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Abstract. The General Curve Lemma is a tool of Infinite-Dimensional Analysis
that enables refined studies of differentiability properties of maps between real locally
convex spaces to be made. In this article, we generalize the General Curve Lemma in
two ways. First, we remove the condition of local convexity in the real case. Second,
we adapt the lemma to the case of curves in topological vector spaces over ultrametric
fields.
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Introduction. The General Curve Lemma (as in [7, Proposition 4.2.15] or [17,
Lemma 12.2]) is a powerful tool for the study of finite order differentiability properties
of mappings between real locally convex spaces in the Convenient Differential Calculus
of Frölicher, Kriegl and Michor; (see [7, § 4.3] and [17, § 12]). It allows pieces of a
(suitable) given sequence of smooth curves to be combined to a single smooth curve,
which runs through all of the pieces in finite time. The goal of this paper is to extend
the General Curve Lemma to curves in not necessarily locally convex real topological
vector spaces, and to curves in topological vector spaces over an ultrametric field.

Our studies are based on the differential calculus of smooth and Ck-maps between
open subsets of topological vector spaces over a topological field developed in [3],
which has by now been applied to a variety of questions in Differential Geometry [2],
Lie Theory ([8], [9], [12]) and Dynamical Systems (see [10] for a survey). We recall
that this approach generalizes traditional concepts. In particular, a map between open
subsets of real locally convex spaces is Ck in the sense of [3] if and only if it is a Keller
Ck

c -map (see [3]). Furthermore, it is known (see [11, Theorem 2.1]) that a map between
open subsets of finite-dimensional vector spaces over a complete ultrametric field is Ck

in the sense of [3] if and only if it is a Ck-map in the usual sense of Non-Archimedian
Analysis (as in [21, § 84] and [6]). The definition of C1-maps in [3] is also similar in
spirit to an earlier definition used in [18] and [19].

Our General Curve Lemma in the real case (Theorem 4.1) closely resembles its
classical counterpart for curves in real locally convex spaces. It subsumes the next
result.
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REAL CASE OF GENERAL CURVE LEMMA. Let E be a real topological vector space
and (sn)n∈� as well as (rn)n∈� be sequences of positive reals such that

∑∞
n=1 sn < ∞ and

rn ≥ sn + 2
n2 for each n ∈ �. Let (γn)n∈� be a sequence of smooth maps γn: [−rn, rn] → E

which become small sufficiently fast (in the sense made precise in Theorem 4.1). Then
there exists a smooth curve γ : � → E and a convergent sequence (tn)n∈� of real numbers
such that γ (tn + t) = γn(t) for all n ∈ � and t ∈ [−sn, sn].

If (�, |.|) is an ultrametric field, we obtain a variant of the General Curve Lemma
(Theorem 3.1) that subsumes the following result.

ULTRAMETRIC GENERAL CURVE LEMMA. Let E be a topological vector space over
an ultrametric field (�, |.|), and � := {x ∈ �: |x| ≤ 1}. Let ρ ∈ �× with |ρ| < 1 and
(γn)n∈� be a sequence of maps γn ∈ BC∞(ρn�, E) that become small sufficiently fast (in
the sense made precise in Theorem 3.1). Then there exists a smooth map γ : � → E such
that γ (ρn−1 + t) = γn(t) for all n ∈ � and t ∈ ρn�.

The preceding results are useful for the study of k times Hölder differentiable maps
of Hölder exponent σ ∈ ]0, 1] (Ck,σ -maps, for short), as introduced in [11] and (for
σ = 1) in [13]. As shown in [11], our General Curve Lemmas imply a characterization
of Ck,σ -maps on metrizable spaces.

THEOREM. Let � be � or an ultrametric field. Let E and F be topological �-vector
spaces and f : U → F be a map, defined on an open subset U ⊆ E. Let k ∈ �0 and
σ ∈ ]0, 1]. If E is metrizable, then f is C k,σ if and only if f ◦ γ : �k+1 → F is C k,σ , for
each C∞-map γ : �k+1 → U.

It would be nice to know whether smooth maps on �k+1 can be replaced by
smooth maps of a single variable here, as in Boman’s classical results concerning the
real finite-dimensional case [4] and their infinite-dimensional generalizations [17]. The
author undertook some steps in this direction jointly with S. V. Ludkovsky (cf. also
Ludkovsky’s preprint [20]). Our versions of the General Curve Lemma were created in
connection with this question.

We mention that an analogue of the preceding theorem for Ck-maps can already
be found in [3, Theorem 12.4], where it was proved with the help of variants of the
Special Curve Lemma (Lemma 11.1 and Lemma 11.2 in [3]).

Our versions of the General Curve Lemma are more difficult to prove than the
classical lemma (as reflected by the length of this text), because it does not suffice to
prove merely the existence and continuity of derivatives (of all orders) for γ . Instead,
to establish smoothness of γ , one has to prove existence of continuous extensions
to higher difference quotient maps, which is a much more cumbersome task. To
keep the effort manageable, our strategy is to manufacture, in a first step, certain
smooth curves ηn: � → E with pairwise disjoint supports from the given curves γn.
In a second step, we then show that γ := ∑∞

n=1 ηn converges in BC∞(�, E). To prove
convergence of this series, we introduce a notion of “absolute convergence” for series
in general topological vector spaces (Definition 2.6), the topology of which need not
arise from a family of continuous seminorms. In [13], so-called “gauges” have already
been used as a substitute for continuous seminorms (cf. [15] for the real case). To
define absolute convergence of series in general topological vector spaces, we introduce
“calibrations” as a further generalization of continuous seminorms (Definition 2.1).
These are sequences of gauges which are pairwise related by a certain substitute for
the triangle inequality.
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1. Preliminaries, notation and basic facts. In this section, we set up terminology
and notation. We also compile various basic facts, for later use. These are easy to take
on faith, and we recommend that the reader skip the proofs (given in Appendix A),
which are not difficult.

All topological fields occurring in this article are assumed Hausdorff and non-
discrete. A field �, equipped with an absolute value |.|: � → [0,∞[ defining a non-
discrete topology on � is called a valued field. An ultrametric field is a valued field
(�, |.|) whose absolute value satisfies the ultrametric inequality, |x + y| ≤ max{|x|, |y|}
for all x, y ∈ �. If (E, ‖.‖) is a normed space over a valued field, r > 0 and x ∈ E, we
define BE

r (x) := {y ∈ E: ‖y − x‖ < r} and B
E
r (x) := {y ∈ E: ‖y − x‖ ≤ r}. Recall that if

� is an ultrametric field, then B
�

r (x) and B �
r (x) are both open and closed. (This will

prove to be useful for piecewise definitions of maps). Furthermore, the ultrametric
inequality implies that

|x + y| = |x| for all x, y ∈ � such that |y| < |x|. (1)

All topological vector spaces over topological fields are assumed Hausdorff. As usual,
� := {1, 2, . . .} and �0 := � ∪ {0}.

