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Generalized Kahler—Einstein Metrics and
Energy Functionals

Xi Zhang and Xiangwen Zhang

Abstract. In this paper, we consider a generalized Kihler—Einstein equation on a Kihler manifold M.
Using the twisted J-energy introduced by Song and Tian, we show that the existence of generalized
Kihler—Einstein metrics with semi-positive twisting (1, 1)-form 6 is also closely related to the proper-
ness of the twisted K-energy functional. Under the condition that the twisting form 6 is strictly pos-
itive at a point or M admits no nontrivial Hamiltonian holomorphic vector field, we prove that the
existence of generalized Kahler-Einstein metric implies a Moser—Trudinger type inequality.

1 Introduction

An important problem in Kahler geometry is that of finding a canonical Kahler met-
ric in a given Kéhler class. By Aubin and Yau’s work [1, 23], we know that [w]
admits a Kdhler-Einstein metric when ¢;(M) = 0 and also when ¢;(M) < 0 and
[wo] = —kei(M). For the remaining case, i.e., ¢;(M) > 0, the existence question is
still open. Important progress was made by Tian [18-20], Tian and Yau [21], Siu [14],
Ding [8], and others. In [20], Tian introduced X stability and showed that the exis-
tence of Kahler—Einstein metrics is equivalent to the properness of the corresponding
energy functionals. For the case where the given Kihler class is not proportional to
the first Chern class, we can consider the constant scalar curvature Kihler metrics
or, more generally, the extremal Kahler metrics, which were first considered by Cal-
abi [5]. It is well known that the existence of the canonical Kihler metrics is related
to the stability in the sense of Hilbert schemes and geometric invariant theory by a
conjecture of Yau [24], Tian [20], and Donaldson [10].

Let (M, ]) be a 2m-dimensional complex manifold, let [wy] € HYY(M,C) N
H?(M,R) be a Kihler class on (M, J), and let o := 27c; (M) — k[wy], where k is
a constant. Fixing a closed (1, 1)-form 6 € «, we consider the following generalized
Kihler—Einstein equation

(L.1) p(w) — 0 = kw,
where p(w) is the Ricci form of the Kihler metric w € [wy]. If @ = 0, equation (1.1)

is just the Kdhler—FEinstein equation. A Kahler metric w satisfying (1.1) will be called
a generalized Kahler-Einstein metric. Let us denote by H,, the set of all smooth
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strictly wo-plurisubharmonic functions, i.e.,
Heyy = {p € C®(M) 1wy + \/—18&0 > 0},

and by X, the set of all Kahler forms on M cohomologous to wy. It is easy to see
that solving the generalized Kdhler-FEinstein equation (1.1) is equivalent to solving
the following complex Monge—Ampére equation,

(wo + ﬁag@)m

m
“o

(1.2) = exp(hy, — k),

where ¢ € 3, and h,,, is a smooth function that satisfies
p(woy) — 0 = kwy ++/—190h,,, and / exp(hy, wy' = / wy =V.
M M

If k < 0, by Aubin and Yau’s work [1, 23], the complex Monge—Ampére equation
(1.2) can be solved. In this paper, we consider the remaining case k > 0 and there
should be obstructions to admit generalized Kahler—Einstein metrics. Through the
work of Bando and Mabuchi[4], Ding and Tian[9], Tian[20], Donaldson [11], and
others, it is well known that the Mabuchi K-energy is very useful in Kdhler geometry.
Let us recall the following twisted K-energy, which was first introduced by Song and
Tian in [15].

Definition 1.1 For every (o, ¢1) € H,, x H,,, we define

1 /! _
(1.3) Mmo,gol):——/ /g'at(sw,)—Awﬂe—se)wgdt,
Vv 0 M

where {¢,]0 < ¢t < 1} is an arbitrary piecewise smooth path in H,, such that
@rli=0 = o and @;|i—1 = @1, S(w,) is the scalar curvature of w,,, A, is the con-
traction with w,,, and Sy = - [}, m(2me; (M) — [0]) U [wo]™ . For every ¢ € Hyy,
we define

Vo0 () = My (0, 1).

Song and Tian [15, Proposition 6.1] have shown that the integral in (1.3) is inde-
pendent of the choice of the path ¢,. Thus, My is well defined in H(,,, x J(,,,. By the
definition, it is easy to check that M satisfies the 1-cocycle condition, i.e.,

My (o, ¢1) + Ma(p1, 0) = 0,
(1.4) Moo, 1) + My(p1, 2) + My(2,00) = 0,
My(po + Co, 1+ C1) = My(1, o),

for any ¢y, 1, @2 € H,, and Cy,C, € R. By the above properties, we know that M,
(or V) can also be defined on the space K, x K, (K, )-
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We say the X-energy functional Vy ,, is proper if limsup;_,, Vo, (i) = +o0
whenever lim;_, o J,, (¢i) = +00, where ¢; € 3, and ], is the Aubin functional.
In this paper, we follow Tian’s method in [20] to show that the existence of gen-
eralized Kihler—FEinstein metric is closely related to the properness of the twisted
K-energy functional, and we also follow the discussion in Tian and Zhu [22] and
Phong, Song, Strum, and Weinkove [13] to deduce a Moser—Trudinger type inequal-
ity. In fact, we obtain the following theorem.

