Fix any ε > 0. By using heorem 3.5 and the
Lindelöf property of (M , dg), we can ûnd two sequences (x i)i∈N ⊆ M and (r i)i∈N ⊆
(0,+∞) satisfying the following properties.

● Calling Vi the closed ball in (M , dg) having radius r i and center x i , it holds that
(Vi)i∈N is a cover of M.

● Calling Wi the closed ball in (Tx i M , gx i ) having radius r i and center 0, it holds
that each exponential map expx i

is (1 + ε)-biLipschitz between Wi and Vi .
For any i ∈ N, let us denote by φ i ∶ Vi →Wi the inverse map of expx i ∣Wi

. Deûne µ i ∶=
µ∣Vi

and ν i ∶= (φ i)∗µ i . hen φ i is a map of bounded deformation from (Vi , dg , µ i)
to (Wi , gx i , ν i), with inverse of bounded deformation (see [18, Deûnition 2.4.1] for
the notion of a map of bounded deformation). herefore [18, (2.4.1)] ensures that for
every h ∈W 1,2(Vi , dg , µ i) one has that h ○ φ−1

i ∈W 1,2(Wi , gx i , ν i) and that

(5.3)
∣Dh∣ ○ φ−1

i

1 + ε ≤ ∣D(h ○ φ−1
i )∣ ≤ (1 + ε) ∣Dh∣ ○ φ−1

i

holds ν i-almost everywhere on Tx i M. Furthermore, we know from [16, Proposition
2.6] that, for any h ∈ W 1,2(M , dg , µ) and i ∈ N, one has that χVi h ∈ W 1,2(Vi , dg , µ i)
and that

(5.4) ∣D(χVi h)∣ = ∣Dh∣
holds µ i-almost everywhere on Vi . Now let us set f i ∶= (χVi f ) ○ φ−1

i and g i ∶=
(χVi g) ○ φ−1

i for every i ∈ N. We have that the Sobolev spaceW 1,2(Tx i M , gx i , ν i) ≃
W 1,2(Wi , gx i , ν i) is a Hilbert space by (5.1), whence accordingly

(5.5) ∣D( f i + g i)∣2 + ∣D( f i − g i)∣2 = 2 ∣D f i ∣2 + 2 ∣Dg i ∣2

holds ν i-almost everywhere on Tx i M. By combining (5.3), (5.4), and (5.5), we con-
clude that

2 ∣D f ∣2 + 2 ∣Dg∣2
(1 + ε)4 ≤ ∣D( f + g)∣2 + ∣D( f − g)∣2

≤ (1 + ε)4 (2 ∣D f ∣2 + 2 ∣Dg∣2)

(5.6)

holds µ i-almost everywhere for every i ∈ N. his implies that (5.6) is satisûed
µ-almost everywhere on M, so by letting ε ↘ 0, we ûnally obtain (5.2), as required.

Remark 5.1 It seems to us that heorem 4.7 also could be deduced from the results
in [19] via a suitable localisation argument, but with a muchmore involved proof. For
this reason, we chose the presentation seen in Section 4.

6 Infinitesimal Hilbertianity of Weighted Carnot Groups

In this conclusive section we prove that all (sub-Riemannian) Carnot groups are in-
ûnitesimally Hilbertian when equipped with any non-negative Radon measure.

https://doi.org/10.4153/S0008439519000328 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000328


136 D. Lučić and E. Pasqualetto

Since the techniques we shall use closely follow along the lines of Section 4, we will
omit some details. More speciûcally, we ûrst replaceheorem 3.6 with an approxima-
tion result tailored for Carnot groups (see heorem 6.2), and then, to conclude, we
employ the same functional-analytic machinery as in Section 4.3.

6.1 Preliminaries on Carnot Groups

We recall the basics in the theory of Carnot groups.
A sub-Finsler Carnot group of rank k ≥ 0 and step s ≥ 1 is a connected, simply

connected Lie group G, whose associated Lie algebra g admits a stratiûcation g =
g1 ⊕ ⋅ ⋅ ⋅ ⊕ gs such that we have the following.