A differential calculus of Ck-maps between subsets of ultrametric fields was
developed in [21]. It makes sense just as well for maps into topological vector spaces
over general topological fields (cf. [3, § 6] for open domains), and will be used in this
form here. The approach can be generalized to a differential calculus of Ck-maps
between open subsets of topological vector spaces [3]. Compare [18], [19] for an earlier
approach to infinite-dimensional calculus over ultrametric fields,1 which however is not
equivalent to ours, at least when applied to local fields of positive characteristic [11].
We only give the definition of Ck-maps on subsets of � here, following the notational
conventions from [3] (rather than [21]).

DEFINITION 1.1. Let � be a topological field, U ⊆ � be a non-empty subset without
isolated points, and γ : U → E a map to a topological �-vector space E. The map γ is
said to be C0

� if it is continuous; in this case, we set γ <0> := γ . We call γ a C1
�-map if

it is continuous and if there exists a continuous map γ <1>: U × U → E such that

γ <1>(x0, x1) = γ (x1) − γ (x0)
x1 − x0

for all x0, x1 ∈ U such that x0 �= x1.

Recursively, having defined Cj
�-maps and associated maps γ <j>: Uj+1 → E for j =

0, . . . , k − 1 for some k ∈ �, we call γ a Ck
�-map if it is Ck−1

� and there is a continuous
map γ <k>: Uk+1 → E such that

γ <k>(x0, x1, . . . , xk) = γ <k−1>(xk, x1, . . . , xk−1) − γ <k−1>(x0, x1, . . . , xk−1)
xk − x0

for all (x0, . . . , xk) ∈ Uk+1 such that x0 �= xk. The map γ is C∞
� (or smooth) if it is Ck

�

for each k ∈ �0. If � is understood, we write Ck instead of Ck
�. We let Ck(U, E) be the

set of all Ck-maps U → E. Then Ck(U, E) is a vector subspace of EU .

1See also the maps called Cn (in contrast to C[n]) in [20].
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Here γ <k> is uniquely determined, and γ <k> is symmetric in its k + 1 variables.
Also k! γ <k>(x, . . . , x) = dkγ

dxk (x) =: γ (k)(x), for all x ∈ U (cf. [21, § 29] and [3,
Proposition 6.2]). Let U>k< be the set of all (x0, . . . , xk) ∈ Uk+1 such that xi �= xj

for all i �= j. Then U>k< is dense in Uk+1, which will be useful later.

DEFINITION 1.2. Let E be a topological vector space over a topological field �.
(a) A subset A ⊆ E is called bounded if, for each 0-neighbourhood U ⊆ E, there

exists a 0-neighbourhood V ⊆ � such that VA ⊆ U .
(b) If X is a topological space, then BC(X, E) denotes the set of all continuous

maps γ : X → E whose image γ (X) is bounded in E. Clearly BC(X, E) is a
vector subspace of EX . We equip BC(X, E) with the topology of uniform
convergence.

(c) If k ∈ �0 ∪ {∞} and U ⊆ � is a non-empty subset without isolated points, we let
BCk(U, E) be the space of all Ck-maps γ : U → E such that γ <j> ∈ BC(Uj+1, E)
for all j ∈ �0 such that j ≤ k. We equip BCk(U, E) with the initial topology with
respect to the sequence of mappings BCk(U, E) → BC(Uj+1, E), γ 
→ γ <j> (for
j ∈ �0, j ≤ k).

Recall that a topological vector space over a topological field � is called complete
if each Cauchy net converges.

LEMMA 1.3. Let � a topological field, X be a topological space, U ⊆ � be a non-
empty subset without isolated points, and E a topological �-vector space. Then the
following properties hold.

(a) BC(X, E) is a topological �-vector space.
(b) If E is complete, then also BC(X, E) is complete.
(c) For each k ∈ �0 ∪ {∞}, the map θ : BCk(U, E) → ∏

j BC(Uj+1, E), γ 
→ (γ <j>)j

(where j ∈ �0 such that j ≤ k) is linear, a topological embedding and has closed
image.

(d) BCk(U, E) is a topological �-vector space, for each k ∈ �0 ∪ {∞}. If E is
complete, then also BCk(U, E) is complete.

A topological vector space over a valued field is called polynormed if its vector
topology can be defined by a family of seminorms. As a replacement for seminorms
when dealing with non-polynormed topological vector spaces over a valued field, the
more general concept of a gauge was introduced in [13] (cf. [15, § 6.3] for the real case).
Using gauges, it is easy to define Lipschitz continuous, Lipschitz differentiable, strictly
differentiable, totally differentiable and similar maps between arbitrary topological �-
vector spaces ([11], [13]). We shall slightly generalize the concept of a gauge from [13]
here, because this will simplify the presentation (See Remarks 1.5 and 1.12.)

DEFINITION 1.4. Let E be a topological vector space over a valued field (�, |.|). A
gauge on E is a map q: E → [0,∞[ (also written ‖.‖q := q) satisfying q(tx) = |t|q(x) for
all t ∈ � and x ∈ E, and such that Bq

r (0) := q−1([0, r[) is a 0-neighbourhood in E, for
each r > 0.

Note that each gauge is continuous at 0. Sums of gauges and non-negative multiples
rq of gauges are gauges.

REMARK 1.5. In [13], only upper semicontinuous gauges q: E → [0,∞[ were
considered. Thus, the stronger requirement was made that Bq

r (0) is open in E, for
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each r > 0. By the next two remarks, it does not matter for many purposes whether the
weaker or the stronger definition is used.

REMARK 1.6. Typical examples of gauges are Minkowski functionals µU of
balanced, open 0-neighbourhoods U in a topological vector space E over a valued
field � (See [13, Remark 1.21].) These are upper semicontinuous. Here U ⊆ E is
called balanced if tU ⊆ U for all t ∈ � such that |t| ≤ 1. The Minkowski functional is
µU : E → [0,∞[, x 
→ inf{|t|: t ∈ �× with x ∈ tU}.

REMARK 1.7. If q is a gauge on E, then q ≤ µU for the Minkowski functional of
some balanced, open 0-neighbourhood U . In fact, we can take any balanced, open
0-neighbourhood U ⊆ E such that U ⊆ Bq

1(0). Given x ∈ E and tn ∈ �× such that
|tn| → µU (x), we then have x ∈ tnU ⊆ Bq

|tn|(0) for each n and thus q(x) < |tn|, from
which q(x) ≤ µU (x) follows by letting n → ∞.

EXAMPLE 1.8. Given r ∈ ]0, 1], a gauge q: E → [0,∞[ is called an r-seminorm if
q(x + y)r ≤ q(x)r + q(y)r for all x, y ∈ E. If, furthermore, q(x) = 0 if and only if x = 0,
then q is called an r-norm (cf. [15, § 6.3] for the real case). For examples of r-normed
spaces over � and more general non-locally convex real topological vector spaces, the
reader is referred to [15, § 6.10] and [16]. For � a valued field, the simplest examples

are the spaces �p(�) of all x = (xn)n∈� ∈ �� such that ‖x‖p := p

√∑∞
n=1 |xn|p < ∞, for

p ∈ ]0, 1]. Then ‖.‖p is a p-norm on �p(�) defining a Hausdorff vector topology on this
space.