Theorem 1.2 Let (M,wy) be a Kihler manifold, and let 6 € o = 2me; (M) — k[wy]
be a real closed semipositive (1, 1)-form with k > 0. If Vg, is proper, then there exists
a generalized Kiihler—Einstein metric wgkg € K, On the other hand, assuming that
the twisting form 0 is strictly positive at a point or M admits no nontrivial Hamiltonian
holomorphic vector field, if there exists a generalized Kiihler—Einstein metric in wekg €
K> then Vg, must be proper. In fact, there exist uniform positive constants C,, Cs
depending only on k, 6 and the geometry of (M, wy) such that

(1.5) Vo, (9) = Co oy () — C3
forall o € FH,,.

In [16], Stoppa discussed the so-called twisted cscK equation, i.e., finding a metric
w € [wp] such that

(1.6) S(w) — A0 =Sy,

where @ is a real closed semipositive (1, 1)-form and Sy is a constant. In particular, if
0 € 2w (M) — k[wo], then the above twisted cscK equation is equivalent to the gen-
eralized Kédhler—Einstein equation (1.1). By the definition of the twisted K-energy;, it
is easy to check that the second derivative along a path ¢, € 3{,, is given by

2

d _ _
Vﬁvﬁ,w(](wt) = ||avulj2 Sbt”iw + (0@ A Opy, 0),

1 < m
_ /M(@ - E|vg;g<p,\3w) (S(wr) = Auy, 0 — Sp) .

If either the twisting form @ is strictly positive at a point or M admits no nontrivial
Hamiltonian holomorphic vector field, then Vy is strictly convex along geodesics in
Hu,- Then the results of Chen and Tian [7] on the regularity of weak geodesics
imply uniqueness of solution of the twisted cscK equation (1.6) and that the twisted
XK-energy Vg, has a lower bound. The above facts were pointed out by Stoppa in
[16], where he used the lower bound of Vg, to get a slope stability condition.

Let D C M be an effective divisor. The Seshadri constant of D with respect to the
Kihler class [wy] is given by

e(D, [wo]) = sup{x | [wo] — x27me1 (D) € iK},
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where X is the Kdhler cone. Stoppa defined the twisted Ross—Thomas polynomial of
(M, [wo]) with respect to D and 6§ by

A )\ g& A
Fop(\) = / (O~ (@ + S0 (0) ~ / (A — %)y (¥)dx,
0 0

where

() = ——— / 27e1(D) U ([wo] — 2xmer (D)™,
(m—=1)"! Jy

Sy 2mai(D) U 2me) (M) — [0] — 27mey (D)) U ([wo] — x2mei (D))" ~?

(x) = 2m —2)!

In [16], Stoppa proved that if (1.6) is solvable in [wy], then Fpp(A) > 0 for all
effective divisors D C M and 0 < A\ < e(D, [wp]). In fact, see [16, Theorem 3.1], we
can find a family of Kihler metrics w. € [wp] with w,|.—; = wy such thatase — 0

Voo (We) = =Ty p(A) log(e) + Lo.t.

By the calculation in [16, Lemmas 3.12 and 3.15], we also have the following asymp-
totic behavior of the Aubin functional:

A
Ju (We) = *g/ (A — x)a; (x)dxlog(e) + Lo.t.
0

By the above Moser—Trudinger inequality (1.5) in Theorem 1.2, we can obtain a
strictly slope stability. In fact, we have the following corollary.

Corollary 1.3 Let (M, wy) be a Kihler manifold, and let 0 € o = 2mc; (M) — k[wo]
be a real closed semipositive (1,1)-form with k > 0. Assume that the twisting form
0 is strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic
vector field. If there is a generalized Kihler—Einstein metric w € K, then there exists a
uniform positive constant Cy such that

A
Fop(A) > C4/ (A —x)a(x)dx >0
0

for all effective divisors D C M and 0 < A < €(D, [wo]).

In a special case, if « = (1 — k)[wp] with 0 < k < 1, welet § = (1 — k)wp. Then
the generalized Kdhler—FEinstein equation (1.1) is just the Aubin equation

(1.7) pw) = (1 — k)wy + kw.
The twisted K-energy V(1 k), «, can be expressed by

V-t () = Vi (0) + (1 = k) (L, — Ju) (),
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forall p € H,,, where V,, is the Mabuchi K-energy, I, and J,,, are the Aubin energy
functionals. If there exists a Kihler metric w € [wy] such that

pw) — kw >0,

andlet§ = (1 —k)w = p(w) —kw > 0, we know that the generalized Kédhler—Einstein
equation (1.1) can be solved in [wy]. By Theorem 1.2, it follows that V(; g, is
proper. Moreover, it satisfies the Moser-Trudinger type inequality (1.5). On the other
hand, by Lemma 2.1, the cocycle identity of My and properties of 1, J,, (see (1.4),
(2.6), and (2.5)), it is easy to see that the properness of the twisted K-energy Vy ,, is
independent on the choice of the twisting form 6 € « and Kéhler metric w € [wy].
So we have the following corollary, which was also proved by G. Székelyhidi in [17].

