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Generalized Kähler–Einstein Metrics and
Energy Functionals
Xi Zhang and Xiangwen Zhang

Abstract. In this paper, we consider a generalized Kähler–Einstein equation on a Kähler manifold M.
Using the twisted K-energy introduced by Song and Tian, we show that the existence of generalized
Kähler–Einstein metrics with semi-positive twisting (1, 1)-form θ is also closely related to the proper-
ness of the twisted K-energy functional. Under the condition that the twisting form θ is strictly pos-
itive at a point or M admits no nontrivial Hamiltonian holomorphic vector field, we prove that the
existence of generalized Kähler–Einstein metric implies a Moser–Trudinger type inequality.

1 Introduction

An important problem in Kähler geometry is that of finding a canonical Kähler met-
ric in a given Kähler class. By Aubin and Yau’s work [1, 23], we know that [ω]
admits a Kähler–Einstein metric when c1(M) = 0 and also when c1(M) < 0 and
[ω0] = −kc1(M). For the remaining case, i.e., c1(M) > 0, the existence question is
still open. Important progress was made by Tian [18–20], Tian and Yau [21], Siu [14],
Ding [8], and others. In [20], Tian introduced K stability and showed that the exis-
tence of Kähler–Einstein metrics is equivalent to the properness of the corresponding
energy functionals. For the case where the given Kähler class is not proportional to
the first Chern class, we can consider the constant scalar curvature Kähler metrics
or, more generally, the extremal Kähler metrics, which were first considered by Cal-
abi [5]. It is well known that the existence of the canonical Kähler metrics is related
to the stability in the sense of Hilbert schemes and geometric invariant theory by a
conjecture of Yau [24], Tian [20], and Donaldson [10].

Let (M, J) be a 2m-dimensional complex manifold, let [ω0] ∈ H1,1(M,C) ∩
H2(M,R) be a Kähler class on (M, J), and let α := 2πc1(M) − k[ω0], where k is
a constant. Fixing a closed (1, 1)-form θ ∈ α, we consider the following generalized
Kähler–Einstein equation

(1.1) ρ(ω)− θ = kω,

where ρ(ω) is the Ricci form of the Kähler metric ω ∈ [ω0]. If θ ≡ 0, equation (1.1)
is just the Kähler–Einstein equation. A Kähler metric ω satisfying (1.1) will be called
a generalized Kähler–Einstein metric. Let us denote by Hω0 the set of all smooth
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strictly ω0-plurisubharmonic functions, i.e.,

Hω0 = {ϕ ∈ C∞(M) : ω0 +
√
−1∂∂ϕ > 0},

and by Kω0 the set of all Kähler forms on M cohomologous to ω0. It is easy to see
that solving the generalized Kähler–Einstein equation (1.1) is equivalent to solving
the following complex Monge–Ampère equation,

(1.2)
(ω0 +

√
−1∂∂ϕ)m

ωm
0

= exp(hω0 − kϕ),

where ϕ ∈ Hω0 and hω0 is a smooth function that satisfies

ρ(ω0)− θ = kω0 +
√
−1∂∂hω0 and

∫
M

exp(hω0 )ωm
0 =

∫
M
ωm

0 = V.

If k ≤ 0 , by Aubin and Yau’s work [1, 23], the complex Monge–Ampère equation
(1.2) can be solved. In this paper, we consider the remaining case k > 0 and there
should be obstructions to admit generalized Kähler–Einstein metrics. Through the
work of Bando and Mabuchi[4], Ding and Tian[9], Tian[20], Donaldson [11], and
others, it is well known that the Mabuchi K-energy is very useful in Kähler geometry.
Let us recall the following twisted K-energy, which was first introduced by Song and
Tian in [15].

Definition 1.1 For every (ϕ0, ϕ1) ∈ Hω0 ×Hω0 , we define

(1.3) Mθ(ϕ0, ϕ1) = − 1

V

∫ 1

0

∫
M
ϕ̇t (S(ωt )− Λωϕt

θ − Sθ)ω
m
ϕt

dt,

where {ϕt |0 ≤ t ≤ 1} is an arbitrary piecewise smooth path in Hω0 such that
ϕt |t=0 = ϕ0 and ϕt |t=1 = ϕ1, S(ωϕt ) is the scalar curvature of ωϕt , Λωϕt

is the con-

traction with ωϕt , and Sθ = 1
V

∫
M m(2πc1(M)− [θ]) ∪ [ω0]m−1. For every ϕ ∈ Hω0 ,

we define

Vθ,ω0 (ϕ) = Mθ(0, ϕ1).

Song and Tian [15, Proposition 6.1] have shown that the integral in (1.3) is inde-
pendent of the choice of the path ϕt . Thus, Mθ is well defined in Hω0 ×Hω0 . By the
definition, it is easy to check that Mθ satisfies the 1-cocycle condition, i.e.,

Mθ(ϕ0, ϕ1) + Mθ(ϕ1, ϕ0) = 0,

Mθ(ϕ0, ϕ1) + Mθ(ϕ1, ϕ2) + Mθ(ϕ2, ϕ0) = 0,(1.4)

Mθ(ϕ0 + C0, ϕ1 + C1) = Mθ(ϕ1, ϕ0),

for any ϕ0, ϕ1, ϕ2 ∈ Hω0 and C0,C1 ∈ R. By the above properties, we know that Mθ

(or Vθ,ω0 ) can also be defined on the space Kω0 ×Kω0 (Kω0 ).
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We say the K-energy functional Vθ,ω0 is proper if lim supi→+∞ Vθ,ω0 (ϕi) = +∞
whenever limi→+∞ Jω0 (ϕi) = +∞, where ϕi ∈ Hω0 and Jω0 is the Aubin functional.
In this paper, we follow Tian’s method in [20] to show that the existence of gen-
eralized Kähler–Einstein metric is closely related to the properness of the twisted
K-energy functional, and we also follow the discussion in Tian and Zhu [22] and
Phong, Song, Strum, and Weinkove [13] to deduce a Moser–Trudinger type inequal-
ity. In fact, we obtain the following theorem.

Theorem 1.2 Let (M, ω0) be a Kähler manifold, and let θ ∈ α = 2πc1(M) − k[ω0]
be a real closed semipositive (1, 1)-form with k > 0. If Vθ,ω0 is proper, then there exists
a generalized Kähler–Einstein metric ωGKE ∈ Kω0 . On the other hand, assuming that
the twisting form θ is strictly positive at a point or M admits no nontrivial Hamiltonian
holomorphic vector field, if there exists a generalized Kähler–Einstein metric in ωGKE ∈
Kω0 , then Vθ,ω0 must be proper. In fact, there exist uniform positive constants C2, C3

depending only on k, θ and the geometry of (M, ω0) such that

(1.5) Vθ,ω0 (ϕ) ≥ C2 Jω0 (ϕ)−C3

for all ϕ ∈ Hω0 .