Note that the triangle inequality need not hold for gauges. The following lemma
(see [13, Lemma 1.29]) provides a certain substitute.

LEMMA 1.9. If E is a topological vector space over a valued field � and U, V ⊆ E
are balanced open 0-neighborhoods such that V + V ⊆ U, then

µU (x + y) ≤ max{µV (x), µV (y)} for all x, y ∈ E.

Hence, for each gauge q on E, there is a gauge p such that ‖x + y‖q ≤ max{‖x‖p, ‖y‖p}
and thus ‖x + y‖q ≤ ‖x‖p + ‖y‖p, for all x, y ∈ E.

DEFINITION 1.10. Let E be a topological vector space over a valued field �. We say
that a set � of gauges on E is a fundamental system of gauges if finite intersections of
sets of the form Bq

r (0) with r > 0, q ∈ � form a basis for the filter of 0-neighbourhoods
in E.

Thus, a topological vector space over a valued field is polynormed if and only if it
has a fundamental system of gauges which are continuous seminorms. We also mention
that, in the real case, the continuous gauges always form a fundamental system (cf.
[15, § 6.4]). For a more concrete example, consider �p(�) with p ∈ ]0, 1]. Then {‖.‖p} is
a fundamental system of gauges.

It is useful to know good fundamental systems of gauges for function spaces.

LEMMA 1.11. Let � be a valued field, U ⊆ � a non-empty subset without isolated
points, E a topological �-vector space, q a gauge on E, k ∈ �0 ∪ {∞} and j ∈ �0 such
that j ≤ k. Then

BCk(U, E) → [0,∞[, γ 
→ ‖γ <j>‖q,∞ := sup{‖γ <j>(x)‖q: x ∈ Uj+1} (2)
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is a gauge on BCk(U, E). If � is a fundamental system of gauges for E, then the gauges
γ 
→ ‖γ <j>‖q,∞ (for j ∈ �0 such that j ≤ k and q ∈ �) form a fundamental system of
gauges for BCk(U, E).

If E = �, we simply write ‖γ <k>‖∞ instead of ‖γ <k>‖|.|,∞.

REMARK 1.12. If q in Lemma 1.11 is an upper semicontinuous gauge which does
not happen to be a seminorm, then one cannot expect that the gauge γ 
→ ‖γ <k>‖q,∞
is upper semicontinuous. For this reason, we found it convenient to give up upper
semicontinuity in our definition of gauges. Of course, alternatively one might redefine
‖γ <k>‖q,∞ in a way which enforces upper semicontinuity, but such variants would be
more complicated to work with.

We need to know how translations and homotheties affect the gauges from (2).

LEMMA 1.13. Let � a valued field, U ⊆ � a non-empty subset without isolated
points, E a topological �-vector space, q a gauge on E and k ∈ �0.

(a) If γ ∈ BCk(U, E) and t0 ∈ �, then η: U − t0 → E, η(t) := γ (t + t0) belongs to
BCk(U − t0, E). Furthermore, ‖η<k>‖q,∞ = ‖γ <k>‖q,∞.

(b) If γ ∈ BCk(U, E) and a ∈ �×, then η: a−1U → E, η(t) := γ (at) belongs to
BCk(a−1U, E). Furthermore, ‖η<k>‖q,∞ = |a|k‖γ <k>‖q,∞.

(c) Let V ⊆ U be a non-empty subset without isolated points. Then γ |V ∈ BCk(V, E)
for γ ∈ BCk(U, E), and ‖(γ |V )<k>‖q,∞ ≤ ‖γ <k>‖q,∞.

In the real locally convex case, BCk-maps on intervals are what they should be.

LEMMA 1.14. Let E be a real locally convex space, I ⊆ � a non-singleton interval,
k ∈ �0 and γ : I → E a map. Then γ ∈ Ck(I, E) if and only if γ is Ck in the usual sense
(viz. γ (j) exists for j ∈ {0, 1, . . . , k} and is continuous). Moreover, γ ∈ BCk(I, E) if and
only if γ is Ck in the usual sense and γ (j)(I) is bounded in E for each j ∈ {0, 1, . . . , k}.

2. Calibrations and absolute convergence. In this section, E is a topological vector
space over a valued field �. Our goal is to define a meaningful notion of absolute
convergence of series in E. As a tool, calibrations are introduced. These are certain
sequences of gauges. Compare [1] for the related concept of a “string” in a real vector
space.

DEFINITION 2.1. A sequence (qn)n∈�0 of gauges on E is called a calibration if

(∀n ∈ �0)(∀x, y ∈ E) qn(x + y) ≤ qn+1(x) + qn+1(y) . (3)

The sequence is a strong calibration if

(∀n ∈ �0)(∀x, y ∈ E) qn(x + y) ≤ max{qn+1(x), qn+1(y)} . (4)

We shall refer to (3) as the fake triangle inequality. Similarly, (4) is called the fake
ultrametric inequality. If q is a gauge on E, then there always exists a calibration
(qn)n∈�0 such that q0 = q (cf. Lemma 1.9). In this situation, we say that q extends to
(qn)n∈�0 .

In this paper, we decided to work entirely with ordinary calibrations. Using
strong calibrations instead, one obtains analogous results. For example, variants of
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Lemmas 3.5 and 4.7 hold for strong calibrations (in which case the factors 2k−j in (9)
and (20) can be omitted).

REMARK 2.2. If (qn)n∈�0 is a calibration, then qn ≤ qn+1 for each n ∈ �0, because
qn(x) = qn(x + 0) ≤ qn+1(x) + qn+1(0) = qn+1(x) for each x ∈ E.

REMARK 2.3. If q: E → [0,∞[ is a continuous seminorm, then (q)n∈�0 is a
calibration (and a strong calibration if q is an ultrametric seminorm). If (qn)n∈�0 is
any calibration extending the seminorm q, then qn ≥ q for each n, by the preceding
remark. Thus (q)n∈�0 is the smallest calibration extending q.

To illustrate the notion of a calibration, let us look at another example.

EXAMPLE 2.4. If r ∈ ]0, 1] and q is an r-seminorm on E, define qn := 2
n
r q

for n ∈ �0. Then (qn)n∈�0 is a strong calibration on E. Notably, (2
n
p ‖.‖p)n∈�0 is a

strong calibration on �p(�), for each p ∈ ]0, 1]. This follows from the observation
that q(x + y)r ≤ q(x)r + q(y)r ≤ 2 max{q(x)r, q(y)r} for x, y ∈ E and thus q(x + y) ≤
r

√
2 max{q(x)r, q(y)r} = max{2 1

r q(x), 2
1
r q(y)}.

The following lemma is obvious.

LEMMA 2.5. Let (qn)n∈�0 be a calibration on E, k ∈ �0 ∪ {∞} and j ∈ �0 with j ≤ k.
Then the gauges BCk(U, E) → [0,∞[, γ 
→ ‖γ <j>‖qn,∞, for n ∈ �0, form a calibration
on BCk(U, E). �

Calibrations are valuable tools to establish the convergence of series in topological
vector spaces that may fail to be polynormed.