Corollary 1.4 Let (M,w,) be a Kahler manifold with 2wc;(M) = [wo], and
0 < k < 1. The following are equivalent.

(i)  We can uniquely solve the equation (1.7).

(ii) There exists a Kihler metric w € [wy] such that p(w) > kw.

(iii) For any Kdihler metricw € [wo], V(@) + (1 — k)(I, — J,)(p) is proper.

(iv) For any Kihler metric w € [wy], there exist uniform positive constants Cs and Ce
such that

Vw(so) + (1 - k)(Iw - ]w)(@) Z CS]w((p) - C67

forall p € H,,.

This paper is organized as follows. In Section 2, we give some preliminary re-
sults about energy functionals. In Section 3, we give a existence result for gener-
alized Kahler—Einstein metric; i.e., the properness of twisted X energy implies the
existence of the generalized Kihler—Einstein metrics. In Section 4, we obtain the
Moser—Trudinger type inequality (1.5) and finish the proof of Theorem 1.2.

2 Twisted X-energy Functional

Let (M, wy) be a Kihler manifold, and let & € HY'(M,C) N H*(M, R). Fix a real
closed (1, 1) form 6 € a. The twisted K-energy functional can be expressed by

m—1
1 . .
Moo, 01) =~ /M S (01— o)) — B) Al Al
j=0

gg i . . 1 w?
v _ ] m—j = Y1, m
j=

$o
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and

m—j—1

m—1
@21) Vpu(p) = —— / (plecn) — 0) Aol Al
j=0

+*/1° o (m+1)vz/w°wm]

for all ¢, @o, 1 € H,,. Let us recall the Aubin functionals

(2.2) Ly () =

1 o M
7 o= = [ e

Let ¢, be a smooth curve in JH,,,, by direct calculation, we have

d 1 . mo_ m 1 . oom
ey gl =g [ eep - - [ edaeal,
d 1 Cm m
Sl = [ ot —ur)
and then

d 1
(2.4) (0~ Jul) = 51 / i Dl

We also have the following properties for I and J (the proof can be found in [4]). For
a constant C,

Lo (@ +C) =L (@),  Ju(o+C) = J,(v);

and

(2.5) 0 < I, (@) < (m+ D{Ly(p) — Ju, ()} < ml,(¢)

for all p € H,,. Let w’ be an another Kéhler form in [wp], and assume that w’ =
wo + v/ —100¢ for some function ¢. It is easy to check that

(2.6) L (¢ — @) = Ly, ()| < (m+ 1) Osc(e)

forall p € 3.
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If0, — 0, = /=190, then we have

m—1
1 P i
VMM@WW&ﬂVL;;M%MA%A%"

m—1
1 — i ;
V/ > oV=100f Awj AWl
M55
1 m—1 )
B 7/ Zf(wga*wO)/\w(J)/\wgijil
V M j:O

1
V/Mf(w;"*wgn)-

This gives us the following lemma.

Lemma 2.1 Let0; — 0, = /—100f Then
[Vo,.w0(©) = Vo, 0 (0)] < Osc(f)

forall p € H,,.

Now, we suppose that § € o = 2m¢; (M) — k[wy]. Let h, be the smooth function
that satisfies

plwo) — 0 = kwo + v/—190h,, and / exp(hy, )wy' = / wt=V.
M M

Let us recall the Ding—Tian functional

1
(2.7) F () = Ly () — V/ Uy
M

1
Fwo(‘p):Fgo(Qﬂ)—k*llo —/ eheo—ke ymY
o ), )

Let ¢ be a smooth path in I, then

d 1
*FO‘ s) = T Ds Tv
5T (95) VA@%

and

d 1 . om Ny, —kp, m - o Sy —ke m
(2.8) $Fwo(cps) = —V/Mcpsw%+ (/I\/f 0 “’w0> /Mgose 0wy’

From (2.8), it is easy to check that the critical points of F,, are generalized Kihler—
Einstein metrics. As that in [18], one can also check that F,,, satisfies the following
cocycle property:

Fo,(¥) + Fyr (¢ — ) = Fyy(9),
ng(d}) = _Fw’(_w)a

(2.9)
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for all ¢, € H,, and w’ = wy + /—19JY. Moreover, Fgo also has the same cocycle
condition.
By the definitions and direct calculation, we have

m 1 “ i ;
V(L — Ju =— T —— [ > pwf Awl
( 0 ]o)(SO) m+1/1\/1$0w99 m+14j1 PWh wt,a
and

m—1
/ B (Wi — W) = —/ hy(V=1000) A Y~ wf Awl=i™!
M M j=0

m—1
—/ (V=100h,) A Y wj Awli=i™!
M =0

m—1

—/ (p(p(wo)—9+kw0)/\2w3/\w$_j_l.
M

j=0

Noting that Sy = km, by (2.1),

(2.10) Vo, (@) = —k(Ly — Juy) ()

1 m m 1 w'v’:: m
+V tho(w0 —w¢)+v Mlog(w—o)wp.

We also have the following relation between the Ding—Tian functional and the twisted
Mabuchi X-energy functional.