In [16], Stoppa discussed the so-called twisted cscK equation, i.e., finding a metric
ω ∈ [ω0] such that

(1.6) S(ω)− Λωθ = Sθ,

where θ is a real closed semipositive (1, 1)-form and Sθ is a constant. In particular, if
θ ∈ 2πc1(M)− k[ω0], then the above twisted cscK equation is equivalent to the gen-
eralized Kähler–Einstein equation (1.1). By the definition of the twisted K-energy, it
is easy to check that the second derivative along a path ϕt ∈ Hω0 is given by

V
d2

dt2
Vθ,ω0 (ϕt ) = ‖∂∇1,0

ωϕt
ϕ̇t‖2

ωϕt
+ (∂ϕ̇t ∧ ∂ϕ̇t , θ)ωϕt

−
∫

M

(
ϕ̈t −

1

2
|∇1,0

ωϕt
ϕ̇t |2ωϕt

)(
S(ωt )− Λωϕt

θ − Sθ
)
ωm
ϕt
.

If either the twisting form θ is strictly positive at a point or M admits no nontrivial
Hamiltonian holomorphic vector field, then Vθ is strictly convex along geodesics in
Hω0 . Then the results of Chen and Tian [7] on the regularity of weak geodesics
imply uniqueness of solution of the twisted cscK equation (1.6) and that the twisted
K-energy Vθ,ω0 has a lower bound. The above facts were pointed out by Stoppa in
[16], where he used the lower bound of Vθ,ω0 to get a slope stability condition.

Let D ⊂ M be an effective divisor. The Seshadri constant of D with respect to the
Kähler class [ω0] is given by

ε
(

D, [ω0]
)

= sup
{

x | [ω0]− x2πc1(D) ∈ K
}
,
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where K is the Kähler cone. Stoppa defined the twisted Ross–Thomas polynomial of
(M, [ω0]) with respect to D and θ by

Fθ,D(λ) =

∫ λ

0
(λ− x)α2(x)dx +

λ

2
α1(0)− Sθ

2

∫ λ

0
(λ− x)α1(x)dx,

where

α1(x) =
1

(m− 1)!

∫
M

2πc1(D) ∪ ([ω0]− 2xπc1(D))m−1,

α2(x) =

∫
M 2πc1(D) ∪ (2πc1(M)− [θ]− 2πc1(D)) ∪ ([ω0]− x2πc1(D))m−2

2(m− 2)!
.

In [16], Stoppa proved that if (1.6) is solvable in [ω0], then Fθ,D(λ) ≥ 0 for all
effective divisors D ⊂ M and 0 ≤ λ ≤ ε(D, [ω0]). In fact, see [16, Theorem 3.1], we
can find a family of Kähler metrics ωε ∈ [ω0] with ωε|ε=1 = ω0 such that as ε→ 0

Vθ,ω0 (ωε) = −πFθ,D(λ) log(ε) + l.o.t.

By the calculation in [16, Lemmas 3.12 and 3.15], we also have the following asymp-
totic behavior of the Aubin functional:

Jω0 (ωε) = −π
2

∫ λ

0
(λ− x)α1(x)dx log(ε) + l.o.t.

By the above Moser–Trudinger inequality (1.5) in Theorem 1.2, we can obtain a
strictly slope stability. In fact, we have the following corollary.

Corollary 1.3 Let (M, ω0) be a Kähler manifold, and let θ ∈ α = 2πc1(M)− k[ω0]
be a real closed semipositive (1, 1)-form with k > 0. Assume that the twisting form
θ is strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic
vector field. If there is a generalized Kähler–Einstein metric ω ∈ Kω0 , then there exists a
uniform positive constant C4 such that

Fθ,D(λ) ≥ C4

∫ λ

0
(λ− x)α1(x)dx > 0

for all effective divisors D ⊂ M and 0 < λ ≤ ε(D, [ω0]).

In a special case, if α = (1 − k)[ω0] with 0 < k < 1, we let θ = (1 − k)ω0. Then
the generalized Kähler–Einstein equation (1.1) is just the Aubin equation

(1.7) ρ(ω) = (1− k)ω0 + kω.

The twisted K-energy V(1−k)ω0,ω0 can be expressed by

V(1−k)ω0,ω0 (ϕ) = Vω0 (ϕ) + (1− k)(Iω0 − Jω0 )(ϕ),
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for allϕ ∈ Hω0 , where Vω0 is the Mabuchi K-energy, Iω0 and Jω0 are the Aubin energy
functionals. If there exists a Kähler metric ω ∈ [ω0] such that

ρ(ω)− kω > 0,

and let θ = (1−k)ω = ρ(ω)−kω > 0, we know that the generalized Kähler–Einstein
equation (1.1) can be solved in [ω0]. By Theorem 1.2, it follows that V(1−k)ω,ω0 is
proper. Moreover, it satisfies the Moser–Trudinger type inequality (1.5). On the other
hand, by Lemma 2.1, the cocycle identity of Mθ and properties of Iω, Jω (see (1.4),
(2.6), and (2.5)), it is easy to see that the properness of the twisted K-energy Vθ,ω is
independent on the choice of the twisting form θ ∈ α and Kähler metric ω ∈ [ω0].
So we have the following corollary, which was also proved by G. Székelyhidi in [17].

Corollary 1.4 Let (M, ω0) be a Kähler manifold with 2πc1(M) = [ω0], and
0 < k < 1. The following are equivalent.

(i) We can uniquely solve the equation (1.7).
(ii) There exists a Kähler metric ω ∈ [ω0] such that ρ(ω) > kω.
(iii) For any Kähler metric ω ∈ [ω0], Vω(ϕ) + (1− k)(Iω − Jω)(ϕ) is proper.
(iv) For any Kähler metric ω ∈ [ω0], there exist uniform positive constants C5 and C6

such that

Vω(ϕ) + (1− k)(Iω − Jω)(ϕ) ≥ C5 Jω(ϕ)−C6,

for all ϕ ∈ Hω .

This paper is organized as follows. In Section 2, we give some preliminary re-
sults about energy functionals. In Section 3, we give a existence result for gener-
alized Kähler–Einstein metric; i.e., the properness of twisted K energy implies the
existence of the generalized Kähler–Einstein metrics. In Section 4, we obtain the
Moser–Trudinger type inequality (1.5) and finish the proof of Theorem 1.2.