DEFINITION 2.6. Let (xn)n∈� be a sequence in E. We say that the series
∑∞

n=1 xn is
absolutely convergent if each gauge q on E extends to a calibration (qn)n∈�0 such that

∞∑
n=1

‖xn‖qn < ∞.

REMARK 2.7. If E is polynormed, then a series
∑∞

n=1 xn in E is absolutely convergent
if and only if

∑∞
n=1 ‖xn‖q < ∞ for each continuous seminorm q on E (cf. Remark 2.3).

Absolute convergence of series in a topological vector space is a useful concept
provided that the latter is sequentially complete in the sense that each Cauchy sequence
converges.

LEMMA 2.8. If E is a sequentially complete topological vector space over a valued
field �, then every absolutely convergent series in E is convergent.

Proof. Using (3) repeatedly, we see that
∥∥ ∑n

k=m xk
∥∥

q0
≤ ∑n

k=m ‖xk‖qk−m+1 ≤∑n
k=m ‖xk‖qk for all n, m ∈ � with n > m. This ensures that (

∑n
k=1 xk)n∈� is a Cauchy

sequence in E and hence convergent. �

3. Ultrametric General Curve Lemma. In this section, we formulate and prove
our first main result.

THEOREM 3.1 Ultrametric General Curve Lemma. Let E be a topological vector
space over an ultrametric field �, ρ ∈ �× with |ρ| < 1 and (γn)n∈� be a sequence of
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smooth maps γn ∈ BC∞(ρn�, E) that become small sufficiently fast in the sense that, for
each gauge q on E, there exists a calibration (qn)n∈�0 extending q such that

(∀a > 0) (∀k, m ∈ �0) lim
n→∞ an‖γ <k>

n ‖qn+m,∞ = 0. (5)

Then there exists a smooth map γ ∈ BC∞(�, E) whose image im(γ ) is contained in
{0} ∪ ⋃

n∈� im(γn), such that

γ (ρn−1 + t) = γn(t) for all n ∈ � and t ∈ ρn�. (6)

REMARK 3.2. Note that ρn� = B|ρ|n (0) and ρn−1 + ρn� = B|ρ|n (ρn−1) here. Since
|ρ|n < |ρn−1|, we have |x| = |ρn−1| for each x ∈ B|ρ|n (ρn−1) (See (1)). As a consequence,
the balls B|ρ|n (ρn−1) are pairwise disjoint.

REMARK 3.3. If E is polynormed, then the somewhat complicated condition (5)
can be simplified. In view of Remark 2.3, condition (5) then amounts to the following.
For each k ∈ �0 and continuous seminorm q on E, we have

(∀a > 0) lim
n→∞ an‖γ <k>

n ‖q,∞ = 0. (7)

REMARK 3.4. Let E in Lemma 3.1 be metrizable and suppose that there exists
a calibration (pn)n∈�0 such that {pn: n ∈ �0} is a fundamental system of gauges, and
C > 0 such that

(∀k ∈ �0) (∀n ≥ k) ‖γ <k>
n ‖p2n,∞ ≤ Cn−n. (8)

Then the hypothesis (5) of Theorem 3.1 is satisfied: given q, we can extend it to a
suitable calibration via qn := rpn+n0 for n ∈ �, with r > 0 and n0 ∈ �0 sufficiently large.
In all our applications, we use this simpler criterion.

The following lemma prepares the way for the proof of Theorem 3.1. As before, �

is an ultrametric field and E a topological �-vector space.

LEMMA 3.5. Let γ ∈ BC∞(U, E), where U := B
�

r (0) for some r ∈ ]0,∞[. Extend γ

to a smooth map η: � → E via η(x) := 0 for x ∈ � \ U. Then η ∈ BC∞(�, E), and

‖η<k>‖q0,∞ ≤ max
j=0,...,k

(2
r

)k−j
‖γ <j>‖qk−j,∞ , (9)

for each k ∈ �0 and calibration (qn)n∈�0 on E.

Proof. Note first that η is smooth since smoothness is a local property (see [3,
Lemma 4.9]) and U is both open and closed. We now show by induction on k ∈ �0

that η ∈ BCk(�, E) and (9) holds. If k = 0, then η ∈ BC(�, E) and (9) holds because
sup{‖η(x)‖q0 : x ∈ �} = sup{‖γ (x)‖q0 : x ∈ U} = ‖γ <k>‖q0,∞. Now suppose that k ≥ 1
and suppose that (9) holds if k is replaced with k − 1, for each calibration. Since U>k<

is dense in U<k> and η<k> is continuous, we only need to show that the right hand
side of (9) is an upper bound for ‖η<k>(x)‖q0 , for each x = (x0, . . . , xk) ∈ U>k<. It is
convenient to distinguish three cases:

Case 1. If xj ∈ U for all j ∈ {0, . . . , k}, then

η<k>(x0, . . . , xk) = γ <k>(x0, . . . , xk)
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and thus ‖η<k>(x0, . . . , xk)‖q0 = ‖γ <k>(x0, . . . , xk)‖q0 ≤ ‖γ <k>‖q0,∞, which does not
exceed the right hand side of (9).

Case 2. If xj �∈ U for all j ∈ {0, . . . , k}, then η(xj) = 0 for each j and thus
η<k>(x0, . . . , xk) = 0, whence again ‖η<k>(x0, . . . , xk)‖q0 = 0 does not exceed the right
hand side of (9).

Case 3. There are i, j ∈ {0, . . . , k} such that xi ∈ U and xj �∈ U . By symmetry of
η<k>, we may assume that i = 0 and j = k. Since |x0| ≤ r < |xk| and |.| is ultrametric,
we have |x0 − xk| = |xk| > r. Hence

‖η<k>(x)‖q0 = ‖η<k−1>(x0, x1, . . . , xk−1) − η<k−1>(xk, x1, . . . , xk−1)‖q0

|x0 − xk|
≤ ‖η<k−1>(x0, x1, . . . , xk−1)‖q1 + ‖η<k−1>(xk, x1, . . . , xk−1)‖q1

r

≤ 2
r

· max
j=0,...,k−1

(2
r

)k−1−j
‖γ <j>‖qk−j,∞ , (10)

applying the inductive hypothesis to η<k−1> and the calibration (qn+1)n∈�0 to obtain
the final inequality. Since the right hand side of (10) does not exceed the right hand
side of (9), our inductive proof is complete. �

Proof of Theorem 3.1. For each n ∈ �, define ηn: � → E via

ηn(t) :=
{

γn(t − ρn−1) if |t − ρn−1| ≤ ρn;
0 otherwise.

