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FAMILIES OF SU(2) REPRESENTATIONS FOR MAPPING
CYLINDERS OF PERIODIC MONODROMY

by G. DASKALOPOULOS*, S. DOSTOGLOU AND R. WENTWORTHf

(Received 21st September 1995)

We examine the action of diffeomorphisms of an oriented surface with boundary on the space of conjugacy
classes of SU{2) representations of the fundamental group and prove that in the case of a single periodic
diffeomorphism the induced action always has fixed points. For the corresponding 3-dimensional mapping
cylinders we obtain families of representations parametrized by their value on the longitude of the torus
boundary.

1991 Mathematics subject classification: 57N10, 14H60.

1. Motivation and outline

It is an open question whether for K a knot in S3 and X its complement there always
exist non-trivial representations of nt(X) into SU(2).

Part of the importance of this question lies in its relevance to the following: Let
Mn be the homology 3-sphere obtained by 1/n-Dehn surgery on K. Then K has
property P if 7r,(Mn) is not trivial for any n. Bing and Martin conjectured 1971 that all
non-trivial knots have property P.

The connection between property P and SU(2) representations is as follows, cf. [5]
and [6]: A representation p : 7r,(AT) -* SU(2) restricts to give a representation of the
fundamental group Z © Z of the torus boundary of X, described by (p(m), p(Q), the
values of p on the meridian m and the longitude / of the knot. Now the space M3 of all
representations of the boundary, also known as character variety, is rather simple, a
sphere with 4 distinguished points corresponding to the representations (±1,±1), see
figure.

According to the main theorem of [1], if K fails to have property P this happens only
for the ±1 surgeries. It is then enough to show that on M3 the curve of restricted
representations of X intersects the curves of the representations of the torus that
extend to the ±1 surgeries of the knot.

Call a family pa for a in (0,1) of irreducible SU(2) representations "good" if px{l)
is conjugate to the element
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In particular, good families are parametrized by their value on the longitude.
Arguments in [6] (Propositions 1.4 and 1.6) show that on M3 a good family always
intersects transversely the curves corresponding to ±1 surgeries, see figure. The
existence of such a family for n,(X) would then imply property P for K. All the
representation spaces of knots worked out so far contain good families.

Here we study three-manifolds ZA with torus boundary, not necessarily knot
complements, that are mapping cylinders of periodic monodromy h. This means that
for an oriented surface Zo with a single boundary component and h a periodic
automorphism of Zo which is the identity on / = 3Z0, we form

= Eo x [0, , 0) ) , 1).

Let 5Ra be the space of conjugacy classes of representations of n,(Z0) into SU(2)
sending the boundary / = 3S0 to an element in SU(2) conjugate to

(nia. 0 \a=exp( . . },y\ 0 -nia)

cf. [2]. By the Seifert-van Kampen theorem, producing a good family for ~Lh is
equivalent to producing (in a continuous fashion) fixed points of the induced map
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on classes of representations of Z, cf. [3]. The main result here is:

Theorem 1.1. Ifh is periodic then h\ has fixed points for each 0 < a < 1.

The theorem is proved by identifying 9ta with the moduli spaces of parabolic bundles
and applying techniques of complex geometry (see section 2 and section 3 for details).
It will be clear in the proof that periodicity of h is needed exactly to make the
identification with parabolic bundles.

The theorem and its proof yield

Corollary 1.2. If h is periodic then for each a. e (0,1) there exists an irreducible
SU(2) representation of n^H,,) which sends (3E, *) to an element conjugate to a.
Moreover, these representations fit into a good family.

Note that this is a statement for the mapping cylinder for any periodic monodromy,
not just knot complements. Knots with periodic monodromy are the torus knots. For
these knots, known to have property P, see [11] and [8], the theorem provides the new
information that they, too, admit good families.

2. Representation spaces and parabolic bundles

Throughout the paper and unless otherwise mentioned £ will denote a compact
oriented surface of genus g > 2.

Let p be a point in E, and let (D, z) be a local coordinate system at p, i.e.

z:D-*D (2.1)

is a diffeomorphism with the unit disk D c C . If we are considering a complex
structure on £ we shall require z to be complex analytic. Let £0 = £\{p}. We shall use
the same notation £„ for the surface with boundary Z\D. Moreover, we set
6* = D\{p}.