2 Twisted K-energy Functional

Let (M, ω0) be a Kähler manifold, and let α ∈ H1,1(M,C) ∩ H2(M,R). Fix a real
closed (1, 1) form θ ∈ α. The twisted K-energy functional can be expressed by

Mθ(ϕ0, ϕ1) = − 1

V

∫
M

m−1∑
j=0

(ϕ1 − ϕ0)(ρ(ωϕ0 )− θ) ∧ ω j
ϕ0
∧ ωm− j−1

ϕ1

+
Sθ

(m + 1)V

m∑
j=0

∫
M

(ϕ1 − ϕ0)ω j
ϕ0
∧ ωm− j

ϕ1
+

1

V

∫
M

log
ωm
ϕ1

ωm
ϕ0

ωm
ϕ1
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and

(2.1) Vθ,ω0 (ϕ) = − 1

V

∫
M

m−1∑
j=0

ϕ(ρ(ω0)− θ) ∧ ω j
0 ∧ ωm− j−1

ϕ

+
1

V

∫
M

log
ωm
ϕ

ωm
0

ωm
ϕ +

Sθ
(m + 1)V

m∑
j=0

∫
M
ϕω

j
0 ∧ ωm− j

ϕ

for all ϕ,ϕ0, ϕ1 ∈ Hω0 . Let us recall the Aubin functionals

(2.2) Iω0 (ϕ) =
1

V

∫
M
ϕ(ωm

0 − ωm
ϕ ), Jω0 (ϕ) =

∫ 1

0

1

t
Iω0 (tϕ)dt.

Let ϕs be a smooth curve in Hω0 , by direct calculation, we have

d

ds
Iω0 (ϕs) =

1

V

∫
M
ϕ̇s(ω

m
0 − ωm

ϕs
)− 1

2V

∫
M
ϕs4ϕs ϕ̇sω

m
ϕs
,

d

ds
Jω0 (ϕs) =

1

V

∫
M
ϕ̇s(ω

m
0 − ωm

ϕs
)

(2.3)

and then

(2.4)
d

ds

(
Iω0 (ϕs)− Jω0 (ϕs)

)
= − 1

2V

∫
M
ϕs(4sϕ̇s)ω

m
ϕs
.

We also have the following properties for I and J (the proof can be found in [4]). For
a constant C ,

Iω0 (ϕ + C) = Iω0 (ϕ), Jω0 (ϕ + C) = Jω0 (ϕ);

and

(2.5) 0 ≤ Iω0 (ϕ) ≤ (m + 1){Iω0 (ϕ)− Jω0 (ϕ)} ≤ mIω0 (ϕ)

for all ϕ ∈ Hω0 . Let ω ′ be an another Kähler form in [ω0], and assume that ω ′ =
ω0 +

√
−1∂∂φ for some function φ. It is easy to check that

(2.6) |Iω ′(ϕ− φ)− Iω0 (ϕ)| ≤ (m + 1) Osc(φ)

for all ϕ ∈ Hω0 .
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If θ1 − θ2 =
√
−1∂∂ f , then we have

Vθ1,ω0 (ϕ)− Vθ2,ω0 (ϕ) =
1

V

∫
M

m−1∑
j=0

ϕ(θ1 − θ2) ∧ ω j
0 ∧ ωm− j−1

ϕ

=
1

V

∫
M

m−1∑
j=0

ϕ
√
−1∂∂ f ∧ ω j

0 ∧ ωm− j−1
ϕ

=
1

V

∫
M

m−1∑
j=0

f (ωϕ − ω0) ∧ ω j
0 ∧ ωm− j−1

ϕ

=
1

V

∫
M

f (ωm
ϕ − ωm

0 ).

This gives us the following lemma.

Lemma 2.1 Let θ1 − θ2 =
√
−1∂∂ f Then

|Vθ1,ω0 (ϕ)− Vθ2,ω0 (ϕ)| ≤ Osc( f )

for all ϕ ∈ Hω0 .

Now, we suppose that θ ∈ α = 2πc1(M)− k[ω0]. Let hω0 be the smooth function
that satisfies

ρ(ω0)− θ = kω0 +
√
−1∂∂hω0 and

∫
M

exp(hω0 )ωm
0 =

∫
M
ωm

0 = V.

Let us recall the Ding–Tian functional

F0
ω0

(ϕ) = Jω0 (ϕ)− 1

V

∫
M
ϕωm

0 ,

Fω0 (ϕ) = F0
ω0

(ϕ)− k−1 log
( 1

V

∫
M

ehω0−kϕωm
0

)
.

(2.7)

Let ϕs be a smooth path in Hω0 , then

d

ds
F0
ω0

(ϕs) = − 1

V

∫
M
ϕ̇sω

m
ϕs
,

and

(2.8)
d

ds
Fω0 (ϕs) = − 1

V

∫
M
ϕ̇sω

m
ϕs

+

(∫
M

ehω0−kϕωm
0

)−1 ∫
M
ϕ̇se

hω0−kϕωm
0 .

From (2.8), it is easy to check that the critical points of Fω0 are generalized Kähler–
Einstein metrics. As that in [18], one can also check that Fω0 satisfies the following
cocycle property:

(2.9)
Fω0 (ψ) + Fω ′(φ− ψ) = Fω0 (φ),

Fω0 (ψ) = −Fω ′(−ψ),
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for all φ, ψ ∈ Hω0 and ω ′ = ω0 +
√
−1∂∂ψ. Moreover, F0

ω0
also has the same cocycle

condition.
By the definitions and direct calculation, we have

V (Iω0 − Jω0 )(ϕ) = − m

m + 1

∫
M
ϕωm

ϕ +
1

m + 1

∫
M

m∑
j=1

ϕω
j
0 ∧ ωm− j

ϕ

and ∫
M

hω0 (ωm
0 − ωm

ϕ ) = −
∫

M
hω0 (
√
−1∂∂ϕ) ∧

m−1∑
j=0

ω
j
0 ∧ ωm− j−1

ϕ

= −
∫

M
ϕ(
√
−1∂∂hω0 ) ∧

m−1∑
j=0

ω
j
0 ∧ ωm− j−1

ϕ

= −
∫

M
ϕ(ρ(ω0)− θ + kω0) ∧

m−1∑
j=0

ω
j
0 ∧ ωm− j−1

ϕ .

Noting that Sθ = km, by (2.1),

(2.10) Vθ,ω0 (ϕ) = −k(Iω0 − Jω0 )(ϕ)

+
1

V

∫
M

hω0 (ωm
0 − ωm

ϕ ) +
1

V

∫
M

log(
ωm
ϕ

ω0
)ωm

ϕ .

We also have the following relation between the Ding–Tian functional and the twisted
Mabuchi K-energy functional.

Lemma 2.2 Let (M, ω0) be a Kähler manifold, and θ ∈ α = 2πc1(M)−k[ω0]. Then

(2.11) Vθ,ω0 (ϕ)− kFω0 (ϕ) =
1

V

∫
M

hω0ω
m
0 −

1

V

∫
M

hωφω
m
φ

for any ϕ ∈ Hω0 , where hω is the smooth function that satisfies

ρ(ω)− θ = kω +
√
−1∂∂hω

and the normalized condition
∫

M exp(hω)ωm = V . Furthermore, we have

(2.12) Vθ,ω0 (ϕ) ≥ kFω0 (ϕ) +
1

V

∫
M

hω0ω
m
0 .