Then ηn ∈ BC∞(�, E) and

‖η<k>
n ‖q0,∞ ≤ max

j=0,...,k

( 2
|ρ|n

)k−j‖γ <j>
n ‖qk−j,∞ (11)

for each k ∈ �0 and calibration (qn)n∈�0 on E, by Lemmas 3.5 and 1.13 (a). Define
γ (x) := ∑∞

n=1 ηn(x) for n ∈ �. Then γ : � → E is smooth on �×, using the fact that
the supports of the maps ηn form a locally finite family of disjoint subsets of �× (since
supp(ηn) ⊆ B|ρ|n (ρn−1)).

Step 1. We show that
∑∞

n=1 ηn converges in BC∞(�, E), where E is the completion
of E. Once this is established, for each x ∈ U we can apply the continuous linear point
evaluation BC∞(�, E) → E, ζ 
→ ζ (x) to

∑∞
n=1 ηn, showing that (

∑∞
n=1 ηn)(x) = γ (x).

Since BC∞(�, E) is complete by Lemma 1.3 (d), to establish convergence we only
need to show that the series

∑∞
n=1 ηn converges absolutely (See Lemma 2.8). To this

end, let q0 be a gauge on E and extend it to a calibration (qn)n∈�0 such that (5) holds
(and hence also (11)). Since the gauges BC∞(�, E) → [0,∞[, ζ 
→ ‖ζ<k>‖q,∞ form a
fundamental system of gauges for k ranging through �0 and q through the gauges of E
(see Lemma 1.11),

∑∞
n=1 ηn will converge absolutely in BC∞(�, E) if we can show that∑∞

n=1 ‖η<k>
n ‖qn,∞ < ∞ in the preceding situation, for each k ∈ �0. In view of (11), it

suffices to show that

∞∑
n=1

max
j=1,...,k

( 2
|ρ|n

)k−j‖γ <j>
n ‖qn+k−j,∞ < ∞ .
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This will hold if we can show that, for each j ∈ {1, . . . , k},
∞∑

n=1

|ρ|−nk‖γ <j>
n ‖qn+k−j,∞ < ∞. (12)

To prove (12), choose a > |ρ|−k and recall that an‖γ <j>
n ‖qn+k−j,∞ → 0, by (5). Thus

Ak := sup {an‖γ <j>
n ‖qn+k−j,∞: n ∈ �} < ∞ and hence

∑∞
n=1 Ak( |ρ|−k

a )n is a convergent

majorant for
∑∞

n=1 |ρ|−nk‖γ <j>
n ‖qn+k−j,∞.

Step 2. We now show by induction on k ∈ �0 that γ <k>: �k+1 → E actually takes
values in E, whence γ is Ck as a map into E. For k = 0, this is trivial. Let k ≥ 1 now and
assume that the assertion holds if k is replaced with k − 1. Let x = (x0, . . . , xk) ∈ �k+1.
If xi �= xj for certain i, j ∈ {0, . . . , k}, then γ <k>(x) is a partial difference quotient of
γ <k−1> and hence a scalar multiple of two values of γ <k−1>, which are in E (by
induction). Hence also γ <k>(x) ∈ E. It remains to show that γ <k>(y, . . . , y) ∈ E for all
y ∈ �. If y ∈ �×, this follows from the smoothness of γ |�× . To see that γ <k>(0) ∈ E,
we exploit the continuity of the map

BC∞(�, E) → E , ζ 
→ ζ<k>(0, . . . , 0).

Hence γ <k>(0) = ∑∞
n=1 η<k>

n (0) = 0 ∈ E. Thus γ <k> has image in E, which
completes the induction. �

4. General Curve Lemma for curves in real topological vector spaces. In this
section, we prove a version of the General Curve Lemma for curves in arbitrary
(not necessarily locally convex) real topological vector spaces.

THEOREM 4.1 Real Case of General Curve Lemma. Let E be a real topological vector
space and (sn)n∈� as well as (rn)n∈� be sequences of positive reals such that

∑∞
n=1 sn < ∞

and rn ≥ sn + 2
n2 for each n ∈ �. Furthermore, let (γn)n∈� be a sequence of smooth maps

γn: [−rn, rn] → E that become small sufficiently fast in the sense that, for each gauge q
on E, there exists a calibration (qn)n∈�0 extending q such that

(∀k, �, m ∈ �0) lim
n→∞ n�‖γ <k>

n ‖qn+m,∞ = 0 . (13)

Then there exists a curve γ ∈ BC∞(�, E) with im(γ ) ⊆ [0, 1] · ⋃n∈� im(γn) and a
convergent sequence (tn)n∈� of real numbers such that

γ (tn + t) = γn(t) for all n ∈ � and t ∈ [−sn, sn]. (14)

Various lemmas are needed to prepare the proof of Theorem 4.1.

LEMMA 4.2. For each n ∈ �, there exist integers Ni,j ∈ �0 indexed by all strictly
increasing finite sequences i = (i0, . . . , ik) and j = (j0, . . . , j�) with entries in {0, 1, . . . , n},
for k, � ∈ �0 with k + � = n, such that

∑
i,j Ni,j ≤ 2n and the following property holds:

for each topological field �, non-empty subset U ⊆ � without isolated points, continuous
bilinear map β: E × F → H between topological �-vector spaces and all Cn-maps
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γ : U → E, η: U → F, we have(
β ◦ (γ, η)

)<n>
(x0, . . . , xn)

=
∑

k+�=n

∑
i,j with

#i=k, #j=�

Ni,j β
(
γ <k>(xi0 , . . . , xik ), η<�>(xj0 , . . . , xj� )

)
(15)

for all (x0, . . . , xn) ∈ Un+1, using the notation #(i0, . . . , ik) := k.

REMARK 4.3. The condition
∑

i,j Ni,j ≤ 2n means that one can consider(
β ◦ (γ, η)

)<n>
(x0, . . . , xn) as a sum of at most ≤ 2n summands of the form

β
(
γ <k>(xi0 , . . . , xik ), η<�>(xj0 , . . . , xj� )

)
.

Proof of Lemma 4.2. The proof is by induction on n ∈ �. If n = 1 and x0, x1 ∈ U
are distinct, then

β(γ (x1), η(x1)) − β(γ (x0), η(x0))
x1 − x0

= β(γ (x1), η(x1)) − β(γ (x0), η(x1)) + β(γ (x0), η(x1)) − β(γ (x0), η(x0))
x1 − x0

= β(γ <1>(x0, x1), η(x1)) + β(γ (x0), η<1>(x0, x1)) . (16)

Since (16) can be used to define a continuous function in (x0, x1) ∈ U × U , we see that
β ◦ (γ, η) is C1 with

(β ◦ (γ, η))<1>(x0, x1) = β(γ <1>(x0, x1), η(x1)) + β(γ (x0), η<1>(x0, x1)) (17)

of the form described in (15).