Lemma 2.2 Let (M, wy) be a Kihler manifold, and 6 € o = 2mwc; (M) — k[wy]. Then

1 m 1 m
@11) Voiali) = K@) = 3 [ sy = [
for any o € H,,, where h,, is the smooth function that satisfies
p(w) — 0 = kw +/—190h,

and the normalized condition fM exp(h,)w™ = V. Furthermore, we have

(2.12) Vowo (@) > kF () + i/ hy,wy -

Proof By the definition of h,, it is easy to check that

wm
(2.13) flog—fq —ko+c, =h,, —hy,
Wo

0
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forall ¢ € H,, withc, = — log(% fM e"“07k0yy). Then by (2.10) and (2.13) we have

Vo,u ()
= kJu, (@) — kL, (©) k/ 7+ +l/ hu,wy’ i/ By, Wy
- wo 90 wo SD V Mgpwzp CL{/‘ V " bJowO V " w;w(b

1 1 1
—k(Lto) - [wapeite) v o [ -3 [ noan,
M M M

which implies (2.11). By the normalized condition of h,,,, we have f o P, W <0,
and (2.12) follows. n

3 Existence Result for the Generalized Kihler-Einstein Metrics

As in Kahler—Einstein case, finding generalized Kahler—Einstein metric can be re-
duced to solving the complex Monge—Ampeére equation (1.2). We consider a family
of complex Monge—Ampere equations

(wo + \/_7165@"1

m
“o

(3.1) = exp(hy, — tky)

and set
S={re[0,1] | (3.1) is solvable for ¢}.

By [23], we know that (3.1) is solvable for t = 0, thus S is not empty. If we can prove
that S is open and closed, then we must have S = [0, 1] and the complex Monge—
Ampere equation (1.2) can be solved. In the proof that S is open and closed, we
need the assumption that 6 is semipositive. The key point is that the semipositivity
of 6 will lead a lower bound of the Ricci curvature by a positive constant. Then we
can use the Implicit Function theorem to prove the openness and obtain a lower
bound of the Green’s function that is crucial to getting the C° estimate. We follow
Aubin’s discussion [1] in the proof of openness and adopt Tian’s method [20] to
prove closedness. First, we have the following proposition for further discussion; the
proof is similar to that in [4].

Proposition 3.1 Let (M,wy) be a Kihler manifold, and 0 € o = 2mwc; (M) — k[wo]
is a real closed semipositive (1, 1)-form with k > 0. Let 0 < 7 < 1 and suppose that
(3.1) has a solution @, att = T.

* If0 < 7 < 1, then there exists some € > 0 such that ¢, uniquely extends to a smooth
family of solution {¢,} of (3.1) fort € (0,1) N (T — €, T +€).

e Sisalso open neart = 0, i.e., there exists a small positive number € such that there is
a smooth family of solutions of (3.1) fort € (0, €).

e If M admits no nontrivial Hamiltonian holomorphic vector field or the twisting form
0 is strictly positive at a point, then p, can also be extended uniquely to a smooth
family of solutions {¢;} of (3.1) fort € (1 — ¢, 1].
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Proof For2 <~ € Zand0 < a < 1, we define

H"™ = {¢ € CT"*(M) | wy + vV—109¢ > 0}.
Consider the operator = : H"® x R — C?~2%(M) defined by

(wo + \/jlaéw)m

(wo)™

Z(p,t) :=log + thp — hy,.

The linearized operator is

DE() = 35+ th

for ¢ € C7*(M). By the implicit function theorem, it is sufficient to prove that D,=
is invertible. For further consideration, let us recall the Bochner—Kodaira formula

G2 2 / VROV L — / (Dot — 2p(@)(Votty J(Vtt) )
M M

for any u € C*(M) and w € [wp].
In the case of 7 € (0, 1), we have

Pyp. = 0 + kwy + Tk\/jl85¢7 > Tkw%’

since (- is a solution of (3.1). Let ¢y € ker D,, =, the Bochner—Kodaira formula (3.2)
implies V,, 1 = 0 and thus ¢ = 0. This shows that D, = is invertible. When 7 = 0,
we consider the operator

(wo + \/jlaap)m

(wo)™

E(p,t) == log +thop — hy, +ﬁ/ Quil,
M

where the constant 8 > 0. Its linearized operator is given by
= 1 m
D,E() = EA“’QZJ + tky + ﬁ/MwwO .

It is easy to check that Dwé is invertible at t = 0. By the implicit function theorem,
there is a smooth one parameter family {¢; | t € [0, €)} such that =(;,¢) = 0 and

_ 5/ .
= + —
Pr = Pt e M‘tho

is a family of solutions of (3.1) for t € (0, €). Thus, S is open near t = 0.
When 7 = 1, let ¢ be a solution of (3.1) for t = 1, and let ¥ € ker D, Z, i.e,
Ay, ¥ = —2ki. Replacing w and u in (3.2) by w,, and 1, we have

63 [ VTR, eh == [ 6% 0V w)e
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If 0 is strictly positive at some point, then V,,_ 1) = 0 on some open domains. Be-
cause the Laplace-Beltrami operator A\, is real, Aronszajin’s unique continuation
theorem implies V,,, 1 = 0. If M admits no nontrivial Hamiltonian holomorphic
vector field, since ¢ is semi positive, then (3.3) implies that V,; 1) = 0. So, D, Z is
invertible. u

Using the generalized Aubin equations and proceeding as in Bando and Mabuchi’s
paper [4, Section 4], we can obtain the uniqueness of the solution of equation (1.2)
(i.e., the uniqueness of the generalized Kihler—Einstein metric). As we mentioned in
the introduction, the uniqueness can also be implied by a result of Chen and Tian [7]
on the regularity of weak geodesics. So we omit the proof of the following lemma.