● g1 , . . . , gs are linear subspaces of g satisfying gs ≠ {0}, [g1 , gi] = gi+1 for all
i = 1, . . . , s − 1, and [g1 , gs] = {0}, where by [ ⋅ , ⋅ ] we denote the Lie bracket of
smooth vector ûelds on G.

● he degree-one stratum g1 has dimension k and is equipped with a norm ∥ ⋅ ∥.

When ∥ ⋅ ∥ is induced by a scalar product, we say that G is a sub-Riemannian Carnot
group.

he homogeneous dimension of G is deûned as d ∶= ∑s
i=1 i dim(gi), while VolG

stands for the bi-invariant Haar measure onG (which is unique up to a positive mul-
tiplicative constant). We call {δλ}λ>0 the one-parameter group of dilations of G,
namely δλ is the unique Lie group automorphism of G such that (δλ)∗(v) = λ iv
for every i = 1, . . . , s and v ∈ gi , where by (δλ)∗ we denote the Lie algebra automor-
phism of g associated with δλ . Given any point x ∈ G, we deûne the horizontal ûber
HxG ≤ TxG as HxG ∶= deLx(g1), where e is the identity ofG, the space TeG is iden-
tiûed with g, and Lx ∶ G → G is the le�-translation map Lx(y) ∶= x ⋅ y. We endow
HxG with the norm ∥v∥x ∶= ∥dxLx−1(v)∥. he horizontal bundle of G is deûned as
HG ∶= ⊔x∈G HxG.
A piecewise C1-curve γ ∶ [0, T] → G is said to be horizontal provided it holds that

γ̇t ∈ Hγ tG for almost every t ∈ [0, T]. Its horizontal length is given by ℓH(γ) ∶=
∫

T
0 ∥γ̇t∥γ t dt. he Carnot–Carathéodory distance between two points x , y ∈ G is de-
ûned as dCC(x , y) ∶= inf ℓH(γ), where the inûmum is taken among all horizon-
tal curves γ joining x to y. he resulting metric space (G, dCC) is complete and
separable. Observe that dCC is le�-invariant, i.e., it holds that dCC(z ⋅ x , z ⋅ y) =
dCC(x , y) for all x , y, z ∈ G. Moreover, dCC is one-homogeneous with respect to
the dilations δλ , which means that dCC(δλ(x), δλ(y)) = λ dCC(x , y) holds for ev-
ery λ > 0 and x , y ∈ G. (See [23] for a complete presentation of the basic theory of
sub-Finsler Carnot groups.)

6.2 The Embedding Theorem on Weighted Carnot Groups

Let G be a sub-Finsler Carnot group. Given any f ∈ C1
c(G) and x ∈ G, we deûne the

element dH f (x) ∈ H∗
xG ∶= (HxG)∗ as the restriction of the diòerential of f at x to

HxG. his way we obtain a section dH f of the Banach bundle H∗G ∶= ⊔x∈G H∗
xG,

where each ûber H∗
xG is equipped with the dual norm ∥ ⋅ ∥∗x .
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Lemma 6.1 Let G be a sub-Finsler Carnot group. Fix any f ∈ C1
c(G). hen f ∈

LIP(G) and lip( f )(x) = lipa( f )(x) = ∥dH f (x)∥
∗
x for every x ∈ G.

Proof Fix x ∈ G and ε > 0. By continuity of the function x ↦ ∥dH f (x)∥∗x , there
exists r > 0 such that ∥dH f (y)∥∗y ≤ ∥dH f (x)∥∗x + ε for every y ∈ BG2r(x). Pick y, z ∈
BGr (x). Calling Cyz the set of all horizontal curves γ joining y to z with ℓH(γ) < 2r,
it holds dCC(y, z) = inf{ℓH(γ) ∶ γ ∈ Cyz}. Each curve γ ∈ Cyz lies entirely in BG2r(x)
and the function f ○ γ is absolutely continuous, thus we have that