Let Eo -»• Zo denote a trivial complex rank 2 vector bundle with a Hermitian metric,
and let A denote the space of smooth hermitian connections on Eo. We shall denote
by AF C A the subspace of flat connections and by © = Map(E0, SU(2)) the unitary
gauge group of Eo which acts on A by pull-back in the usual way. Note that (5
preserves AF. We topologize both A and © with the obvious Frechet topologies. Let
91 = AF/<5 with the quotient topology.

The holonomy map identifies 91 with the space 5R of conjugacy classes of representa-
tions of 7c,(S0) to SU(2). Given a real number 0 < a < 1, let 9ta c 91 denote the
subspace of equivalence classes of connections on Eo with holonomy a = exp(7ua)
where a is the matrix diag(a, —a). Clearly, the holonomy homomorphism identifies 9lt
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with 9ta, the subspace of 91 consisting of representations sending a loop A around p
to an element in SU(2) conjugate to a.

From now on we will identify 91 with 9? and 91, with 91,. It follows that for
a 7̂  0, 1,91, ~ 91, is a smooth manifold of real dimension 6g — 4. Recall that for
a = l,9?a is also smooth but of dimension 6g — 6, whereas for a = 0, 9?, is a real
analytic variety of dimension 6g — 6 which is smooth only for g = 2 (cf. [12]).

Slightly less immediate is the task of putting a complex structure on 9fa. This can
be done via the theorems of Narasimhan-Seshadri and Mehta-Seshadri which we will
briefly review (see [12] and [9] for more details). Suppose now that Z is a Riemann
surface. Recall that a holomorphic structure on a vector bundle £ -> £ is equivalent to
a 3-operator acting on smooth sections: 3£ : fi°(£) -> fiO|l(£). Then the following is
standard.

Definition 2.2. Let (£, 3£) be a holomorphic rank 2 vector bundle on Z (we will
usually omit the notation 3E when the holomorphic structure is understood). Then £ is
called stable (resp. semistable) if for any line subbundle L c E we have

deg L < - deg E (resp. <).

Let 9Jto and 9JJ, denote the spaces of equivalence classes of semistable vector bundles
on Z with determinants isomorphic to O and 0(—p), respectively, where O denotes
the trivial holomorphic line bundle, and O{—p) the line bundle with divisor {— p}.
Narasimhan and Seshadri prove that 9Jl0 and 9JJ, are projective varieties homeomorphic
to 9{0 and 9tls respectively. The isomorphisms 9J0 ~ 50l0 and 9?, ~ 9JI, are given by
sending a given unitary connection to the associated 3-operator. Note that since we are
working on a Riemann surface there is no integrability condition.

In the case of 9JI, more can be said (cf. [12]). Indeed, 9JJ, is a fine moduli space,
i.e. it admits a universal bundle. More precisely, there is a holomorphic bundle
U -*• £ x 9JI, with the property that the restriction of U to £ x {£} is isomorphic to £.
Let 7t, : § -*• 9JJ, denote the restriction of the projective bundle P(U) to [p] x 9JJ,. The
next result is due to Mehta-Seshadri ([9, Theorem 5.3]).

Proposition 2.3. For any a / 0, 1, 9ta is diffeomorphic to §. Hence, 91, admits the
structure of a smooth projective variety. Moreover, there is a morphism n0: $ ->• 9Jl0
which is a P1 bundle when restricted the stable points O/OTQ-

The diagram

"V V
9JJo an,

is called the Hecke correspondence [10]. Since our main result relies heavily on it, we
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will briefly explain this construction from two different points of view.
First, from the algebraic point of view observe that given an equivalence class

£ e 2R,, the fibre of 7t, corresponds to the exact sequence

ET -U- C p ^ 0 , (2.4)

where Cp denotes the torsion sheaf on £ with rank 1 support at p. Therefore, § can
be regarded as the set of equivalence classes of pairs (£, I), where £ is a stable bundle
of degree —1 and I is a homomorphism as in (2.4). Moreover, 7i,(£, £) = £. Pairs
(£, I) as above are called parabolic bundles, and § is called the moduli space of
parabolic bundles.

Lemma 2.5. Given (£, I) e §, let F* denote the kernel of I in (2.4). Then F is
semistable with trivial determinant.

