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ON CONSTRAINED STOCHASTIC OPTIMAL
PARAMETER SELECTION PROBLEMS

C.J. GOH AND K.L. TEO

This paper considers a special class of stochastic optimal parameter selection prob-
lem subject to probability constraints on the state. The system dynamics are gov-
erned by a linear Ito stochastic differential equation with controllable parameters
appearing nonlinearly in the dynamics. The problem seeks to optimise a cost func-
tional which is quadratic in the state with weighting matrices being time invariant
but depending nonlinearly on the parameters. Although the inclusion of the prob-
ability state constraints renders the problem insolvable by the conventional LQG
theory, we show that the problem can in fact be transformed into an equivalent
deterministic optimal parameter selection problem solvable by an existing software
MISER. Numerical examples axe presented to demonstrate the feasibility and effi-
ciency of the proposed approach.

1. INTRODUCTION

The importance of optimal parameter selection problems has attracted attention
both from the practical engineering application as well as the mathematical interest
point of view. Necessary conditions for optimality for both deterministic and stochastic
systems have been derived in [2, 16] while computational methods are furnished in
[6, 13, 18]. It should be noted that very few results on optimal parameter selection
problems are allowed to include explicit constraints on the state vector. Two exceptions
are found in [6] and [18].

In [13, 16], a class of stochastic optimal parameter selection problems is trans-
formed into a class of deterministic problems involving linear parabolic partial differ-
ential equations, where the state variables of the stochastic problems correspond nat-
urally to the spatial variables of their deterministic counterparts. Nevertheless, due to
the inherent difficulty in solving a PDE numerically, there are difficulties in using this
approach to solve problems with more than two state variables.

This paper considers a dynamic system governed by a linear Ito stochastic differ-
ential equation with nonlinear dependence on some decision parameters. These param-
eters are selected so as to minimise the expected value of the cost functional defined
by the definite integral of some quadratic function of the state vector. The aim of the
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paper is two-fold. Firstly we show that, by a transformation similar to that of [14],
the stochastic problem can be reduced to a deterministic problem involving only ordi-
nary differential equations. This is in contrast to the PDE approach of [13, 16] and
hence the curse of dimensionality can be alleviated somewhat. Secondly, the peculiar
feature of probability constraints on the state vector is also shown to be reducible to a
deterministic continuous state constraint.

The form of these constraints is similar to the cost functional considered in [19]
though the solution method proposed therein is again via the PDE approach of [13,
16]. The overall probabilistically constrained problem can thus be reduced to a form
easily amenable to an existing software MISER [8, 9].

2. THEORETICAL FORMULATION

Consider a system described by the following linear Ito stochastic differential equa-
tion defined on the fixed time interval (0, T]:

(la) d£(t) = A(K)£(t)dt + D(K)dw(t),

with the prescribed initial condition

where £(t) = [&(<), . . . , £n(t)]T € R" is the state vector, K = [Ku . . . , KN]T e RN is
the parameter vector, and £° = [£j*, . . . , £^]T G Rn is the initial state vector which is
Gaussian distributed with mean fi° and covariance M° £ R n x n . Furthermore, A(K) £
RnXn and D(K) (E R»Xm

 a r e continuously differentiable matrix-valued functions of the
parameter vector K\ and w(t) = [wi(t), . . . , wn(t)]

T 6 Rm is a Wiener process with
zero mean and covariance

(2) E{w(t)wT(T)} = f ' e(s)ds,
Jo

where 0 6 RmXm is a symmetric positive definite matrix function. We assume that the

Wiener process w(t) and the initial random vector f° are statistically independent.

Define

(3) S = {K e RN : hi(K) < 0, j = l,...,r}

where hj, j — 1 , . . . , r , are continuously differentiable functions of the parameter K.

To continue, let us introduce an important class of constraints on the state of the
stochastic dynamical system (1). A special class of these constraints requires the state
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to be in a given acceptable region with prescribed degree of confidence for all t £ [0, T].
The general class of these probabilistic state constraints may be stated as follows:

(4) Prob {oj < (C")T£(t) < bi, t G [0, T]} ^ Ai} i = 1,... ,p

where C*, i = l , . . . , p , are n- vectors, OJ , t = l , . . . , p , bi, t = l , . . . , p , and Aj ,

i — 1 , . . . , p , are real constants.