Proof By the definition of hω , it is easy to check that

(2.13) − log
ωm
ϕ

ωm
0

− kφ + cϕ = hωϕ − hω0
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for all ϕ ∈ Hω0 with cϕ = − log( 1
V

∫
M ehω0−kφω0). Then by (2.10) and (2.13) we have

Vθ,ω0 (ϕ)

= k Jω0 (ϕ)− kIω0 (ϕ)− k

V

∫
M
ϕωm

ϕ + cϕ +
1

V

∫
M

hω0ω
m
0 −

1

V

∫
M

hωϕω
m
φ

= k
(

Jω0 (ϕ)− 1

V

∫
M
ϕωm

0 + k−1cϕ
)

+
1

V

∫
M

hω0ω
m
0 −

1

V

∫
M

hωϕω
m
φ ,

which implies (2.11). By the normalized condition of hωϕ , we have
∫

M hωϕω
m
ϕ ≤ 0,

and (2.12) follows.

3 Existence Result for the Generalized Kähler–Einstein Metrics

As in Kähler–Einstein case, finding generalized Kähler–Einstein metric can be re-
duced to solving the complex Monge–Ampère equation (1.2). We consider a family
of complex Monge–Ampère equations

(3.1)
(ω0 +

√
−1∂∂ϕ)m

ωm
0

= exp(hω0 − tkϕ)

and set

S = {t ∈ [0, 1] | (3.1) is solvable for t}.

By [23], we know that (3.1) is solvable for t = 0, thus S is not empty. If we can prove
that S is open and closed, then we must have S = [0, 1] and the complex Monge–
Ampère equation (1.2) can be solved. In the proof that S is open and closed, we
need the assumption that θ is semipositive. The key point is that the semipositivity
of θ will lead a lower bound of the Ricci curvature by a positive constant. Then we
can use the Implicit Function theorem to prove the openness and obtain a lower
bound of the Green’s function that is crucial to getting the C0 estimate. We follow
Aubin’s discussion [1] in the proof of openness and adopt Tian’s method [20] to
prove closedness. First, we have the following proposition for further discussion; the
proof is similar to that in [4].

Proposition 3.1 Let (M, ω0) be a Kähler manifold, and θ ∈ α = 2πc1(M) − k[ω0]
is a real closed semipositive (1, 1)-form with k > 0. Let 0 < τ ≤ 1 and suppose that
(3.1) has a solution ϕτ at t = τ .

• If 0 < τ < 1, then there exists some ε > 0 such that ϕτ uniquely extends to a smooth
family of solution {ϕt} of (3.1) for t ∈ (0, 1) ∩ (τ − ε, τ + ε).

• S is also open near t = 0, i.e., there exists a small positive number ε such that there is
a smooth family of solutions of (3.1) for t ∈ (0, ε).

• If M admits no nontrivial Hamiltonian holomorphic vector field or the twisting form
θ is strictly positive at a point, then ϕ1 can also be extended uniquely to a smooth
family of solutions {ϕt} of (3.1) for t ∈ (1− ε, 1].
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Proof For 2 ≤ γ ∈ Z and 0 < α < 1, we define

Hγ,α = {φ ∈ Cγ,α(M) | ω0 +
√
−1∂∂φ > 0}.

Consider the operator Ξ : Hγ,α × R→ Cγ−2,α(M) defined by

Ξ(ϕ, t) := log
(ω0 +

√
−1∂∂ϕ)m

(ω0)m
+ tkϕ− hω0 .

The linearized operator is

DϕΞ(ψ) =
1

2
4ϕψ + tkψ

for ψ ∈ Cγ,α(M). By the implicit function theorem, it is sufficient to prove that DϕΞ
is invertible. For further consideration, let us recall the Bochner–Kodaira formula

(3.2) 2

∫
M
|∇1,0(∇1,0

ω u)|2ωωm =

∫
M

(4ωu)2 − 2ρ(ω)(∇ωu, J(∇ωu))ωm

for any u ∈ C2(M) and ω ∈ [ω0].
In the case of τ ∈ (0, 1), we have

ρϕτ = θ + kω0 + τk
√
−1∂∂ϕτ > τkωϕτ ,

since ϕτ is a solution of (3.1). Let ψ ∈ ker Dϕτ Ξ, the Bochner–Kodaira formula (3.2)
implies∇ωϕτ

ψ ≡ 0 and thus ψ ≡ 0. This shows that Dϕτ Ξ is invertible. When τ = 0,
we consider the operator

Ξ̃(ϕ, t) := log
(ω0 +

√
−1∂∂ϕ)m

(ω0)m
+ tkϕ− hω0 + β

∫
M
ϕωm

0 ,

where the constant β > 0. Its linearized operator is given by

DϕΞ̃(ψ) =
1

2
4ϕψ + tkψ + β

∫
M
ψωm

0 .

It is easy to check that DϕΞ̃ is invertible at t = 0. By the implicit function theorem,

there is a smooth one parameter family {ϕ̃t | t ∈ [0, ε)} such that Ξ̃(ϕ̃t , t) = 0 and

ϕt = ϕ̃t +
β

tk

∫
M
ϕ̃tω

m
0

is a family of solutions of (3.1) for t ∈ (0, ε). Thus, S is open near t = 0.
When τ = 1, let ϕ1 be a solution of (3.1) for t = 1, and let ψ ∈ ker Dϕ1 Ξ, i.e.,

4ωϕ1
ψ = −2kψ. Replacing ω and u in (3.2) by ωϕ1 and ψ, we have

(3.3)

∫
M
|∇1,0(∇1,0

ωϕ1
ψ)|2ωϕ1

ωm
ϕ1

= −
∫

M
θ
(
∇ωϕ1

ψ, J(∇ωϕ1
ψ)
)
ωm
ϕ1
.
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If θ is strictly positive at some point, then ∇ωϕ1
ψ = 0 on some open domains. Be-

cause the Laplace–Beltrami operator 4ωϕ1
is real, Aronszajin’s unique continuation

theorem implies ∇ωϕ1
ψ ≡ 0. If M admits no nontrivial Hamiltonian holomorphic

vector field, since θ is semi positive, then (3.3) implies that ∇1,0
ωϕ1
ψ ≡ 0. So, Dϕ1 Ξ is

invertible.

Using the generalized Aubin equations and proceeding as in Bando and Mabuchi’s
paper [4, Section 4], we can obtain the uniqueness of the solution of equation (1.2)
(i.e., the uniqueness of the generalized Kähler–Einstein metric). As we mentioned in
the introduction, the uniqueness can also be implied by a result of Chen and Tian [7]
on the regularity of weak geodesics. So we omit the proof of the following lemma.

Lemma 3.2 Let (M, ω0) be a Kähler manifold and let θ ∈ α = 2πc1(M)−k[ω0] be a
real closed semipositive (1, 1)-form with k > 0. If M admits no nontrivial Hamiltonian
holomorphic vector field or the twisting form θ is strictly positive at a point, then there
exists at most one solution of (1.2).