Lemma 3.2 Let (M, wy) be a Kihler manifold and let 6 € o = 2me; (M) — k[wo] be a
real closed semipositive (1, 1)-form with k > 0. If M admits no nontrivial Hamiltonian
holomorphic vector field or the twisting form 0 is strictly positive at a point, then there
exists at most one solution of (1.2).

Let {¢;} be a smooth family of solutions of (3.1) for t € (0, 1]. Differentiating
(3.1) with respect to t, one can get

1
(3.4) EAtSbt == _t(m + 1)%05 - (m + 1)S0t.

Using (3.2) and (3.4), we have the following lemma. Since the proof is the same as
that in [4], we also omit the proof.

Lemma 3.3 If {¢:} is a smooth family of solutions of (3.1) fort € (0, 1], then

d
(3-5) E(Idn - Idn)(sat) > 0.

Next, we consider the existence of the generalized Kdhler—Einstein metrics, which
is given by the following theorem.

Theorem 3.4 Let (M, wy) be a Kihler manifold and let 0 € o = 2mc (M) — k[wo] be
a real closed semipositive (1,1)-form with k > 0. If Vg, (or F,,) is proper then there
exists a generalized Kihler—Einstein metric w € Ky,

Proof From inequality (2.12) in Lemma 2.2, we only need to prove the theorem for
the case where modified K-energy Vg, is proper. By Proposition 3.1, we suppose
that there exists a smooth family of solution {(;} of (3.1) for t € (0,7) with 7 €
(0, 1). From equation (3.1), we know that A, < 2m and p(w,,) > thw,,. Using
Green’s formula and the lower bound of the Green’s function given by Bando and
Mabuchi [4], we have

1 . e1(m
v /MSDt(wap,)m < 111\1/[f80t + 1l€k )
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for some positive constant €;(m) depending only on m. On the other hand, by the
fact that A, ¢ > —2m and Green’s formula, we have

1
sup ¢ < V/ @r(wo)™ + €,
M M

where ¢, is a positive constant depending only on the geometry of (M, wy). By the
normalization, it is easy to see that sup,, ¢ > 0 and infy; ¢y < 0. Then

. m
(3.6) lorllco < sup o —infor < Ly (1) + altm) Lo,
M tk
By (2.5) and (3.5), we have
(3.7) Ly (1) < (m+ 1)Ly, — Ju)(@1)

forany 0 < t; <, < 7. Combining (3.6) and (3.7), it follows that

toellco < to(m+ 1)Ly — Juo)(91,) + €3

forany 0 < t <ty < 7, where €; is a positive constant depending only on k and the
geometry of (M, wp). Thus, we obtain a uniform bound on

((JJO + *18590;5)’”

(wo)™

for0 < t <t; < 7. By Yau's C® estimate [23] for complex Monge—Ampere equations,
there exists a uniform constant €4 such that

(3.8) loellce < egfor0 <t <ty <.

It is easy to see that along the solutions ¢; of (3.1),

1 —
(3.9) S(wp) = k(m - ( ”A%r@) + A, 0
and
1 ok ;
(B10) Vo) = KL L))+ [ el = 5 [ g,
M M
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Then, by (2.4) and (3.9), we have

d

1 ) "
%v&wu((pt) = _V /M @t(s(ww) - Awﬂe - km) We,

k / (1 — t) m d
— V /MSDtTAww(thpt = k(t — 1)5((L~0 — ]wn)((pt)) .
Together with (3.10), this gives

d t m B
6 G5 [ el = L)) = U~ L.

By the uniform estimate (3.8) near t = 0, we know
t m
v | e +t(Lyy — Juy) () = 0, ast — 0.
M
The identity (3.11) implies
l m
v | et Loy = Juy)(pr) =2 0
M

and

Vawap) < k1 = 0L, = L))+ [ o < 3 [ e
M M
Then the properness of Vy ,,, implies that ], (¢;) and I, (¢;) are uniformly bounded.
By (3.6)), we obtain a uniform C° estimate on ¢, for t € [, 7). By Yau's estimate
([23]) for complex Monge—Ampére equations, the C°-estimate implies the C*“-es-
timate and the elliptic Schauder estimates give higher order estimates. Therefore,

the equation (1.2) can be solved, i.e., there exist generalized Kdhler—Einstein metrics
in Ky, |

4 A Moser-Trudinger Type Inequality

First, we consider the generalized Kahler—Ricci flow

Ows
Os

= —(pws) — 0 — kw)

with w|s—g = &y € [wp]. Solving these equations can be reduced to studying the
following parabolic version of the complex Monge—Ampere equation:

ov (@ + /—100v)™
=log———g— +

4.1 — = kv — hg
(4.1) Os wh v e
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with v|,—9 = 0. By Cao’s result [6], we have the long-time existence for (4.1). Let v;
be a smooth solution of (4.1) and w; = Wy ++/—100v,. By direct calculation, we have

0

1
&1}5 == EAQSVS + k‘lks,

Ot = 1 O v + A% — [Vadis, — 0V, J(V20)),
0

Os
= 2kv; + sk|dvy|3 — 5|V i3, — s0(V s, J(V59))

(12 ( f%A@)w&qdvgﬁl)

< 2k(v} + sldvy|3),

0 1 N ; |2
(5 —305) (Ban) = kAgr, — 0902,

where v, = %vs and we have used the semi-positivity of § in (4.2). Using the maxi-
mum principle and the above equalities, proceeding as in [3] (or [13, Lemma 4]), we
have the following lemma.