Induction step. Suppose that the lemma holds for some n and that γ, η are Cn+1. For
i, j as above with #i = k, #j = � and k + � = n, abbreviate

hi,j(x0, . . . , xn) := β
(
γ <k>(xi0 , . . . , xik ), η<�>(xj0 , . . . , xj� )

)
for x0, . . . , xn ∈ U . The analogue of (15) for (β ◦ (γ, η))<n+1> will be apparent
from an explicit formula for the continuous extension of the mapping
g: {x = (x0, . . . , xn+1) ∈ Un+2: x0 �= xn+1} → H,

g(x) := hi,j(xn+1, x1, . . . , xn) − hi,j(x0, x1, . . . , xn)
xn+1 − x0

(18)

to a map Un+2 → H, which we now establish. If i0 �= 0 and j0 �= 0, then hi,j does not
depend on x0 and thus g = 0 has 0 as a continuous extension.

If i0 = 0 and j0 �= 0, then η<�>(xj0 , . . . , xj� ) does not depend on x0 and thus

g(x0, . . . , xn+1) = β(γ <k+1>(xi0 , . . . , xik , xn+1), η<�>(xj0 , . . . , xj� ))

by linearity of β in its first argument, where the right hand side can be used
to define a continuous function on Un+2. Similarly, the mapping Un+2 → H,
x 
→ β(γ <k>(xi0 , . . . , xik ), η<�+1>(xj0 , . . . , xj� , xn+1)) provides a continuous extension
of g if i0 �= 0 and j0 = 0.
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If i0 = j0 = 0, then the calculation leading to (16) shows that

g(x) = β(γ <k+1>(xi0 , . . . , xik , xn+1), η<�>(xj1 , . . . , xj� , xn+1))

+β(γ <k>(xi0 , . . . , xik ), η<�+1>(xj0 , . . . , xj� , xn+1)) ,

where again the right hand side extends continuously to all of Un+2.

Forming the sum of all contributions just described, we obtain a formula analogous
to (15) for (β ◦ (γ, η))<n+1>. �

REMARK 4.4. For our purposes, we need not know the integers Ni,j explicitly.

LEMMA 4.5. There exist constants Ck ∈ � for k ∈ �0 such that
∑n

k=0 Ck ≤ 2n for
each n ∈ �, and the following property holds: For each valued field �, non-empty subset
U ⊆ � without isolated points, n ∈ �, γ ∈ BCn(U, �), topological �-vector space E,
η ∈ BCn(U, E) and calibration (qk)k∈�0 on E, we have

‖(γ · η)<n>‖q0,∞ ≤
n∑

k=0

Ck ‖γ <k>‖∞ · ‖η<n−k>‖qn,∞ . (19)

Proof. Applying (15) to the scalar multiplication β: � × E → E, we get

‖(γ · η)<n>‖q0,∞ ≤
n∑

k=0

∑
i,j

|Ni,j|‖γ <k>‖∞‖η<n−k>‖qn,∞ .

Here, at most 2n summands were involved and hence the fake triangle inequality had
to be used at most n times, explaining why the gauge qn occurs. Since |Ni,j| ≤ Ni,j,
the assertion follows with Ck := ∑

i,j Ni,j, where the sum is taken over all i, j as in
Lemma 4.2 such that #i = k and #j = n − k. �

As a first application of Lemma 4.5, let us construct a family of smooth cut-
off functions the size of whose difference quotient maps (of all orders) is well under
control. These cut-off functions will be most useful later.

LEMMA 4.6. There is a sequence (Mn)n∈�0 of positive real numbers with the following
property. For all a, b > 0, there exists a smooth function h: � → [0, 1] with support
supp(h) ⊆ [−(a + b), a + b], such that h(t) = 1 for all t ∈ [−a, a] and

(∀n ∈ �0) ‖h<n>‖∞ ≤ Mn b−n .

Proof. Let g: � → [0, 1] be a smooth function such that g(t) = 1 if t ≤ 0 and
g(t) = 0 if t ≥ 1. Then g(k) is bounded for each k ∈ �0 and hence g ∈ BC∞(�, �),
by Lemma 1.14. Given a, b > 0, define h: � → � via h(t) := g( t−a

b )g(−t−a
b ). Then

h(�) ⊆ [0, 1], h(t) = 1 if |t| ≤ a, and h(t) = 0 if |t| ≥ a + b. By Lemma 4.5, we have
h ∈ BC∞(�, �). Furthermore, combining (19) with Lemma 1.13 (a) and (b), we see
that

‖h<n>‖∞ ≤
n∑

k=0

Ck b−k‖g<k>‖∞ · b−(n−k)‖g<n−k>‖∞ = Mn b−n

with Mn := ∑n
k=0 Ck‖g<k>‖∞ · ‖g<n−k>‖∞ independent of a and b. �
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The following lemma will serve as a substitute for Lemma 3.5 in the real case. Of
course, BC∞([a, b], E) = C∞([a, b], E) here by compactness of [a, b].

LEMMA 4.7. Let a < α < β < b be real numbers, r := min{α − a, b − β}, E be a
real topological vector space, and γ ∈ BC∞([a, b], E) be a map such that γ (x) = 0 if
x ∈ [a, b] \ [α, β]. Define η: � → E via η(x) := γ (x) if x ∈ [a, b], η(x) := 0 elsewhere.
Then η ∈ BC∞(�, E). Furthermore,

‖η<k>‖q0,∞ ≤ max
j=0,...,k

(2
r

)k−j
‖γ <j>‖qk−j,∞ , (20)

for each k ∈ �0 and calibration (qn)n∈�0 on E.

Proof. We show by induction on k ∈ �0 that η ∈ BCk(�, E) and (20) holds. If
k = 0, then sup{‖η(x)‖q0 : x ∈ �} = sup{‖γ (x)‖q0 : x ∈ [a, b]} = ‖γ <k>‖q0,∞ for each
calibration (qn)n∈�0 , ensuring that η ∈ BC(�, E) and (20) holds. Now suppose that
k ≥ 1 and suppose that the estimate (20) holds if k is replaced with k − 1, for each
calibration. Since U>k< is dense in U<k> and η<k> is continuous, we only need to
show that the right hand side of (20) is an upper bound for ‖η<k>(x)‖q0 , for each
x = (x0, . . . , xk) ∈ U>k<.

Cases 1 and 2. If xj ∈ [a, b] for all j ∈ {0, . . . , k}, or if xj �∈ [α, β] for all
j ∈ {0, . . . , k}, then we see as in Step 1 and 2 of the proof of Lemma 3.5 that
‖η<k>(x)‖q0 does not exceed the right hand side of (20).