An element from H is said to be a feasible parameter if it satisfies the probabilistic

state constraints specified in (4). Let T be the class of all such feasible parameters.

The stochastic optimal parameter selection problem is formally posed as follows:

Subject to the dynamical system (1), find a feasible parameter vector K € T such
that the following cost functional:

(5) J(K) = E{tT(T)S(K)t(T) + I* e(t)Q(K)((t)dt}
Jo

is minimised over 7', where S(K) 6 Rnxn and Q(K) € Rnxn are symmetric, positive
semi-definite matrices continuously differentiable with respect to K. For convenience,
let this optimal parameter selection problem be referred to as the problem (P).

Note that solution to the problem (P) without the probabilistic state constraints
and/or parameter constraints has been well established in the literature [14, 3, 11, 12]
in the context of linear quadratic state feedback control. However, it appears that no
computational algorithm is available for solving the problem (P) in the present general
setting.

3. DETERMINISTIC TRANSFORMATION

In this section, we show, by an approach similar to that of [14], that the optimal
parameter selection problem (P) is equivalent to a deterministic one. To begin, we note
that for each K, the solution of the system (1) can be written as

(6) i{t | K) = $(*,0 | K)i\K) + / m,s | K)D{K)dw(s),
Jo

where, corresponding to each K, $(t,r \ K) is the principal solution matrix of the
homogeneous system:

(7a)

(7b) *(T,

where / is the identity matrix.
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It is well-known that for each K and for each t € [0, oo), £(t \ K) is a Gaussian
random vector. Its mean is given by

(8) rtt\K)

while its covariance matrix is given by

(9) V(< I K) = E{(((t | K) - M(t | K))(t{t | K) - n{t | K)f}

= $(t,0 \ K)M°(${t,0 \ K)f

+ (\{t,r | K)D(K)Q(T)(D(K)f(*(t,T | K)fdr.
Jo

It follows from (7), (8) and (9) that /x(t | K) and rj>{t \ K) satisfy the following
differential equations:

(10a)

(10b) M(0) =

and

(lla) *M = A{K)^{t) + i>(t)(Mt)f + D{K)Q{t)(D(K)f,

(lib) V(0) = M°.

Note that there are only n(n + l)/2 independent differential equations in (11) by
virtue of its symmetry.

The corresponding conditional joint probability density function for £(t) is given

by

i,-\t \ K){x - p{t \ K))}.

Let us now turn our attention to the cost functional (5). First we note that

(13) E[fQt] = E[Tr(tTQt)] = E{Tr(QttT)} = Tr[QE(UT)}

= Tr[Q(K)(i,(t | K) + y.{t \ K)p{t \

The first term of the cost functional (5) can be converted in a similar manner. Conse-
quently, we have
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LEMMA 1 . Tie cost functional (5) is equivalent to

(14) J{K) = Tr{S(K)[1>(T \ K) + n(T \

+ [TTr{Q(K)m\K)
Jo

K)f}}

K))T]}dt

where fi(t \ K) and ij>(t \ K) axe deterministic and are determined, respectively, by (10)

and (11).

For the probabilistic state constraints specified in (4), we have

LEMMA 2 . For eaci i = 1 , . . . ,p , t ie corresponding probabilistic constraint spec-

ified in (4) is equivalent to

(15) erf
) *)

for all t e [0, T].

PROOF: Since ((t) is Gaussian with mean fi(t | K) and covariance ip(t \ K), it

is clear that for each i = l,...,p, the scalar process (Cl) £(t) is also Gaussian but

with mean ((?')%(* | K) and variance (C')Ty>(t | K)C{. Thus, the corresponding

constraint specified in (4) can be rewritten as

The constraint (15) is thus obtained readily by direct integration of (16). D

Note that each of the constraints specified in (15) is required to be satisfied for all

t £ [0, T]; this constitutes an infinite dimensional constraint.

