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ON AN EXTREMAL PROBLEM INVOLVING 
HARMONIC FUNCTIONS 

BY 

E. J. P. GEORG SCHMIDT 

ABSTRACT. Given a domain D in R" and two specified points P0 

and Pj in D we consider the problem of minimizing u{P\) over all 
functions harmonic in D with values between 0 and 1 normalised by 
the requirement u(P0) = 1/2. We show that when D is suitably 
regular the problem has a unique solution w* which necessarily takes 
on boundary values 0 or 1 almost everywhere on the boundary. In 
the process we prove that it is possible to separate P0 and Px by a 
harmonic function whose boundary value is supported in an 
arbitrary set of positive measure. These results depend on the fact 
that (under suitable regularity conditions) a harmonic function 
which vanishes on an open subset of the boundary has a normal 
derivative which is almost everywhere non-vanishing in that set. 

Let D be a bounded domain in Rn and let JV^D) denote the space of real 
valued and uniformly bounded harmonic functions in D endowed with the 
supremum norm. We consider the following extremal problem, mentioned to me 
by Lee Rubel: given two points P0 and P[ in D 

fminimize u(Px) 
( > [subject to u e j f = {u e ^ ( D ) : 0 ^ u ^ 1 and u(P0) = 1/2}. 

The existence of a minimizing function u* e JT is an easy consequence of the 
fact that any bounded sequence of harmonic functions in D has a subsequence 
which converges uniformly on compact subsets of D. In this paper we prove, 
when the boundary dD of D is suitably regular, that u* is unique and is in fact 
the harmonic measure of some set in dD (or, equivalently, that the "boundary 
value" of u* is "bang-bang" i.e. takes on the value 0 or 1 almost everywhere 
on 3D). 

We recall that D is said to be a Lipschitz (or alternatively C°°) domain if 
along the boundary it is locally the epigraph of a Lipschitz (alternatively C°°) 
function. For such domains 3D possesses a Lebesgue surface measure related to 
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normal vectors which exist almost everywhere. Deep results of Hunt and 
Wheeden [5], and Dahlberg [1] (see also Jerison and Kenig [6] ) allow one to 
deduce the following proposition. 

PROPOSITION. Let D be a bounded Lipschitz domain. Then each u inJ^^D) has 
a nontangential limit in L^dD) (the space of essentially bounded measurable 
functions on D). The map u —> f is a bijective isometry between J^J^D) and 
L^dD). Its inverse is given by an integral operator 

u(P) = Hf(P) = j d D K(P, Q)f(Q)dSQ, 

where dSç denotes an element of surface area on dD and K(P, Q) is positive 
and 

L K^ &dSQ = l> 
for each P in D. 

The extremal problem can now be reformulated: 

[minimize Hf(Px) 
K } (subject t o / G 4 = { / G LooOZ^O ^ / ^ 1 and Hf(P0) = 1/2}. 

Let /* denote the boundary value of w*, the optimal solution to (P). We prove 
the following theorem using detailed results on conformai mapping in 
conjunction with the Riesz uniqueness theorem for the case D c R , and a 
theorem of Week [10] (see also Schmidt and Week [9] ) for the general case. 

THEOREM 1. Let D be a Lipschitz domain in R or a C°° domain in Rn (n > 2). 
Then (P) has a unique solution u* whose boundary value f* takes on the value 0 or 
1 almost everywhere on dD. 

Note that 

n*(P) = HUP) = jE^ K(P, Q)dSQ 

where E* = {Q G dD'UQ) = 1} so that the solution w* is simply the 
harmonic measure of E* (for properties of harmonic measures see Helms [4] or 
Hay man and Kennedy [3] ). 

We state also a "separation theorem" which is a byproduct of the proof of 
Theorem 1. 

THEOREM 2. Let D be a Lipschitz domain in R or a C°° domain in Rn (n > 2). 
Let E c dD be a set of positive surface measure. Then, given P0 and Px in D, 
one can find f in L00(9Z>) vanishing outside E and such that Hf(PQ) = 0 while 
Hf(Px) > 0. 

PROOF OF THE PROPOSITION. This is at best implicit in the previously cited 
papers. The main facts we need to quote are 
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(i) the Proposition is true when D is starlike (in the sense of [5] ); 
(ii) for u c J^iD) the non-tangential limit f(Q) exists for almost every Q 

in dD; 
(iii) the harmonic measure u>p

D(E) (P e D, E c dD) associated with the 
domain D and the surface measure on dD are mutually absolutely continuous; 
in particular "dofD(Q) = KD(P, Q)dSq' where KD(P, Q) is positive and 

f 
JdL 

mKD(P,Q)dSQ=l. 

The assertions (ii) and (iii) are explicit in [1], [5] and [6]. That (i) holds is a 
consequence of Section 2 of [5] taken in conjunction with (iii) (which was first 
proved in [1] ). 