Let {ϕt} be a smooth family of solutions of (3.1) for t ∈ (0, 1]. Differentiating
(3.1) with respect to t , one can get

(3.4)
1

2
4t ϕ̇t = −t(m + 1)ϕ̇s − (m + 1)ϕt .

Using (3.2) and (3.4), we have the following lemma. Since the proof is the same as
that in [4], we also omit the proof.

Lemma 3.3 If {ϕt} is a smooth family of solutions of (3.1) for t ∈ (0, 1], then

(3.5)
d

dt
(Idη − Jdη)(ϕt ) ≥ 0.

Next, we consider the existence of the generalized Kähler–Einstein metrics, which
is given by the following theorem.

Theorem 3.4 Let (M, ω0) be a Kähler manifold and let θ ∈ α = 2πc1(M)−k[ω0] be
a real closed semipositive (1, 1)-form with k > 0. If Vθ,ω0 (or Fω0 ) is proper then there
exists a generalized Kähler–Einstein metric ω ∈ Kω0 .

Proof From inequality (2.12) in Lemma 2.2, we only need to prove the theorem for
the case where modified K-energy Vθ,ω0 is proper. By Proposition 3.1, we suppose
that there exists a smooth family of solution {ϕt} of (3.1) for t ∈ (0, τ ) with τ ∈
(0, 1). From equation (3.1), we know that 4tϕt ≤ 2m and ρ(ωϕt ) ≥ tkωϕt . Using
Green’s formula and the lower bound of the Green’s function given by Bando and
Mabuchi [4], we have

1

V

∫
M
ϕt (ωϕt )

m ≤ inf
M
ϕt +

ε1(m)

tk
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for some positive constant ε1(m) depending only on m. On the other hand, by the
fact that4ω0ϕt ≥ −2m and Green’s formula, we have

sup
M
ϕt ≤

1

V

∫
M
ϕt (ω0)m + ε2,

where ε2 is a positive constant depending only on the geometry of (M, ω0). By the
normalization, it is easy to see that supM ϕt ≥ 0 and infM ϕt ≤ 0. Then

(3.6) ‖ϕt‖C0 ≤ sup
M
ϕt − inf

M
ϕt ≤ Iω0 (ϕt ) +

ε1(m)

tk
+ ε2.

By (2.5) and (3.5), we have

(3.7) Iω0 (ϕt1 ) ≤ (m + 1)(Iω0 − Jω0 )(ϕt2 )

for any 0 < t1 ≤ t2 < τ . Combining (3.6) and (3.7), it follows that

t‖ϕt‖C0 ≤ t0(m + 1)(Iω0 − Jω0 )(ϕt0 ) + ε3

for any 0 < t ≤ t0 < τ , where ε3 is a positive constant depending only on k and the
geometry of (M, ω0). Thus, we obtain a uniform bound on

∣∣∣ (ω0 +
√
−1∂∂ϕt )m

(ω0)m

∣∣∣
for 0 < t ≤ t0 < τ . By Yau’s C0 estimate [23] for complex Monge–Ampère equations,
there exists a uniform constant ε4 such that

(3.8) ‖ϕt‖C0 ≤ ε4 for 0 < t ≤ t0 < τ.

It is easy to see that along the solutions ϕt of (3.1),

(3.9) S(ωϕt ) = k
(

m− (1− t)

2
4ωϕt

ϕt

)
+ Λωϕt

θ

and

(3.10) Vθ,ω0 (ϕt ) = −k(Iω0 − Jω0 )(ϕt ) +
1

V

∫
M

hω0ω
m
0 −

tk

V

∫
M
ϕtω

m
ϕt
.
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Then, by (2.4) and (3.9), we have

d

dt
Vθ,ω0 (ϕt ) = − 1

V

∫
M
ϕ̇t

(
S(ωϕt )− Λωϕt

θ − km
)
ωm
ϕt

=
k

V

∫
M
ϕ̇t

(1− t)

2
4ωϕt

ϕtω
m
ϕt

= k(t − 1)
d

dt

(
(Iω0 − Jω0 )(ϕt )

)
.

Together with (3.10), this gives

(3.11)
d

dt

( t

V

∫
M
ϕtω

m
ϕt

+ t(Iω0 − Jω0 )(ϕt )
)

= (Iω0 − Jω0 )(ϕt ).

By the uniform estimate (3.8) near t = 0, we know

t

V

∫
M
ϕtω

m
ϕt

+ t(Iω0 − Jω0 )(ϕt )→ 0, as t → 0.

The identity (3.11) implies

1

V

∫
M
ϕtω

m
ϕt

+ (Iω0 − Jω0 )(ϕt ) ≥ 0

and

Vθ,ω0 (ϕt ) ≤ −k(1− t)(Iω0 − Jω0 )(ϕt ) +
1

V

∫
M

hω0ω
m
0 ≤

1

V

∫
M

hω0ω
m
0 .

Then the properness of Vθ,ω0 implies that Jω0 (ϕt ) and Iω0 (ϕt ) are uniformly bounded.
By (3.6)), we obtain a uniform C0 estimate on ϕt for t ∈ [ε, τ ). By Yau’s estimate
([23]) for complex Monge–Ampère equations, the C0-estimate implies the C2,α-es-
timate and the elliptic Schauder estimates give higher order estimates. Therefore,
the equation (1.2) can be solved, i.e., there exist generalized Kähler–Einstein metrics
in Kω0 .

4 A Moser–Trudinger Type Inequality

First, we consider the generalized Kähler–Ricci flow

∂ωs

∂s
= −(ρ(ωs)− θ − kωs)

with ωs|s=0 = ω̃0 ∈ [ω0]. Solving these equations can be reduced to studying the
following parabolic version of the complex Monge–Ampère equation:

(4.1)
∂v

∂s
= log

(ω̃0 +
√
−1∂∂v)m

ω̃m
0

+ kv − hω̃0
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with v|s=0 ≡ 0. By Cao’s result [6], we have the long-time existence for (4.1). Let vs

be a smooth solution of (4.1) and ω̃s = ω̃0 +
√
−1∂∂vs. By direct calculation, we have

∂

∂s
v̇s =

1

2
4ω̃s v̇s + kv̇s,

∂

∂s
|dv̇s|2ω̃s

=
1

2
4ω̃s |dv̇s|2ω̃s

+ k|dv̇s|2ω̃s
− |∇ω̃s dv̇s|2ω̃s

− θ(∇ω̃s v̇s, J(∇ω̃s v̇s)),( ∂
∂s
− 1

2
4ω̃s

)
(v̇2

s + s|dv̇s|2ω̃s
)(4.2)

= 2kv̇2
s + sk|dv̇s|2ω̃s

− s|∇ω̃s dv̇s|2ω̃s
− sθ(∇ω̃s v̇s, J(∇ω̃s v̇s))

≤ 2k(v̇2
s + s|dv̇s|2ω̃s

),( ∂
∂s
− 1

2
4ω̃s

)
(4ω̃s v̇s) = k4ω̃s v̇s − |∂∂v̇s|2ω̃s

,

where v̇s = ∂
∂s vs and we have used the semi-positivity of θ in (4.2). Using the maxi-

mum principle and the above equalities, proceeding as in [3] (or [13, Lemma 4]), we
have the following lemma.