Case 3. Assume that there are i, j ∈ {0, . . . , k} such that xi ∈ [α, β] and xj �∈ [a, b].
Then |xi − xj| ≥ r. By symmetry of η<k>, without loss of generality i = 0 and j = k.
Now

‖η<k>(x)‖q0 = ‖η<k−1>(x0, x1, . . . , xk−1) − η<k−1>(xk, x1, . . . , xk−1)‖q0

|x0 − xk|
≤ ‖η<k−1>(x0, x1, . . . , xk−1)‖q1 + ‖η<k−1>(xk, x1, . . . , xk−1)‖q1

r

≤ 2
r

· max
j=0,...,k−1

(2
r

)k−1−j
‖γ <j>‖qk−j,∞ , (21)

applying the inductive hypothesis to η<k−1> and the calibration (qn+1)n∈�0 to obtain
the final inequality. Since the right hand side of (21) does not exceed the right hand
side of (20), our inductive proof is complete. �

Proof of Theorem 4.1. After shrinking rn if necessary, we may assume that rn =
sn + 2

n2 for each n ∈ � (cf. Lemma 1.13 (c)). Let (Mn)n∈�0 be as in Lemma 4.6. Given
n ∈ �, we apply Lemma 4.6 with a := sn and b := 1

n2 . We obtain a smooth function
hn: � → [0, 1] such that hn(t) = 1 for all t ∈ [−sn, sn], supp(hn) ⊆ [−sn − 1

n2 , sn + 1
n2 ],

and

‖h<k>
n ‖∞ ≤ Mkn2k, for each k ∈ �0. (22)

Set r0 := 0 and define for n ∈ �
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tn :=
n∑

j=1

(rj + rj−1) .

Then (tn)n∈� is a monotonically increasing sequence, which converges because t∞ :=∑∞
j=1(rj + rj−1) ≤ 2

∑∞
j=1 sj + 4

∑∞
j=1

1
n2 < ∞. By definition,

(∀n ∈ �) tn+1 − tn = rn+1 + rn . (23)

Define ζn: [tn − rn, tn + rn] → E, ζn(t) := hn(t − tn)γn(t − tn) and let ηn: � → E
be the extension of ζn by 0. Then supp(ηn) ⊆ [tn − sn − 1

n2 , tn + sn + 1
n2 ] ⊆

]tn − rn, tn + rn[, whence the maps ηn have disjoint supports (cf. (23)). Thus γ (t) :=∑∞
n=1 ηn(t) exists pointwise. To see that γ has the desired properties, let q be a gauge

on E and extend it to a calibration (qn)n∈�0 such that (13) holds. Then

‖ζ<j>
n ‖qm,∞ ≤

j∑
i=0

Ci ‖h<i>
n ‖∞ · ‖γ <j−i>

n ‖qm+j,∞

≤
j∑

i=0

n2iCiMi‖γ <j−i>
n ‖qm+j,∞ , (24)

for all n ∈ � and m, j ∈ �0, using Lemma 1.13 (a), inequality (19) from Lemma 4.5
and (22). Because ζn vanishes outside [tn − sn − 1

n2 , tn + sn + 1
n2 ] and furthermore

(tn − sn − 1
n2 ) − (tn − rn) = 1

n2 and (tn + rn) − (tn + sn + 1
n2 ) = 1

n2 , Lemma 4.7 and (20)
show that ηn ∈ BC∞(�, E), with

‖η<k>
n ‖qn,∞ ≤ max

j=0,...,k

( 2
1/n2

)k−j
‖ζ<j>

n ‖qn+k−j,∞ ≤ 2kn2k max
j=0,...,k

‖ζ<j>
n ‖qn+k,∞

≤ n4kAk
∑k

i=0 ‖γ <i>
n ‖qn+2k,∞

where Ak := max{2kCjMj: j=0, . . . , k}. Passing to the last line, we used
(24) and replaced some terms by larger ones. Since n4k+2‖γ <i>

n ‖qn+2k,∞
converges as n → ∞ for each i ∈ {0, . . . , k} (by (13)), we have Bk :=
sup{n4k+2‖γ <i>

n ‖qn+2k,∞: i ∈ {0, . . . , k}, n ∈ �} < ∞. Hence
∞∑

n=1

‖η<k>
n ‖qn,∞ ≤ Ak

k∑
i=0

∞∑
n=1

1
n2

n4k+2‖γ <i>
n ‖n+2k,∞︸ ︷︷ ︸
≤Bk

≤ AkBk

k∑
i=0

∞∑
n=1

1
n2

< ∞.

Thus
∑∞

n=1 ηn is absolutely convergent and hence convergent in BC∞(�, E).
Pointwise calculation of the limit shows that

∑∞
n=1 ηn = γ from above.

Since t∞ �∈ supp (ηn) for all n ∈ �, we can argue now as at the end of the proof of
Theorem 3.1 to see that γ ∈ BC∞(�, E). By construction, γ has also all other required
properties. �

A. Proofs of the lemmas in Section 1. In this appendix, proofs are provided for
the lemmas from Section 1.

Proof of Lemma 1.3. (a) For each 0-neighbourhood U in E, we define �X, U� :=
{γ ∈ BC(X, E): γ (X) ⊆ U}. If V ⊆ E is a 0-neighbourhood with V = −V and
U ⊇ V + V , then �X, V� + �X, V� ⊆ �X, U� and −�X, V� ⊆ �X, U�, ensuring that
there is a unique group topology on BC(X, E) for which the sets �X, U� form a basis
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of 0-neighbourhoods. As
⋂

U U = {0}, also the sets �X, U� have intersection {0} and
thus BC(X, E) is Hausdorff. To see that the given group topology is a vector topology,
it only remains to check conditions (EVT′

I)–(EVT′
III) of [5, Ch. I, §1, no. 1]. First, given

γ0 ∈ BC(X, E), we show that the map � → BC(X, E), t 
→ tγ0 is continuous at 0.
Since γ0(X) is bounded, for each 0-neighbourhood U ⊆ E there is a 0-neighbourhood
V ⊆ � such that Vγ0(X) ⊆ U . Then Vγ0 ⊆ �X, U�, entailing the assertion. Next, given
t0 ∈ �, let us check that the map BC(X, E) → BC(X, E), γ 
→ t0γ is continuous at 0.
In fact, given U as before, there is a 0-neighbourhood V ⊆ E such that t0V ⊆ U .
Then t0�X, V� ⊆ �X, U�. Also, scalar multiplication � × BC(X, E) → BC(X, E),
(t, γ ) 
→ tγ is continuous at (0, 0). In fact, given U , there are 0-neighbourhoods V ⊆ �

and W ⊆ E such that VW ⊆ U . Then V�X, W� ⊆ �X, U�.
(b) If (γα)α is a Cauchy net in BC(X, E), then (γα(x))α is a Cauchy net in E for each

x ∈ X , the point evaluation BC(X, E) → E, γ 
→ γ (x) being continuous and linear.
Since E is complete, γα(x) → γ (x) for some γ (x) ∈ E. Given a 0-neighbourhood U in
E, let V ⊆ E be a 0-neighbourhood such that V + V + V ⊆ U , and W ⊆ V a closed,
symmetric 0-neighbourhood such that SW ⊆ V for some 0-neighbourhood S ⊆ �.
There exists α0 such that γα − γβ ∈ �X, W� for all α, β ≥ α0. Then γα(x) − γβ(x) ∈ W
for each x ∈ X . Since W is closed, passage to the limit yields

γα(x) − γ (x) ∈ W ⊆ V for each x ∈ X and α ≥ α0. (25)

Each x0 ∈ X has a neighbourhood Q such that γα0 (x) − γα0 (x0) ∈ V for all x in
Q and hence γ (x) − γ (x0) = (γ (x) − γα0 (x)) + (γα0 (x) − γα0 (x0)) +(γα0 (x0) − γ (x0)) ∈
U . Thus γ is continuous at x0 and hence continuous. To see that γ (X) is bounded,
let T ⊆ S be a 0-neighbourhood such that Tγα0 (X) ⊆ V . Then tγ (x) = tγα0 (x) +
t(γ (x) − γα0 (x)) ∈ V + SW ⊆ U for each x ∈ X and t ∈ T , whence Tγ (X) ⊆ U . Thus
γ ∈ BC(X, E). Since γα − γ ∈ �X, U� for all α ≥ α0, we see that γα → γ .