Given a general Lipschitz domain D let K(P, Q) = KD(P, Q). For any u in 
^oo(D) let / be the associated non-tangential limit and define v in J%Q(D) by 
v = Hf. To prove the proposition we show that, very plausibly, 

(a) the non-tangential limit of v is indeed / ; and 
(b) two functions in J^D) (in this case u and v) having the same tangential 

limits are necessarily identical. 

To prove (a) let Dx be any starlike subdomain of D obtained locally at a 
point of dD as the epigraph of a Lipschitz function. Then let "di/D (Q) = 
KX(P9 Q)dSQ" and dxD{ = dDx\dD9 d2Dx = dD{ndD. The kernels K(P, Q) 
and K}(P9 Q) are related as follows: when P e Dx 

K(P, Q) 

\ l ^ KX(P, R)K(R, Q)dSR + KX(P, Q), for Q e 82Z>, 

ID KX{P, R)K(R, Q)dSR, for Q G 3Z>\8Z>,. 

This is easily seen by using "test functions" <> in C(3D) and by representing the 
harmonic functions H<f> (which are continuous on the closure D of D), restricted 
to £>,, in terms of their values on dDx using the kernel K\{P, Q). Now it follows 
that for P in D, 

V(P> = L K{P> Q^Q">dSQ = !,*>, W QXQ)dSQ 

From assertion (i) it follows that v has non-tangential l imit/almost everywhere 
in 82Z)j ; since DY can be located anywhere along dD, (a) follows. 

To show (b) let w = u — v. Then w has non-tangential limit 0. If w does 
not vanish identically we can suppose that it has a positive supremum S 
on D. One can choose a sequence {Pn}^L\ convergent in Rn to P*, and 
such that S = lim w(Pn) as n —-> oo. Necessarily, by the maximum principle, 
P* is in dD. One chooses a starlike domain Dx about P*; then P* is in d2D]. 
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It follows from (i), and from an elementary argument along the lines of 
Section 2 of [5], that since the tangential limit of w on d2Dx is 0 in fact w is 
continuous on D U d2Dx and 0 on d2Dx. This then leads to the contradiction 
S = lim w(Pn) = w(P*) = 0, which proves (b). 

PROOF OF THEOREM 1 (AND THEOREM 2) FOR C°° DOMAINS IN Rn 

(n > 2). Noting that any convex combination of solutions of (Pd) is again a 
solution, uniqueness follows easily once one has proved that every solution 
necessarily takes on the values 0 or 1 almost everywhere. 

Suppose now that some solution f* of (Pd) does not take on the values 0 or 1 
almost everywhere. Then one can find a measurable subset E of dD having 
positive measure and a 8 between 0 and 1 such that 8 < f*(Q) < \ — 8 for Q 
in E. To obtain a contradiction we shall prove Theorem 2 and then define 
g = /* ~ 5 / ~ 7 ; then g e 4 and Hg(Px) < Hf*(Px\ contradicting the 
optimality of f*. 

The proof of Theorem 2 is also by contradiction! For this purpose we define 
two linear functionals on LJ^E) by l0(f) = Hf(P0) and lx(f) = Hf(Px). These 
are non trivial by the mutual absolute continuity of surface and harmonic 
measure. If Theorem 2 were false one would have that lQ(f) = 0 implies 
h(f) = 0> a n d consequently that lx(f) = cl0(f) for some constant c. The 
latter implies that K(PX, Q) - cK(P0, Q) = 0 for almost every Q in E. This leads 
to the main idea of the proof. 

For smooth domains K(P, Q) = ~VQ • VQG(P, Q) where VQ is the unit 
outward normal to dD at Q, and where G(P, Q) is the Green's function of D. 
G(P, Q) is symmetric in P and Q, harmonic in both variables when P ¥= Q, has 
an appropriate singularity at P = Q, and satisfies the boundary condition 
G(P, Q) = 0 if P is in D and Q in dD. Now the falseness of Theorem 2 would 
imply that VQ • V^v(g) = 0 for almost every Q in E, where v(Q) = G(PX, Q) — 
cG(P0, Q) is harmonic in D\{PQ, Px} and also satisfies the boundary condition 
V(Q) = 0 on dD. It follows directly from [10] or [9] that v vanishes identically in 
D\{P0, Px}, which is impossible because of the singularities at P0 and Px. This 
completes the proof. 

We remark that the C°° requirement was used seriously only in the last step 
of the proof; the result could be expected to hold under weaker conditions (as it 
does for n = 2), but this would require a different argument. One can weaken 
the hypothesis for the case n > 2 in a somewhat frivolous way (which does at 
least cover the situation where, for example, D is a polyhedron) by requiring 
D to be Lipschitz and also C°° on the complement of a (closed) subset of 
dD having measure zero. 