∣ f (y) − f (z)∣ ≤ ∫
T

0
∣ d
dt
f (γt)∣ dt ≤ ∫

T

0
∥dH f (γt)∥∗γ t

∥γ̇t∥γ t dt

≤ (∥dH f (x)∥∗x + ε) ℓH(γ).
By ûrst taking the inûmum over γ ∈ Cyz and then letting ε ↘ 0, we deduce that

(6.1) ∣ f (y) − f (z)∣ ≤ ∥dH f (x)∥∗x dCC(y, z) for every y, z ∈ BG2r(x).
Calling C the maximum of x ↦ ∥dH f (x)∥∗x onG, we infer from (6.1) that f is locally
C-Lipschitz (thus Lip( f ) ≤ C, as (G, dCC) is a length space) and that lipa( f )(x) ≤
∥dH f (x)∥∗x for all x ∈ G.

To conclude the proof, it remains to show that ∥dH f (x)∥∗x ≤ lip( f )(x) for every
x ∈ G. To this end, ûx x ∈ G such that ∥dH f (x)∥∗x > 0. Choose any unit-speed
horizontal curve γ ∶ [0, 1] → G such that γ0 = x and dH f (x)[γ̇0] = ∥dH f (x)∥∗x .
herefore, we ûnally conclude that

∥dH f (x)∥∗x = dH f (x)[γ̇0] = lim
t↘0

f (γt) − f (γ0)
t

≤ lip( f )(x) lim
t↘0

dCC(γt , γ0)
t

≤ lip( f )(x),

where the last inequality follows from the fact that dCC(γt , γ0) ≤ ℓH(γ∣[0,t]) = t for
all t > 0. ∎

We present an approximation result on Carnot groups that is the analogue of
heorem 3.6.

heorem 6.2 Let G be a sub-Finsler Carnot group. Let f ∈ LIPc(G) and ε > 0 be
ûxed. hen there exists a function g ∈ C∞c (G) such that

(6.2)

spt(g) ⊆ BGε (spt( f )),
∣ f (x) − g(x)∣ ≤ ε for every x ∈ G,

lipa(g)(x) ≤ Lip( f ;BGε (x)) for every x ∈ G.

Proof Fix a symmetric kernel of molliûcation ρ on G, i.e., a function ρ ∈ C∞c (G)
with 0 ≤ ρ ≤ 1 such that ∫ ρ dVolG = 1, spt(ρ) ⊆ BG1 (e), and ρ(x−1) = ρ(x) for every
x ∈ G. Given any λ > 0, we set ρλ(x) ∶= λ−d ρ(δ1/λ(x)) for every x ∈ G. It can
be readily checked that ∫ ρλ dVolG = 1 and that spt(ρλ) ⊆ BGλ (e) for every λ > 0.
Now let us deûne (ρλ ∗ f )(x) ∶= ∫ ρλ(w) f (w−1 ⋅ x)dVolG(w) for every x ∈ G. It is
well known that ρλ ∗ f ∈ C∞c (G) and spt(ρλ ∗ f ) ⊆ BGλ (spt( f )) [14].
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Given that the mapG×G ∋ (w , x) ↦ w−1 ⋅ x ∈ G is continuous and the set spt( f )
is bounded, there exists λ0 ∈ (0, ε/2) such that dCC(w−1 ⋅ x , x) ≤ ε/max{Lip( f ), 2}
holds for every w ∈ BGλ0(e) and x ∈ BG3ε/2(spt( f )). Let g ∶= ρλ0 ∗ f . First, spt(g) ⊆
BGε/2(spt( f )) by construction, thus proving the ûrst line of (6.2). Moreover, for every
point x ∈ BGε/2(spt( f )) we have that

∣ f (x) − g(x)∣ ≤ ∫
BG

λ0
(e)

ρλ0(w) ∣ f (w−1 ⋅ x) − f (x)∣dVolG(w)

≤ Lip( f )∫
BG

λ0
(e)