Lemma 4.1 The following inequalities hold for all s ≥ 0:∥∥∥ ∂vs

∂s

∥∥∥
C0
≤ eks‖hω̃0‖C0 ,(4.3)

sup
M

(
|hω̃s |2 + s|dhω̃s |2ω̃s

)
≤ 4e2ks‖hω̃0‖2

C0 ,(4.4)

e−ks4ω̃s hω̃s ≥ 4ω̃0 hω̃0 .(4.5)

Lemma 4.2 Suppose that there exists a generalized Kähler–Einstein metric ωGKE ∈
[ω0]. Let vt,s be a solution of (4.1) with ω̃0 = ωϕt and h̃ = hω̃1 − 1

V

∫
M hω̃1 (ω̃1)m. We

assume that

(4.6)
1

2
ωGKE ≤ ω̃1 ≤ ωGKE.

Then for any p > 2m there exists a positive constant C1 depending only on p, k, and
(M, ωGKE) such that

(4.7) ‖h̃‖C0 ≤ C1(1− t)
1

p−1 ‖hωϕt
‖

p−2
p−1

C0 .

Proof By the condition ω̃0 = ωϕt , we have

ρ(ω̃0) = θ + kω0 + tk
√
−1∂∂ϕt ≥ θ + tkω̃0

and4ω̃0 hω̃0 ≥ 2mk(t − 1). By (4.5), we have

−4ω̃1 hω̃1 ≤ 2mkek(1− t).
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Integrating by parts, we have∫
M
|dh̃|2ω̃1

ω̃m
1 = −

∫
M

h̃4ω̃1 h̃ω̃m
1 ≤

∫
M

(h̃− inf h̃) sup
M

(−4ω̃1 h̃)ω̃m
1

≤ C2(1− t)‖h̃‖C0 ,

(4.8)

where C2 depends only on k, m and the volume V . On the other hand, (4.4) implies
that

‖h̃‖C0 ≤ 4ek‖hω̃0‖C0 .

If p ≥ 2m+1, then by the Sobolev imbedding theorem [2, Lemma 2.22], the Poincaré
inequality, (4.4), and condition (4.6), we have

‖h̃‖p
C0 ≤ C3

∫
M

(
|h̃|p + |dh̃|pωGKE

)
ωm

GKE

≤ C4‖hω̃0‖
p−2
C0

∫
M

(
|h̃|2 + |dh̃|2ωGKE

)
ωm

GKE

≤ C5‖hω̃0‖
p−2
C0

∫
M
|dh̃|2ωGKE

ωm
GKE

≤ C6‖hω̃0‖
p−2
C0

∫
M
|dh̃|2ω̃1

ω̃m
1 ,

(4.9)

where constants C i depends only on p, m and the geometry of (M, ωGKE). Then (4.8)
and (4.9) imply (4.7), and we are done.

Lemma 4.3 Let vt,s be a solution of (4.1) with initial data ω̃0 = ωϕt and ut = vt,1.
We have the following estimate

(4.10) ‖ut‖C0 ≤ 1

k
ek‖hωϕt

‖C0 for t ∈ [0, 1].

Moreover, if we assume that

1

2
ωGKE ≤ ωϕt +ut ≤ ωGKE

for all t ∈ [t1, 1] with t1 ∈ [0, 1), then for any p > 2m and 0 ≤ δ < 1 there exists a
constant C7 depending only on p, k, and (M, ωGKE) such that

(4.11) ‖hωϕt +ut
‖C0,δ(ωGKE) ≤ C7(1− t)1−β(1 + ‖hωϕt

‖C0

) β
for all t ∈ [t1, 1], where β = p+δ−2

p−1 .
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Proof Estimate (4.10) can be easily deduced from (4.3).
By the condition 1

2ωGKE ≤ ωϕt +ut ≤ ωGKE, we have

|dhωϕt +ut
|ωGKE ≤

√
2|dhωϕt +ut

|ωϕt +ut
for t ∈ [t1, 1].

In the following proof, let d(x, y) be the distance between x and y with respect to
the metric ωGKE.

If d(x, y) ≤ (1− t)
1

p−1
(

1 + ‖hωϕt
‖C0

)− 1
p−1 , by (4.4) in Lemma 4.1, we have

|hωϕt +ut
(x)− hωϕt +ut

(y)| ≤ d(x, y) sup
M
|dhωϕt +ut

|ωGKE

≤
√

2d(x, y) sup
M
|dhωϕt +ut

|ωϕt +ut
≤ 4
√

2ekd(x, y)
(

1 + ‖hωϕt
‖C0

)
≤ 4
√

2ek(1− t)
1−δ
p−1
(

1 + ‖hωϕt
‖C0

) p+δ−2
p−1 d(x, y)δ.

(4.12)

If d(x, y) ≥ (1− t)
1

p−1
(

1 + ‖hωϕt
‖C0

)− 1
p−1 , then the estimate (4.7) in Lemma 4.2

implies

|hωϕt +ut
(x)− hωϕt +ut

(y)| ≤ 2‖h̃‖C0 ≤ 2C1(1− t)
1

p−1 ‖hωϕt
‖

p−2
p−1

C0

≤ 2C1(1− t)
1−δ
p−1
(

1 + ‖hωϕt
‖C0

) p+δ−2
p−1 d(x, y)δ.

(4.13)

On the other hand, the normalization condition
∫

M ehωϕt +ut (ωϕt +ut )
m = V implies

that hωϕt +ut
change signs. So we have

‖hωϕt +ut
‖C0 ≤ Osc(hωϕt +ut

) = Osc(h̃) ≤ 2‖h̃‖C0

≤ 2C1(1− t)
1

p−1 ‖hωϕt
‖

p−2
p−1

C0 .

(4.14)

It is easy to see that (4.12), (4.13), and (4.14) imply the estimate (4.11).

Set ζ := 1− 1
4m > 1

2 and define the function fω0 by

fω0 (t) := (1− t)1−ζ(k−1 + 2(1− t)‖ϕt‖C0

) ζ
.

Proceeding as in [18] (or [13, Lemma 1]), we have the following proposition. We
give the proof for reader’s convenience.