Lemma 4.1 The following inequalities hold for all s > 0:

v,

43 H < é®||hz, || co,

(43) = < Flhalc

(4.4) sup( |hz,|* +s|dhz %) < 4€™||hg |G,
M

(4.5) e_kSAgsh,;s > Agnhgn.

Lemma 4.2 Suppose that there exists a generalized Kihler—Einstein metric wgkg €
[wol. Let v, s be a solution of (4.1) with Wy = w,, and h = hg, — % fM hg, (W)™, We
assume that

(4.6) FWGKE < @y < WekE-

Then for any p > 2m there exists a positive constant C, depending only on p, k, and
(M, wgke) such that

p—2

(4.7) hllco <10 = )7 |lh I
Proof By the condition Wy = w,,, we have

p(@o) = 0 + kwg + thy/—100¢, > 0 + tkid,
and Ag, hg, > 2mk(t — 1). By (4.5), we have

—Ng hg, < 2mke*(1 —1).
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Integrating by parts, we have
(4.8) / |dh|2 @ = — / hOg ! < / (h — infh) sup(—Ag, h)a!"
M M M
Ca(1 = 1)[hes,

where C, depends only on k, m and the volume V. On the other hand, (4.4) implies
that

7llco < 4e¥||hz, |co.

If p > 2m+1, then by the Sobolev imbedding theorem [2, Lemma 2.22], the Poincaré
inequality, (4.4), and condition (4.6), we have

(49) It <, / ([ + |dR]2, ) witcs
M
< Tyllhs, |57 /M (2 + dR, ) wites
Csllha |12 / A2, e

Collhz |12 / dh2 @,

where constants C; depends only on p, m and the geometry of (M, wgkg). Then (4.8)
and (4.9) imply (4.7), and we are done. [ |

Lemma 4.3 Let v be a solution of (4.1) with initial data 0y = wy, and uy = vy ).
We have the following estimate

1
(4.10) ]| co < EethwWHCo fort € [0,1].

Moreover, if we assume that

5 WGKE < W+, < WGKE

forall t g[th 1] with t; € [0,1), then forany p > 2mand 0 < § < 1 there exists a
constant C; depending only on p, k, and (M, wgkg) such that

(4.11) By llc0igee) < C7(1 =)' 7P (14 ||, HC”)

forallt € [t1,1], where § = 252,
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Proof Estimate (4.10) can be easily deduced from (4.3).
By the condition %wGKE < Wy, +u, < WekE, We have

| dh WGKE S \/E| dh

Wop+uy Woptup Wy +uy fOr (S [tla 1]

In the following proof, let d(x, y) be the distance between x and y with respect to
the metric wgke.

Ifd(x,y) < (1 - t)ﬁ (1 + ||, ||C0) "1 by (4.4) in Lemma 4.1, we have

(4.12) hes,y () = hos

(}’)| S d(x, }’) sup |dhw;,+n, |WGKE
M

vy < AV26kd(x, ) (14 ||ha,, [|co)

Wor+up

< V2d(x, y) sup |dh
M
1—6 +5—2
< AV2H1 -0 (14 |, [le) 7 dlx, p).

Ifd(x,y) > (1 — t)ﬁ (1 + ||, Hco) 77T then the estimate (4.7) in Lemma 4.2
implies

~ _ . p=2

W < 2||hflee <2C1 (1 =) Ty, 160"

(413)  |hy . (x)—h

prtup Wy +ug

— 1-4 W;lz
<2C(1 =) (14 ||y, |eo) 7" d(x, p)°.

On the other hand, the normalization condition || v elerrn (Wt )™ =V implies
that b, ,, change signs. So we have

(4.14) B, oo llco < Osclhe,, . ) = Osc(h) < 2|hl|co
_ . p=2
<2C(1 - t)ﬁthWHg;l.
It is easy to see that (4.12), (4.13), and (4.14) imply the estimate (4.11). [ |

Set(:=1— ﬁ > % and define the function f,,, by

Fun(®) = (1= (K +2(1 = )| @rlleo) -

Proceeding as in [18] (or [13, Lemma 1]), we have the following proposition. We
give the proof for reader’s convenience.