(c) It is obvious that θ is linear, and it is a topological embedding by definition
of the topology on BCk(U, E). To see that the image is closed, let (γα)α be a net in
BCk(U, E) such that θ (γα) → η for some η = (ηj) ∈ ∏

j BC(Uj+1, E). We claim that
γ := η0 ∈ BCk(U, E) and θ (γ ) = η. This will be the case if

ηj+1(x0, . . . , xj+1) = ηj(x0, x1, . . . , xj) − ηj(xj+1, x1, . . . , xj)
x0 − xj+1

(26)

for each j ∈ �0 with j < k and each (x0, . . . , xj+1) ∈ Uj+2 with x0 �= xj+1. To prove
(26), we use the fact that the jth component θj(γα) converges to ηj, and the continuity
of the point evaluation ε1: BC(Uj+1, E) → E, ζ 
→ ζ (x0, . . . , xj), the point evaluation
ε2: BC(Uj+1, E) → E at (xj+1, x1, . . . , xj) and the point evaluation ε3: BC(Uj+2, E) →
E at (x0, . . . , xj+1). Since

ε3(θj+1(γα)) = γ <j+1>
α (x0, . . . , xj+1) = ε1(θj(γα)) − ε2(θj(γα))

x0 − xj+1
,

passing to the limit we obtain (26).

https://doi.org/10.1017/S0017089508004199 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004199


286 HELGE GLÖCKNER

(d) It is clear from (c) that BCk(U, E) is a topological �-vector space. If E is
complete, then also BCk(U, E) is complete as it is isomorphic to a closed vector
subspace of a complete topological vector space by (b) and (c). �

Proof of Lemma 1.11. It is clear that the map γ 
→ ‖γ <j>‖q,∞ is positively
homogeneous. Given r > 0, pick s ∈ ]0, r[. Then the set V := Bq

s (0) is a 0-
neighbourhood in E and thus �Uj+1, V� is a 0-neighbourhood in BC(Uj+1, E),
entailing that W := {γ ∈ BCk(U, E): γ <j> ∈ �Uj+1, V�} is a 0-neighbourhood in
BCk(U, E). As W ⊆ {γ ∈ BCk(U, E): ‖γ <j>‖q,∞ ≤ s}, we see that also the set {γ ∈
BCk(U, E): ‖γ <j>‖q,∞ < r} is a 0-neighbourhood. Hence the mappings in contention
are gauges.

To see that a fundamental system of gauges is obtained, we use the fact that each
0-neighbourhood in BCk(U, E) contains a finite intersection of sets of the form

W := {γ ∈ BCk(U, E): γ <j> ∈ �Uj+1, V�} ,

where j ∈ �0 with j ≤ k and V ⊆ E is a 0-neighbourhood. There are r1, . . . , rn > 0 and
q1, . . . , qn ∈ � such that

⋂n
i=1 Bqi

ri (0) ⊆ V . Consider the gauges pi: γ 
→ ‖γ <j>‖qi,∞ for
i ∈ {1, . . . , n}. Then

⋂n
i=1 Bpi

ri (0) ⊆ W . �
Proof of Lemma 1.13. (a) A trivial induction on j ∈ {0, 1, . . . , k} gives

η<j>(x0, . . . , xj) = γ <j>(x0 + t0, . . . , xj + t0) for all (x0, . . . , xj) ∈ (U − t0)j+1. Now
‖η<k>‖q,∞ = ‖γ <k>‖q,∞ is an immediate consequence.

(b) A trivial induction on j ∈ {0, 1, . . . , k} shows that η<j>(x0, . . . , xj) =
ajγ <j>(ax0, . . . , axj) for all (x0, . . . , xj) ∈ (a−1U)j+1. Now ‖η<k>‖q,∞ = |a|k‖γ <k>‖q,∞
is an immediate consequence.

(c) A trivial induction on j ∈ {0, 1, . . . , k} shows that γ |V ∈ BCj(V, E) and
(γ |V )<j> = γ <j>|Vj+1 . Now ‖(γ |V )<k>‖q,∞ ≤ ‖γ <k>‖q,∞ is immediate. �

Proof of Lemma 1.14. If γ is Ck in our sense, then it is easy to show by induction
on j that γ is Cj in the usual sense for each j ∈ {0, . . . , k}, with

γ (j)(x) = j!γ <j>(x, . . . , x) for all x ∈ I (27)

(cf. [3, Proposition 6.2] and [21, §29]). Furthermore, it is clear from the preceding
formula that γ (j)(I) is bounded because γ <j>(Ij+1) is bounded.

Conversely, assume that γ is continuous and assume that the derivatives
γ ′, γ ′′, . . . , γ (k) exist and are continuous. Then we have, for all x0 �= x1 in I ,

γ (x1) − γ (x0)
x1 − x0

=
∫ 1

t1=0
γ ′(x0 + t1(x1 − x0)) dt1

by the Fundamental Theorem of Calculus for curves in locally convex spaces (see, e.g.,
[14, Chapter 1]). Hence

γ <1>: I2 → E , (x0, x1) 
→
∫ 1

t1=0
γ ′((1 − t1)x0 + t1x1) dt1

is an extension to the difference quotient map, which is continuous by the theorem on
parameter-dependence of weak integrals (see [14, Chapter 1]. Thus γ is C1 in the sense
of Definition 1.1. Iterating the argument, we find that γ is Cj for each j ∈ {1, . . . , k}
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and γ <j>(x0, x1, . . . , xj) is given by

∫ 1

t1=0
· · ·

∫ 1

tj=0
(1 − tj−1) · · · (1 − t1)·

γ (j)(t1x1 + (1 − t1)t2x2 + · · · + (1 − t1)(1 − t2) · · · (1 − tj−1)tjxj

+ (1 − t1) · · · (1 − tj)x0) dtj . . . dt1. (28)

If γ (j) is bounded, then so is γ <j> by the preceding formula, with

‖γ <j>‖q,∞ ≤ ‖γ (j)‖q,∞ (29)

for each continuous seminorm q on E. This completes the proof. �
REMARK. By (27) and (29), the seminorms γ 
→ ‖γ <j>‖q,∞ (for j ≤ k and q in the

set of continuous seminorms on E) define the same vector topology on BCk(U, E) as
the seminorms γ 
→ ‖γ (j)‖q,∞ ordinarily used on this space.
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9. H. Glöckner, Every smooth p-adic Lie group admits a compatible analytic structure,

Forum Math. 18 (2006), 45–84.
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