Proof 2.5. Since A2(£) ~ O(-p), it follows that A2(F) ~ O. Any subbundle L c F*
is also a subbundle of £*, and hence

deg L < deg £ ' /2 = 1/2 = • deg L < 0,

from which we conclude F', and therefore also F, is semistable. •

The map n0 is defined by no(F, i) — gr{F), where gr(F) is the usual graded bundle
associated to a Seshadri filtration of the semistable bundle F (cf. [12]). If F is stable
then the fibre of n0 over F is easy to compute: from the sequence

0 —• F* —• £* -i> Cp —> 0,

we see that n^\F) is isomorphic to

P(Ext'(Cp, F')) ~ P(Fp ~ P \

i.e. 7t0 is P1 fibration over the stable part of 9Ji0. We now describe the fibre of n0 over
the most singular point of

Proposition 2.6. Let f0 denote the class of the trivial bundle O®O in SO?,,. Then

Proof. Consider extensions

0 ^ 0 —• F —> 0 —* 0, (2.7)

0^£-+F-+C, ̂ 0. (2.8)
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We check under what circumstances E is stable. First, if (2.7) is the trivial extension
then an appropriate change of basis will give a non-zero map 0 -*• O -»• E whose image
would then destabilize E. Hence, we suppose the extension (2.7) is non-trivial. In terms
of ^-operators, we write

The extension (2.8) is determined by a choice of line £ = ( { ) e F * ~ C © C . If
^ = 0, then the holomorphic section <p = (]

0) of F lifts to a non-zero map
0 -»• O -+ E, and E is unstable as before. Suppose I = („). We first show that E is
stable with this choice, and then we show that up to automorphism this choice is
unique. By (2.7), F is clearly semistable of degree zero. If L c E is a line
subbundle of non-negative degree, then its image in F would either have positive
degree, contradicting semistability, or define a holomorphic section of F
independent of 0, of which there aren't any. Thus E is stable. Now suppose that
£ = ({) with £ / 0. The gauge transformation

(I?)
preserves the extension (2.9) and takes t to ( ;

 (
+ ). Hence, for an appropriate choice

of X we may eliminate rj. Then by an action of the diagonal matrices ~ C* which also
preserves the extension, we may assume f = 1. Therefore, the choice of flag I is unique.
Finally, the gauge transformation diag(A, A"1) for A e C* acts on the extensions (2.9)
by A2. The equivalence classes of stable degree 1 bundles obtained in this way (by
taking E') are thus in one-to-one correspondence with P(H01(E)) ~ P*"1. •

We mentioned before that the Narasimhan-Seshadri isomorphisms

are given by ^,[V] = [9V], where 3V is the 3-operator associated to the connection V.
We would like now to briefly describe the Mehta-Seshadri isomorphism

tl/a : 9?a —• §.

First, choose a unitary frame for E over D* and define a continuous family
{gx : a e (0, 1)} of complex gauge transformations by

7 i r z e ^ (2.10)
diag(|z|*/2, |z|' a/2) if z near p .
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For [V] 6 5Ra, choose a representative V e AF, the flat connections on £\{p}, such that
on D', V = d + i(i/2)dd. Let 3V be the 9-operator associated to V. It is easy to see that
<7a(3v) extends to a holomorphic structure on a vector bundle E of degree — 1. Set
t/fJV] = [0a(9v>^)]. where I is the flag determined by the choice of frame. Moreover, it
is easy to check that under the isomorphism above, ftit/'JV] = [ga(dv)]. The map 7t0
can be viewed in a similar way: we set no[V] = [ha(dv)], where

. / x f I if z e £ \ D
K(z)=\ n „ (2.11)

I diag(|z|a/2, |z|-J/2) if z near p.

The identification \j/a will play an important role in the next section.

3. Invariant representations

Using the results of the previous section we prove

Theorem 3.1. Let £ be a compact Riemann surface of genus g > 2 and h : £ —»• £ a
complex automorphism of £ preserving a base point {p}. Let / / : § — > § denote the
induced map H[F, £] — [h*F, I]. Then H has a fixed point.

Proof. Let f0 be the class of the trivial bundle as in (2.6). Clearly, f0 is a fixed point
of the induced map Ho : SO^ -> 2Ro defined by H0[E] = [h*(E)]. On the other hand the
following diagram commutes:

(3.2)

2Ro -% SDJo

Indeed, let [E, < ] e § with no(E) — F. This means that we have an exact sequence

0 —• F' —• £* -U C, - ^ 0.

We must show that the kernel F* of the map h*(E') -U- Cp —> 0 is h'(F'). Away from
p, we clearly have F* = h*(F*). On the other hand, since h' is identity at p, the same
is true at p. Hence, (3.2) commutes.