Invoking the constraint transcription introduced in [8, 17], the constraint (15) is

equivalent to

(17) i(K) = V f
Jo

-erf

Min < erf

a,- -

A1/1

K)
1/2 - 2At, 0 > dt = 0,
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where t] is an empirical constant introduced to improve the accuracy of satisfaction of
the constraints concerned. Note also that each of these constraints is in the same form
as the cost functional (5). In [8, 18] this is referred to as being in the canonical form. It
is necessary to remark here that this constraint transcription, although computationally
feasible, suffers from the disadvantage of not being able to satisfy the usual constraint
qualification condition [17]. An improved version of this transcription which overcomes
this inadequacy is furnished in [10].

Let <f>(t) be the vector formed from /x(<) and the independent components of the
matrix i/>(t \ K), and let / be the corresponding vector obtained from the right-hand-
side of (10) and (11). Furthermore, let T again denote the class of all feasible parame-
ters in the sense that each of its elements is in H and satisfies the constraints specified
in (17). The above results can be summarised in the following theorem.

THEOREM 1. The problem (P) is equivalent to the following standard determin-
istic optimal parameter selection problem:

Subject to the dynamical system:

(18a) ^ = /(tft), K, t)

(18b) #0) = / ,

where <j>° is formed by (i0 and the components appearing in the upper triangular part
of the covariance matrix M°, find a parameter vector K £ T such that the cost
functional:

fT

(19) J(K) = T(</>(T | if), K)+ C(<j>(t | JO, K, t)dt
Jo

is minimised, where T and C are obtained from the corresponding terms of (14) in an
obvious manner.

Note that the dimension of the deterministic state <j> is now (n2 + 3n)/2. For
convenience, let this deterministic optimal parameter selection problem (subject to the
parameter constraint (3) and probabilistic state constraint (17)) be referred to as the
problem (DP).

The problem (DP) is a special case of the general class of combined parameter
selection and optimal control problems considered in [18]. Many interesting theoretical
results are now available in the literature such as [1, 4] and [5]. The numerical solution
to this class of problem can easily be obtained by the software package MISER [7, 9].
Essentially, after appropriate control parameterisation analysis, this class of problem
can be reduced to the form of a purely optimal parameter selection problem for a
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dynamical system whose state z is governed by

(20a) ^ = /(*(«), K, t), t€[0,T]

(20b) z(0) = °

The cost functional go and the constraints gi, i = 1,...,N may be expressed in
canonical form as

(21) 9i(K) = Ti(x(T), K)+ I £«[»(«), K, t]dt, i = 0,1,2,..., N.
Jo

The problem thus seeks to select the parameter K such that go is minimised subject
to the constraints gt(K) = 0, i = 1,... ,Ne, gi{K) > 0, t = Ne + 1 , . . . , Nh. It is easy
to see that the problem DP as denned by (19), (3) and (17) is a special case of this
canonical formulation. In principle, the problem can be regarded as a constrained non-
linear programming problem. In practice, however, due to the non-explicit dependence
of gi, i = 0 , 1 , . . . , N on the parameter K, the gradients of these functionals have to
be computed in a roundabout way. The details of these derivations can be found in [7].
We shall summarise the results in the following steps:

For each iteration point K, and for each gi, i = 1,...,N:

STEP 1. Solve the differential equation (20) forward from 0 to T.

STEP 2. Evaluate the corresponding costate A; by integrating the costate equation
defined by

(22a) Xf = i-Xf-~-

(22b) \7(T) =

backward from T to 0.

STEP 3. Compute the gradient of gi by

(23) VK»i =

With this gradient information, the optimal parameter selection problem may thus
be solved using any standard algorithm for constrained nonlinear programming prob-
lems. An efficient code used here is based on the sequential quadratic programming
algorithm [15].

To finish off this section, we wish to note that similar results are also valid for
the problem (P) with the assumption that £° is a deterministic vector rather than a
Gaussian distributed random vector. In this situation, the initial conditions for (10)
and (11) are, respectively, replaced by £° and 0.
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4. NUMERICAL EXAMPLES

For illustrative purposes, we consider a second order system with white noise input
n(<) of constant spectral density:

(24a) *M + 2 < u , ^ + «»««) = .(«) + n(t),

with initial conditions:

(24b) i , = o ,

where

(25) E{n(t)n{r)} = 66{t - r).