Proposition 4.4 Letϕt be a smooth family of solutions of equation (3.1) for t ∈ (0, 1],
and ωGKE = ω0 +

√
−1∂∂ϕ1. There exists a constant D > 0 depending only on k and

(M, ωGKE) such that

‖ϕ1 − ϕt‖C0 ≤ A(1− t)‖ϕt‖C0 + 1

for all t ∈ [t0, 1], where t0 ∈ [0, 1) satisfies fω0 (t0) = max[t0,1] fω0 = D and A depends
only on m and k.
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Proof Let us rewrite (3.1) as the following complex Monge–Ampère equation with
ωGKE as the reference metric

(4.15)
(ωGKE +

√
−1∂∂(ϕt − ϕ1))m

(ωGKE)m
= exp(−k(ϕt − ϕ1) + (1− t)kϕt ).

It is easy to see that hωϕt
= (t − 1)kϕt + ct for some constant ct . The integral normal-

ization of the potential function hωϕt
implies

|ct | ≤ k(1− t)‖ϕt‖C0

and

(4.16) ‖hωϕt
‖C0 ≤ 2k(1− t)‖ϕt‖C0 .

Then it follows from Lemma 4.3 that

(4.17) ‖ut‖C0 ≤ 2ek(1− t)‖ϕt‖C0 .

Let us recall ωϕt +ut = ω0 +
√
−1∂∂(ϕt + ut ) = ωGKE +

√
−1∂∂(ϕt + ut −ϕ1), and

then

(4.18)
(ωGKE +

√
−1∂∂(ϕt + ut − ϕ1))m

ωm
GKE

=

exp
(
−k(ϕt + ut − ϕ1)− hωϕt +ut

− c̃t

)
for some constant c̃t .

Let ϕ̃t = ϕt + ut − ϕ1 + c̃t
k . By (4.18), (4.15) and (4.17), we have∫

M
ehωϕt +ut ωm

ϕt +ut
=

∫
M

e−kϕ̃tωm
GKE =

∫
M

e−kϕ̃t +tkϕt−kϕ1ωm
ϕt

=

∫
M

e(t−1)kϕt−kut−c̃tωm
ϕt
.

It follows that

(4.19) |c̃t | ≤ (1− t)k‖ϕt‖C0 + k‖ut‖C0 ≤ (1− t)k(1 + 2ek)‖ϕt‖C0 .

Recall that ϕt − ϕ1 = ϕ̃t − ut − c̃t
k , from (4.17) and (4.19), we have

‖ϕt − ϕ1‖C0 =
∥∥ ϕ̃t

∥∥
C0 + (1− t)(4ek + 1)‖ϕt‖C0 .

Thus, it is enough to get the estimate ‖ϕ̃t‖C0 ≤ 1.
Let us consider the following complex Monge–Ampère equation

(4.20) log
(ωGKE +

√
−1∂∂ψ)m

ωm
GKE

+ kψ = ψ̃.
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The linearized operator of the left side of (4.20) at ψ = 0 is

δψ 7→ 1

2
4ωGKEδψ + kδψ.

If M does not have non-trivial Hamiltonian holomorphic vector fields or θ is strictly
positive at a point, then by (3.3), we have

ker
( 1

2
4ωGKE + k

)
= 0.

Then the operator ( 1
24ωGKE + k) : C i+2,ε(M) → C i+2,ε(M) is invertible. Applying the

implicit function theorem, there exist positive constants ε(ωGKE) and C∗(ωGKE) that
depend only on δ and the geometry of (M, ωGKE) such that

(4.21) if ‖ψ̃‖C0,δ ≤ ε(ωGKE), then ‖ψ‖C2,δ ≤ C∗(ωGKE)‖ψ̃‖C0,k .

Let

D =
εk−ζ

2(C7 + 1)(C∗ + 1)(ε + 1)

with ε = ε(ωGKE), C∗ = C∗(ωGKE) chosen as in (4.21), ζ = 1− 1
4m and C7 is defined

as in Lemma 4.3 (by choosing δ = 1
2 and p = 2m + 1). Let t0 ∈ [0, 1) satisfies

fω0 (t0) = max[t0,1] fω0 = D. Now, we only need to prove the following claim.

Claim For all t ∈ [t0, 1], we have

‖ϕ̃t‖C2, 1
2
<

1

2
.

We argue by contradiction. Because ϕ̃1 = 0, there exists t1 ∈ [t0, 1) such that

‖ϕ̃t1‖C2, 1
2 (ωGKE)

=
1

2
and ‖ϕ̃t‖C2, 1

2 (ωGKE)
<

1

2
, t1 < t < 1.

In particular, one has − 1
4ωGKE ≤

√
−1∂∂ϕ̃t ≤ 1

4ωGKE, and then 3
4ωGKE ≤ ωϕt +ut ≤

5
4ωGKE for all t ∈ [t1, 1]. By applying (4.11) in Lemma 4.3 (choosing p = 2m + 1)
and (4.16), we have

‖hωϕt +ut
‖

C0, 1
2 (ωGKE)

≤ C7(1− t)1−ζ(1 + ‖hωϕt
‖C0

) ζ
≤ C7(1− t)1−ζ(1 + 2(1− t)k‖ϕt‖C0

) ζ
≤ C7kζ(1− t)1−ζ(k−1 + 2(1− t)‖ϕt‖C0

) ζ
≤ C7kζD =

C7ε

2(C7 + 1)(C∗ + 1)(ε + 1)
< ε
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for all t ∈ [t1, 1]. Using (4.21) again, we get

‖ϕ̃t1‖C2, 1
2 (dηSE)

≤ C∗‖hdηϕt +ut
‖

C0, 1
2 (ωGKE)

≤ C∗C7ε

2(C7 + 1)(C∗ + 1)(ε + 1)
<

1

2
.

This gives a contradiction and complete the proof of the claim.

Using Proposition 4.4 and proceeding as in [13, Theorem 1], we can establish a
Moser–Trudinger type inequality for functional FωGKE . In fact, we obtain the follow-
ing theorem.

Theorem 4.5 Let (M, ω0) be a Kähler manifold and θ ∈ α = 2πc1(M) − k[ω0] be
a real closed semipositive (1, 1)-form with k > 0. Assume that the twisting form θ is
strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic vector
field. If there exists a generalized Kähler–Einstein metric ωGKE ∈ Kω0 , then there exist
uniform positive constants C̃1, C̃2 depending only on θ, k, and the geometry of (M, ωGKE)
such that

(4.22) FωGKE (ϕ) ≥ C̃1 JωGKE (ϕ)− C̃2

for all ϕ ∈ HωGKE .

Proof Fix a function φ ∈ HωGKE and let ω0 = ωGKE +
√
−1∂∂φ. Now we consider

the complex Monge–Ampère equation (3.1). Since M admits no nontrivial Hamil-
tonian holomorphic vector fields or the twisting form θ is strictly positive at a point,
by the uniqueness of generalized Kähler–Einstein structure (Lemma 3.2) and Propo-
sition 3.1, a unique solution ϕt exists for all t ∈ (0, 1] and ωϕ1 = ωGKE. Moreover,
ϕ1 and−φ differ by a constant.