ρλ0(w)dCC(w−1 ⋅ x , x)dVolG(w) ≤ ε,

while ∣ f (x)− g(x)∣ = 0 for every x ∈ G∖BGε/2(spt( f )), which gives the second line of
(6.2). Finally, to get the third line, it is clearly enough to prove that Lip(g;BGλ0(x)) ≤
Lip( f ;BGε (x)) for all x ∈ G. Such a property is satisûed when x ∉ BGε (spt( f )), since
in this case g = 0 on BGλ0(x). hen let us suppose that x ∈ BGε (spt( f )). Given any
y, z ∈ BGλ0(x) ⊆ B

G
3ε/2(spt( f )), it holds that

∣g(y) − g(z)∣ ≤ ∫
BG

λ0
(e)

ρλ0(w) ∣ f (w−1 ⋅ y) − f (w−1 ⋅ z)∣dVolG(w)

≤ Lip( f ;BGε (x))∫
BG

λ0
(e)

ρλ0(w)dCC(w−1 ⋅ y,w−1 ⋅ z)dVolG(w)

= Lip( f ;BGε (x))dCC(y, z),

whence the sought inequality Lip(g;BGλ0(x)) ≤ Lip( f ;BGε (x)) follows. Hence, (6.2)
is proved. ∎

Fix a sub-Finsler Carnot group G of rank k and a non-negative Radon measure
µ on (G, dCC). We call Γ2(HG; µ) and Γ2(H∗G; µ) the spaces of L2(µ)-sections of
HG and H∗G, respectively. hese spaces have a natural structure of L2(µ)-normed
L∞(µ)-module with respect to the usual pointwise operations. It can be readily
checked that Γ2(H∗G; µ) has local dimension equal to k, is generated by {dH f ∶ f ∈
C∞c (G)}, and its module dual is Γ2(HG; µ). In particular, Γ2(H∗G; µ) is re�exive (as
a Banach space) and is the module dual of Γ2(HG; µ).
By arguing as in Section 4, one can prove the following statements.
● Given any f ∈ W 1,2(G, dCC , µ), there exists a sequence ( fn)n ⊆ C∞c (G) such

that fn → f and ∣dH fn ∣ → ∣d f ∣ in L2(µ), where we set ∣dH fn ∣(x) ∶= ∥dH fn(x)∥∗x
for µ-almost every x ∈ G. his can be proved as in Proposition 4.2 (but replacing
heorem 3.6 with heorem 6.2).

● It holds that ∣d f ∣ ≤ ∣dH f ∣ in the µ-almost everywhere sense for all f ∈ C∞c (G),
by Lemma 6.1 and (2.2).

● It makes sense (Lemma 4.5) to deûne the projection map P ∶ Γ2(H∗G; µ) →
L2

µ(T∗G) as the unique module morphism satisfying P(dH f ) = d f for every
f ∈ C∞c (G).

● By mimicking the proof of Proposition 4.6, it is possible to show that, for any
ω ∈ L2

µ(T∗G), there exists ω ∈ P−1(ω) such that ∣ω∣ = ∣ω∣ holds µ-almost every-
where in G.
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Finally, arguing as in heorem 4.7, Corollary 4.9, and heorem 4.11, we conclude by
pointing out that we can obtain the following embedding result.

heorem 6.3 Let G be a sub-Finsler Carnot group. Let µ ≥ 0 be a Radon mea-
sure on (G, dCC). Consider the adjoint map ι of P, i.e., the unique module morphism
ι ∶ L2

µ(TG) → Γ2(HG; µ) satisfying ω(ι(v)) = P(ω)(v) in the µ-almost everywhere
sense for every v ∈ L2

µ(TG) and ω ∈ Γ2(H∗G; µ). hen ∣ι(v)∣ = ∣v∣, µ-almost every-
where for every v ∈ L2

µ(TG). In particular, the Sobolev space W 1,2(G, dCC , µ) is re�ex-
ive. Moreover, if G is a sub-Riemannian Carnot group, then the metric measure space
(G, dCC , µ) is inûnitesimally Hilbertian.
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