As a consequence, by Proposition 2.6, H induces a holomorphic map

H : P9"' ~ TtJT'Cfo) - •

Now such a map always has a fixed point, see Theorem 4 of [4]. •

If h : £ -*• £ is periodic, by Nielsen realization (see [7]) we may choose a complex
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structure on £ with respect to which h is a complex automorphism. For the Mehta-
Seshadri isomorphism defined using this complex structure, the previous theorem
applies with the following corollary:

Corollary 3.3 Let £ be a compact oriented surface of genus g > 2 and h : £ -»• £ a
periodic diffeomorphism of £ preserving a base point p. Then the induced map
h*a : 91, -> 91, has a fixed point for 0 < a < 1.

Proof. Since the maps /i* are invariant under isotopies, we may assume without loss
of generality that h is the identity in a neighbourhood of p containing D. Let
•Aa : 9*a ~*• £> denote the Mehta-Seshadri isomorphism with respect to the complex
structure that renders h a complex automorphism. We claim that the following diagram
commutes:

Indeed, ifyJV] = H[gr«V0>1, £] = [h'gaV
0A,i] = [gah*V°\t\ = ^afc*[V], where gr. is the

gauge transformation defined in (2.10) and the third equality holds because of the
special choice of h at the beginning of the proof. The existence of a fixed point of /i*
now follows from Theorem 3.1 and commutativity of the diagram (3.4). •

Now let « = Hom(7c)(£),SC/(2))/SC/(2) as before, and let q : 91 -* [0,1] be the
map q(p) = p(n), where fi denotes the homotopy class of a loop around p. Let
91'= 91^"'{0,1}, and let

i/f : 91' —*• (0,1) x §, (3.5)

denote the map \p(p) — (q(p), ^VJCP))- I n other words, note that

W = I I 91 , tlf = \ \ ilf •

Let h* : 91' -> 91' denote the induced map h* = Ux^0l)ha. The commutativity of (3.4)
yields the commutativity of

9T -U ( 0 , l ) x S
*' idxH

9la J ^ ( 0 , l ) x §
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Hence, Theorem 3.1 immediately implies

Corollary 3.6. Let h be as in Corollary 3.3. There is a continuous family
{pa : a e (0, 1)} of fixed points ofh* in 9?'.

Remark 3.7. The family of Corollary 3.6 actually extends continuously over a = 1.
Indeed, the inverse ^" ' : (0,1) x § -v 9?' c 5R of (3.5) extends continuously over a = 1
by setting ^"'(a, (3E, £)) = <7i(dE), where gx is defined as in (2.10) with respect to the flag
I. Moreover, the commutativity of the diagram

(0, 1] x § ^X <R
idxH h'

( 0 , l ] x S -U M.

implies the remark.

4. The 3-dimensional application

As an application of these results, consider the question of the existence of SU(2)
representations of 3-manifolds.

Consider the mapping cylinder £0 x [0, l]/(z, 0) x {h{z), 1), where Eo = E\{p} is an
oriented surface of genus g with 3Z0 = K and h : £ -> Z is an orientation preserving
diffeomorphism with h(p) — p.

Let {a,, b,:i=l,...,g] be a set of generators for 7t,(E0) which form a symplectic
basis in /f,(£0,R). It follows by a direct application of the Seifert-Van Kampen
theorem that

i r , ( X ) = [a,, b l t t: h.(a,) = t a , r l , / i .(fc.) = t b , r \ i = l , . . . , g } . (4.1)

Therefore conjugacy classes of representations of 7r,(AT) satisfy [h,(r)] — M, i.e. they
are fixed points of h,.

Corollary 4.2. Let K C M be a mapping cylinder with periodic monodromy. Then the
fundamental group of the complement of K in M admits a good family of irreducible
SU(2) representations.

Proof. The only point to justify is the irreducibility. However, as representations
of the surface they are irreducible, since they have non-trivial holonomy around a
bounding cycle. Therefore, the corresponding representations of the complement are
irreducible as well. •
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5. Concluding remarks

The next step is to show that similar results hold for any h and in so doing prove
property P for all fibred knots, i.e. knots with mapping cylinder boundary.

It is clear from the proof of Corollary 3.3 that periodicity brought us to the
holomorphic setting where we had use of the holomorphic maps 5Ra -*• 9l0 and
5Ra -*• 91,. To work without the periodicity assumption, it would be useful to have a
direct description of these maps in terms of representations spaces.
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