PROOF OF THEOREM 1 (AND THEOREM 2) FOR LIPSCHITZ DOMAINS IN R2. 

When D is conformally equivalent to the open unit disc U the result is trivial 
since any conformai map of a Lipschitz domain (indeed of a domain with 
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rectifiable boundary) onto the open disc extends to a homeomorphism between 
D and U and, moreover sets up a correspondence between sets of measure zero 
in 3D and dU. This transfers the problem to the C°° domain U to which the 
previous argument applies. In the general case much more care is needed. 

The proof is exactly as in the case n > 2 until one reaches the conclusion that 
if Theorem 2 is false K(P}9 Q) — cK(P0, Q) = 0 for almost every Q in E. Now it 
follows from Dahlberg [1] (Theorem 3 and a subsequent remark) that for almost 
every Q in 3D 

K(P, Q) = - l i m v0 • VG(P, Q - tvQ) 

where G(P, Q) is the Green's function of D and VG(P9 Q — WQ) is to be 
interpreted as the gradient of G(P, Q) with respect to Q evaluated at Q — WQ. 
Then v(Q) = G(P{, Q) — cG(P0, Q) is harmonic in D{P0, Px), continuous in 
D\{P0, Px) and satisfies the boundary conditions v(Q) = 0 on 3D as well as 

lim v0 - Vv(g - tv0) = 0 

for almost every Q in E. 
If D were sufficiently regular to ensure that G(P, Q) was continuously 

differentiable in Q for Q in D\{P0, Pr} one could now, using coordinates (£, TJ) 
(identified with the complex number f = £ -f- nj) for Q, define an analytic 
function 

T / . x 3v .3v 

3Î7 3 | 

continuous in D and vanishing almost everywhere in E. Choosing a starlike 
subdomain Dx of D with £ Pi 3D! of positive measure and P0, Px not in Dl9 

composition of ^ with a conformai map f:U —* D would yield an analytic 
function/(^(z) ) (z = x + /> in £/) continuous in £/ and vanishing on a subset 
of 3 [/ having positive measure. That function would have to vanish identically 
by the Riesz uniqueness theorem (see Rudin [7], page 373) and hence v would be 
identically constant, in fact zero, on Dx and thus on D. When D is merely 
Lipschitz, the argument is similar but more intricate. 

As above we introduce Dx and a conformai map f:U —> D. Then w(z) = 
v(/(z) ) is in JÇJJJ) n C(U) with w(z) = 0 for z in the arc T = f~\dDx n 
3D). Moreover w is in C°°(U U T) (see Gilbarg and Trudinger [2], Theorem 
6.19 and the subsequent remark. Now consider 

3w dw 
$(z) = — + /—, 

3^ 3x 

which is analytic and continuous in U. To complete the proof as before it is 
enough to show that $(z) vanishes on a subset of T having positive measure. 
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Since the tangential derivative of w vanishes on T, it is then sufficient to verify 
that at almost all points of F = f~](E n dDx) w has normal derivative zero. 
To do this we consider the curve f(/) = f — tv^ for f e E n dDx (with / i? 0 
and small enough to ensure that f(/) e Dx). Then we define the curve 
z(t) = / _ 1 ( f ( 0 ) = x(/) + *>(*)> which is contained in Dx for t > 0 and has 
z(0) = z = / ~ I ( f ) m F. Now differentiating w(z(f) ) = v(Ç(t) ) with respect to t, 
one finds 

lim Vw(z(0 ) • 4 ( ^ ( 0 , J ( 0 ) = lim Vv(f(/) ) • vs = 0 
40 at 40 

for almost all f in is n dDx. The proof will then be complete once we show 
that for almost all f in E n 8i)1 (i.e. z in F) (d/dt)(x(t\y(t) ) has a limit (jixx, JU )̂ 
which is non-zero and not tangential to dU at z. For then one obtains in 
the limit that the non-tangential derivative (fxx, /x ) • Vw(z) = 0 for almost all 
z in F. 

We lean heavily on results to be found in Pommerenke's book [7]. When­
ever dD has a tangent at f = f(z) one has (by Theorem 10.4, page 302) 
"conformality" at z; hence z(t) approaches z normally (since f(/) approaches f 
normally). More specifically one has 

lim arg[z — z(t)] = arg[z]. 
40 

Furthermore (as a consequence of Theorem 10.5, page 305 and Exercise 2, page 
329 which is an easy corollary of the deep Theorem 10.15, page 326) for almost 
all z such that dD has a tangent at f = f{z\ 

df 
a = lim—(z(0) 

40 dz 

exists and is not zero. Now 

dt d$ dt s dz 

and hence indeed 

dz 
lim —(/) = —Vy/a = jix + i\i ¥= 0. 
40 dt y 

It follows from the normal approach of z(t) to z that this limit is normal to dU 
at z, and thus the proof is complete. 
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