Proposition 4.4 Let ¢, be a smooth family of solutions of equation (3.1) fort € (0, 1],
and wekg = wo + v/ —100p,. There exists a constant D > 0 depending only on k and
(M, wgkg) such that

1 = @il < AQ = D)[ptllco +1

forallt € [ty, 1], wherety € [0, 1) satisfies f,,(to) = maxy, 1] fu, = D and A depends
only on m and k.

https://doi.org/10.4153/CJM-2013-034-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2013-034-3

Generalized Kiihler—Einstein Metrics and Energy Functionals 1429

Proof Let us rewrite (3.1) as the following complex Monge—Ampeére equation with
wgkeE as the reference metric

(weke +V/—100(p; — 1))

(wekE)™

(4.15) = exp(—k(pr — 1) + (1 — t)kepy).

It is easy to see that h,,, = (t — 1)ky; + ¢; for some constant ¢;. The integral normal-
ization of the potential function h,,, implies

la| < k(1 = 1)][eellco
and
(4.16) ([, llco < 2k(1 — 1) ||t | co-

Then it follows from Lemma 4.3 that

(4.17) ]| oo < 2651 — )|l pe o

Let us recall wy, 4y, = wo + ﬁaé(@t +u;) = wgke + \/—185(% +u; — 1), and
then
(4.18) (weke +V—100(p; + u — 1)) _

WEKE
exp(—k(gr +u, — 1) — he,,,, — )

for some constant ¢;. ~
Let @; = ¢, + 1y — 1 + £. By (4.18), (4.15) and (4.17), we have

/ehwmwwgm :/ efkwtngE:/ efszﬂksaﬁkwwg
M M M

_ / oDk —ku % m
Pr
M

It follows that
(4.19) & < (1 = Ok||rllco + kl|u|lco < (1 — 0k + 265|010

Recall that o, — 1 = @, — u; — Ek’, from (4.17) and (4.19), we have

llor = @rller = 1] @l o + (1 = £)(4€" + Dol co-

Thus, it is enough to get the estimate ||&;||co < 1.
Let us consider the following complex Monge—Ampére equation

(weke + v/ —100)™ ~
og +k

(4.20) 1 W = 1.

m
WGKE
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The linearized operator of the left side of (4.20) at¢) = 0 is
1
0 EAWGKE&/J + kop.

If M does not have non-trivial Hamiltonian holomorphic vector fields or € is strictly
positive at a point, then by (3.3), we have

ker( %Am@ + k) ~0.

Then the operator (3 Ay, +k): C*<(M) — C"*2<(M) is invertible. Applying the
implicit function theorem, there exist positive constants e(wgxg) and C*(wggg) that
depend only on 4 and the geometry of (M, wgkg) such that

(4.21) if |[]lcos < €e(weke), then |[¢hlczs < C*(wore) ||| cos-

Let
ek=¢
D=—
2(C;+ D)(C*+ 1)(e+ 1)

with € = e(wgkg), C* = C*(wgke) chosen asin (4.21),{ =1— ﬁ and C5 is defined
as in Lemma 4.3 (by choosing § = % and p = 2m + 1). Let ¢, € [0, 1) satisfies
fun (t0) = maxy, 1] fu, = D. Now, we only need to prove the following claim.

Claim Forallt € [tg, 1], we have

~ 1
1Bl < 5

We argue by contradiction. Because ¢; = 0, there exists f; € [, 1) such that

- _lo4 s 1 |
1Ptllot oy =5 304 &y, <5 B<t<L

In particular, one has —inKE < V/=100p, < inKE, and then %wGKE < Wy, <

%wGKE forallt € [t,1]. By applying (4.11) in Lemma 4.3 (choosing p = 2m + 1)
and (4.16), we have

<C,1—0" (14 |he, Hco)C

T
Wortu 1C"2 (weke)

ol — ' (1 4201 — Dk pr )

IN

<STE -0 (K + 20— Drllen)

C76
2(C7;+ 1)(C*+1)(e+ 1)

< C,kD
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forall t € [#1,1]. Using (4.21) again, we get

||§5t1 ||C2'%(d7]SE) S c* thnwml

CO‘%(WGKE)
< C*E7€
T2C,+1)(Cr+1)(e+ 1)

1
< -.
2
This gives a contradiction and complete the proof of the claim. ]

Using Proposition 4.4 and proceeding as in [13, Theorem 1], we can establish a
Moser—Trudinger type inequality for functional F,,,. In fact, we obtain the follow-
ing theorem.

Theorem 4.5 Let (M,wy) be a Kihler manifold and 0 € o = 2wei (M) — k[wy] be
a real closed semipositive (1, 1)-form with k > 0. Assume that the twisting form 6 is
strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic vector
field. If there exists a generalized Kahler—Einstein metric wekg € Ko, then there exist
uniform positive constants C1, G depending only on 6, k, and the geometry of (M, wckE)
such that

(4.22) Fois (©) = Ch Jus (0) — C,

forall p € H,pyy

GKE*

Proof Fix a function ¢ € H,,, and let wy = wekg + \/—109¢. Now we consider
the complex Monge—Ampere equation (3.1). Since M admits no nontrivial Hamil-
tonian holomorphic vector fields or the twisting form 6 is strictly positive at a point,
by the uniqueness of generalized Kihler—FEinstein structure (Lemma 3.2) and Propo-
sition 3.1, a unique solution ¢, exists for all t € (0, 1] and w,, = wgkg. Moreover,
1 and —¢ differ by a constant.