For further consideration, we give the following estimates for functionals F, I, and
J. By (2.2), (2.3), and (3.4), we have

d

ds
(Iω0 − Jω0 )(ϕs) = − d

ds

( 1

V

∫
M
ϕsω

m
ϕs

)
− 1

sV

∫
M
ϕsω

m
ϕs
.

The uniform C0 estimate of ϕt (3.8) implies that

s
1

V

∫
M
ϕs(ωϕs )

m → 0, as s→ 0.

Integrating on [0, t] for both sides of (4.40), we get

(4.23) t(Iω0 − Jω0 )(ϕt )−
∫ t

0
(Iω0 − Jω0 )(ϕs)ds = − t

V

∫
M
ϕtω

m
ϕt
,

and then

F0
ω0

(ϕt ) = −(Iω0 − Jω0 )(ϕt )−
1

V

∫
M
ϕtω

m
ϕt

= −1

t

∫ t

0
(Iω0 − Jω0 )(ϕs)ds.

(4.24)
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Taking t = 1 and using the fact Fω0 (ϕ1) = −FωGKE (φ), we obtain

(4.25) FωGKE (φ) =

∫ 1

0
(Iω0 − Jω0 )(ϕs)ds.

By the definitions given in (2.7) and the cocycle property of F0
ω0

, it is easy to check
that

(4.26) | Jω0 (ϕ1)− Jω0 (ϕt )| ≤ Osc(ϕ1 − ϕt )

and

|(Iω0 − Jω0 )(ϕt )− (Iω0 − Jω0 )(ϕ1)| ≤ m ·Osc(ϕ1 − ϕt ).

Again, by the fact that Fω0 (ϕ1) = −FωGKE (φ), we have

Jω0 (ϕ1) = Fω0 (ϕ1) +
1

V

∫
M
ϕ1ω

m
0 = −FωGKE (φ) +

1

V

∫
M
ϕ1ω

m
0

= − JωGKE (φ) +
1

V

∫
M
φ(ωm

GKE − ωm
0 )

= (IωGKE − JωGKE )(φ) ≥ 1

m
JωGKE (φ),

(4.27)

where we have used the inequality (2.5). Notice that (Iω0 − Jω0 )(ϕt ) is nondecreasing
in t , so (4.25) implies that

FωGKE (φ) ≥ (1− t)(Iω0 − Jω0 )(ϕt ) ≥
1− t

m
Jω0 (ϕt ).

Combining this with (4.27) and (4.26), we have

(4.28) FωGKE (φ) ≥ 1− t

m2
JωGKE (φ)− 1− t

m
Osc(ϕt − ϕ1).

In the following, we choose t0 as in Proposition 4.4.
If 2(1− t0)‖ϕt0‖C0 ≤ k−1, the definition of t0 gives D ≤ (1− t0)1−ζ2ζk−ζ , i.e.,

(1− t0) ≥ 2−
ζ

1−ζ k
ζ

1−ζ D
1

1−ζ .

If 2(1− t0)‖ϕt0‖C0 ≥ k−1, we have D ≤ 4ζ(1− t0)‖ϕt‖ζC0 . Then

(1− t0) ≥ D

4ζ‖ϕt0‖
ζ
C0

.

In the second case, we may assume that 1− t0 <
A−1

2 , which implies that

‖ϕt0‖C0 ≤ 2‖ϕ1‖C0 + 2.
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Then

(1− t0) ≥ D

4ζ(2‖ϕ1‖C0 + 2)ζ
.

Again, by the fact that supϕ1 · infϕ1 ≤ 0, we always have

(4.29) (1− t0) ≥ C ′

(‖ϕ1‖C0 + 1)ζ
≥ C ′

(Osc(φ) + 1)ζ
,

where C ′ is a positive constant depending only on θ, k and (M, ωGKE). On the other
hand, by Proposition 4.4 again, we have

(1− t0)‖ϕ1 − ϕt0‖C0 ≤ (1− t0)2A‖ϕt0‖C0 + 1 ≤ AD
1
ζ + 1.

Together with (4.28) and (4.29), this estimate gives

(4.30) FωGKE (φ) ≥ C̃3
JωGKE (φ)

(Osc(φ) + 1)ζ
− C̃4

for all φ ∈ HωGKE , where C̃3 and C̃4 are positive constants depending only on θ, k,
and the geometry of (M, ωGKE).

Since ϕt − ϕ1 ∈ HωGKE and ρ(ωϕt ) ≥ θ + tkωϕt , we can use (3.6) to obtain the
estimate

(4.31) Osc(ϕt − ϕ1) ≤ IωGKE (ϕt − ϕ1) + C̃5 for t ∈ [
1

2
, 1],

where C̃5 is a constant depending only on on k and the geometry of (M, ωGKE).
By(2.5), (4.30), and (4.31), we have

(4.32) FωGKE (ϕt − ϕ1) ≥ C̃6
JωGKE (ϕt − ϕ1)

( JωGKE (ϕt − ϕ1) + 1)ζ
− C̃4 for t ∈ [

1

2
, 1],

where C̃6 is a positive constant depending only on θ, k and the geometry of
(M, ωGKE).

By the cocycle property of the functional F, (4.23), (4.24), (3.6), nondecreasing-
ness of (Iω0 − Jω0 )(ϕt ) and the concavity of the log function, we have

FωGKE (ϕt − ϕ1) = Fω0 (ϕt )− Fω0 (ϕ1)

≤ m(1− t)
(

(m + 1) JωGKE (ϕt − ϕ1) +
C̃7

tk
+ C̃8

)(4.33)

By a similar discussion to that in [13, p. 1083], we know that (4.28), (4.31), (4.32),
and (4.33) imply the Moser–Trudinger inequality (4.22).
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In view of the cocycle identity for Fω and properties of Iω, Jω (see Section 2, (2.9),
(2.6) and (2.5)), the inequality (1.5) holds for every Kähler metric ω that is coho-
mologous to ωGKE . On the other hand, (2.12) implies that the Moser–Trudinger
type inequality (4.22) is also valid for the K-energy Vθ,ω .

Corollary 4.6 Let (M, ω0) be a Kähler manifold and let θ ∈ α = 2πc1(M) − k[ω0]
be a real closed semipositive (1, 1)-form with k > 0. Assume that the twisting form θ is
strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic vector
field. If there exists a generalized Kähler–Einstein metric in Kω0 , then for any Kähler
metric ω ∈ Kω0 there exist uniform positive constants {D̃i}4

i=1 depending only on k, θ
and the geometry of (M, ω), such that

Fω(ϕ) ≥ D̃1 Jω(ϕ)− D̃2, and Vθ,ω(ϕ) ≥ D̃3 Jω(ϕ)− D̃4,

for all ϕ ∈ Hω .

Remark 4.7 Finally, Theorem 3.4 and Corollary 4.6 imply Theorem 1.2.
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