Here 0 is a positive constant, and 6(t) is the delta function.
The design problem is to select a constant state feedback control law of the form:

(26) ^

such that the expected value of a quadratic cost functional J(K) is minimised over m
natural undamped period, where

(27) J(K) = E \

We stress the importance of the constant gain as well as finite m here because if
Ki are allowed to vary with time (with finite m), or if m is infinite (with Ki constant),
the problem is amenable to the standard linear quadratic theory. To proceed, we may
rescale the time with respect to 1/u and express the scalar system in state space form:

(28a) d£(t) = Ai{t)dt + Bu{t)dt + Ddw(t)

(28b)

A

u(t) = KT£(t), and w(t) is the Wiener process with

(29) E{{w(t)fw(r)}= r m ( 1 ' r 8ds.
Jo
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Thus the closed loop system matrix is

(30)

and the nondimensionalised cost functional is

(31) J(K) = E{[ l(((t))T[I + RKKT]i{t)dt}
Jo 2

= \ I {Un(i\K) + ((il(t\K))2)(l +

+ 2RK1K2[tl>i2(t | K) + /xi(f | K)fi2(t \ K)}

+ [V>22(* I K)

where the state u. = I and ib — \ I are governed by the differential

equations:

(32a)
dt

(32b)

and

(33a)
dt

(33b) <frM0 = ^ /tj + ^11(t)(/ir1 _ i) + ^12(t)(K2 - 20
at

(33c) y ^ v y = 2^i2(0(^i - 1) + 2^22(0(^2 -2O + 0
dt

(33d) V'ii(O) = 0, V>i2(0) = 0, V>22(0) = 0.

A quick implementation of MISER on this problem with £ = 0.1, R = 2, and
2mir = 10 furnishes the following solutions for different values of 0.
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0.0
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0.2
0.3
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0.5
1.0
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5.0
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0.2279
0.1989

0.1864
0.182

0.181
0.18
0.18
0.18
0.18

0.7969
0.7379
0.7207

0.7190

0.718
0.713
0.708
0.703
0.700

1.0-

0.5-

I t/I

Figure 1

The computed solutions are found to be insensitive to the magnitude of 9 when
6 is greater than 0.5. Consider the case when 0 = 0 (that is without noise) and
TO = oo. By applying the usual linear quadratic theory, the steady state gain can easily
be computed to be K{ = -0.2247 and K% = -0.7947. This steady state gain vector
is very close to the solution of the original problem (that is T = 2m7r < oo) with
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0 — 0 obtained from the proposed method. As 6 increases, the gain reduces gradually
to an asymptotic value as shown above. The optimal mean state for £i(t), (that is,
£(&(*)) = /*?(*)), and optimal variance for &(<), (that is Var(£(t)) = ^ ( 0 ) , as
functions of t are plotted in Figure 1 for the case of 6 = 1.

1.0 t/T

Figure 2

To go a step further, we impose the following probabilistic state constraint:

which, after appropriate transformation, reduces to

rff "•"'*>-'.U2A-l

for all t £ [0,2mn].
If e = 0 and A = 0.8, the optimal solution for R = 2 and 0 = 1 is K* = \K{, K^]T

with K\ = 0.7813 and K* = -3.407.
The optimal mean state and variance for £\{t) are plotted in Figure 2. The drastic

change in solution structure from that of Figure 1 is noted. A quick check on the
solution indicates that the probabilistic state constraint is active only at the end point
where JB( î) is minimal.

To account for a random initial condition for £°, we compute the constrained
example again, using a non-zero initial condition of M° = 0.27. Optimum values for
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0.5-

1 t/T

Figure 3

the parameter change slightly to Kf - 0.7426 and K% = -3.8264. The optimum
mean state and variance for £i(t) are plotted in Figure 3. Despite the non-zero initial
condition, the variance of £i(f) grows to about the same as the previous case of zero
initial condition. This is to be expected since the probability state constraint is only
active at the terminal time.
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