For further consideration, we give the following estimates for functionals F, I, and
J. By (2.2), (2.3), and (3.4), we have

d d/1 m 1 m
%(Iwo - ]wo)(ﬁas) = _$<V /MSOSOJ%) - W /Mﬁpsw%.-
The uniform C° estimate of ; (3.8) implies that
1
s—/ ©s(wy,)™ — 0, ass — 0.
vV Jum
Integrating on [0, t] for both sides of (4.40), we get
f t
(423) 1y — Tl — / Ly — Jog)(po)ds = — & / o,
0 Vu
and then
1
(4.24) B (00 =~y — L)) — - / e
M

_ ! / Ly — Juo)(p2)ds.
t Jo
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Taking t = 1 and using the fact F,, (1) = —Fyq. (¢), we obtain

1
(425) Fae(@) = [ (= L)eds.
0
By the definitions given in (2.7) and the cocycle property of F_, , it is easy to check
that
(4.26) |Juoo (1) = Juiy (101)] < Osc(ip1 — 1)
and

|(Iw0 - ]wo)(cpt) - (Iwo - ]wo)(¢l)‘ <m- OSC(QOI - @t)'

Again, by the fact that F,,, (1) = —F,,(¢), we have

1 1
(4.27) Juo (1) = Fuo (1) + V/ 1wy = —Fuou (@) + V/ 1w
M M

1
— e+ [ Olutis =)

— Loy — Joue)(®) = ~ Loons (6,
m

where we have used the inequality (2.5). Notice that (I, — J.,)(¢:) is nondecreasing
in t, so (4.25) implies that

1_
FW(IKE(¢) >(1- t)(Iwo - ]wo)(spt) > Tt]u,o(QOt)

Combining this with (4.27) and (4.26), we have

1—1t¢ 1—1t¢
(4.28) Fw<;[(5(¢) > ?Iwcm(¢) - 7 OSC(SOt - <P1)~
In the following, we choose f, as in Proposition 4.4.
If2(1 — )]s |lco < k71, the definition of £y gives D < (1 — £)!~2%k~¢, i.e,,

1

(1—ty) > 2 FckreDre,

If 2(1 — to)| 2y, llco > k™, we have D < 45(1 — to)|¢p; |- Then

I—-t) 2 —F.
46121 I

—1 . .
In the second case, we may assume that 1 — ; < AT, which implies that

@ lleo < 2l[@nllco + 2.
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Then

(1 —t9) > D
= K2l +2)¢
Again, by the fact that sup ¢; - infy; < 0, we always have

1—1ty) > ¢’ > ¢’
= Uerlleo + DE = (Ose(@) + 1)

(4.29) (

where C’ is a positive constant depending only on 6, k and (M, wgkg). On the other
hand, by Proposition 4.4 again, we have

(1 —to)|lor — @ullce < (1 —t0)*Alls, llco +1 < ADT + 1.
Together with (4.28) and (4.29), this estimate gives

]WGKE(QS) -~

(4.30) Fop(¢) > C. C,

*(Osc(@) +1)¢

for all € H,,,,, where C; and C, are positive constants depending only on 6, k,
and the geometry of (M, wgkE).

Since ¢y — @1 € Hyy, and plwy,,) > 0 + thw,,, we can use (3.6) to obtain the
estimate

~ 1
(4.31) Osc(pr — 1) < Lug (pr — 1) +Cs fort € [E’ 1],

where 55 is a constant depending only on on k and the geometry of (M, wekE)-
By(2.5), (4.30), and (4.31), we have

Jog (e — 1)
(T (0 — 1) +1)¢

- ~ 1
(4.32) Fooer(0r — 1) > Ce Cy fort e [E’ 1],

where Cy is a positive constant depending only on 6,k and the geometry of
(M, wekE)-

By the cocycle property of the functional F, (4.23), (4.24), (3.6), nondecreasing-
ness of (I, — J.,)(¢) and the concavity of the log function, we have

(4.33) Fooe (01 — 1) = Fuy (1) — Fuy (1)
Cr | =
< m(1 =0 (m+ 1) L (90 — 1) + L+ G
By a similar discussion to that in [13, p. 1083], we know that (4.28), (4.31), (4.32),
and (4.33) imply the Moser-Trudinger inequality (4.22). ]
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In view of the cocycle identity for F,, and properties of 1, ], (see Section 2, (2.9),
(2.6) and (2.5)), the inequality (1.5) holds for every Kihler metric w that is coho-
mologous to wgkg . On the other hand, (2.12) implies that the Moser—Trudinger
type inequality (4.22) is also valid for the K-energy Vg .

Corollary 4.6 Let (M,wy) be a Kihler manifold and let 0 € o = 2me; (M) — kf[wo]
be a real closed semipositive (1, 1)-form with k > 0. Assume that the twisting form 0 is
strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic vector
field. If there exists a generalized Kihler—Einstein metric in K, then for any Kihler
metric w € K, there exist uniform positive constants {13,}?21 depending only on k, 0
and the geometry of (M, w), such that

Fu(9) 2 DiJu(p) = Dy, and  Vyu(p) > DsJu(9) = Da,
forall p € H,,.
Remark 4.7 Finally, Theorem 3.4 and Corollary 4.6 imply Theorem 1.2.
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