A NOTE ON DIRICHLET CONVOLUTIONS
S. L. Segal*

(received March 9, 1966)

In [3] Rubel proved that if h(n) is an arithmetic function

o)
such that lim h(n) = L, L finite, then Z 41/n Z u(d)h(n/d)=1,
>0 n=1 d ]n

where p(n) is the Md&bius function. This result was extended to
functions other than p(n) in [4]; however, (as first pointed out to
the author by Benjamin Volk), the order condition imposed there
is unnecessary; in fact, utilizing the result of [3], the following
slightly more general theorem has an almost trivial proof.

THEOREM 1. Suppose f(n) is an arithmetic function

0
such that = 4/n Z £(d) converges absolutely to A; and
n=1 d ln

h(n) any arithmetic function such that lim h(n) = L, L finite,

n—>
then

1

™M 8

(1) = f£(d)h (?):AL.

nindln

Proof. Let F(s) and 2/ (s) be the ordinary Dirichlet
series which are generating functions for f(n) and h(n) re-
spectively and let {(s) be the Riemann zeta-function (s=o +1it).
Then the hypothesis of the theorem is that F(s){(s) converges
absolutely at s =1 to A. By Rubel's result [3],2/(s)/¢(s)
converges at s =41 to L. Hence by the Dirichlet-series
analogue of Mertens' theorem for power-series, ¥ (s) A (s)

s

- This note was written while the author was a Fulbright Research
Fellow at the University of Vienna.
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converges at s =1 to AL, which is the theorem.

The case A =1 effectively corresponds to eliminating
the order condition in [4].

The question arises whether this theorem is a complete
&

characterization of such functions; precisely if ¥ (s) = = £ (n)n—S
<0 n=1
and H{(s)= Z h(n)n ~, and TJ (s)»}/(s) converges at s = 1
n=1
whenever lim h(n) = L., L finite; then does {(s)F(s) converge
n—>w

absolutely at s = 1? It might be expected that the answer is no,
even if we require that {(s)¥(s) converge to a non-zero value
at s =1 (clearly ¢(s)F(s) converges at s =1, by the case
h(n) =1 for all positive integers n). This is in fact true on the
assumption of some sort of '"quasi-Riemann'' hypothesis that
there exists a fixed ¢ > 0 such that {(s)# 0 for 1 -ego< 1.
Whether a proof for the example of Theorem 2, or for a different
example, can be given which does not depend on an unproved
hypothesis, is not known to us.
0
THEOREM 2. Let g(n) be defined by = g(n)n ° =
n=1

-t'(s)/ ¢ (s xé(s where {(s) is the Riemann zeta-function.
Suppose there exists a fixed ¢ > 0 such that {(s) # 0, for
1-e<c<1.

o0
If lim h(n) = L, L finite, then Z 1/n Z g(d)h(n/d) =
n—-co n=1 d ‘n

0

Z 1/n Z g(d) =1, but convergence is not absolute.

n=1 d [n
Proof. To}ée last clause is obvious; g(s)ﬁ(s) =
2 -
-¢'(s)/¢ (s)=- Z pln)lognn s, o >1, and by a classical
n=1

® (n)logn

result of Landau, z LTL = -1, and the convergence is
n=1

clearly not absolute.

To prove the theorem, it only remains to show that
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o0
(2) = &) _ 4

©
supZil z g-(r%)!<eo

r n=1 m<r/n

(3)

since one then simply applies the Silverman-Toeplitz conditions

to the matrix (C ) = L z g(m) , and in fact it suffices
r,n m
m<r/n
to prove
(4) Zgi;ln-ll= O(——Z—i—-—-—) for some A > 1
m<t log™ (t+1)

(cf. [3], [4D.

Equation (4) however follows by standard complex-analytic
methods (e.g. any of [1], [2], [7]), on using the {-function hypo-
thesis stated above. One merely applies e.g. [7] Lemma 3.12
together with the observation that

(5) lgn)| = O(= |u(d)|logd |u(n/d)]) = O( = logd) = O(®)
d[n d|n

for every 6> 0 to obtain,

= g(n)hzii J x?g_s'(ﬂds
n< x b L(s)
(6)
xb xH.6 log x
+ Of Tho-1) )+t o=,

for every fixed b > 1 and every & > 0 where x is half an
odd integer.

Noting that ' (s)

lim 3 = 0;
s>1 ¢ (s)
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moving the line of integration to the leftto ¢ =1 -¢', 0<e'<e¢,
' fixed, where ¢ 1is as above; taking & fixed, 0< 8§ < e and
b fixed 1<b<1+8§; applying Cauchy's Theorem; and making
the standard estimates (on the assumption of our ¢ - function

. 5+¢'
hypothesis); we get from (6), on taking T = x ¢

€

, that

et A
Z g(n) = O(x1 £ log x)
n<x

where A 1is a positive constant. A partial summation and the
continuity theorem for Dirichlet series, now gives

|
b g(;n—)-=0(x ¢ 1ogAx)

n< x
which is considerably more than the modest requirement (4).

The difficulty in proving (4) without any unproved hypo-
thesis lies in the use of [7], Lemma 3.12, or an equivalent
estimate, and the fact that ,Ig(n), is frequently as large as
7(n) = = 1, and hence the estimate (5) cannot be substantially

d ,n
improved. Of course, the non-zero terms of Z gln) have
n

variable sign and presumably cancel each other to a certain ex-
tent. If it were possible to determine the nature of this cancel-
lation more precisely one could perhaps prove at least the
estimate (4) without using any unproved hypothesis.

If we reformulate the above results in terms of the
Silverman- Toeplitz conditions for regularity of a summation
method, we have the result that:

g
= ;] = f(d) |
n=1 dfn
converges implies that
sup X = l z f{m) [< w0,
n m
r <r m<r/n

but the converse (at least on the {-function hypothesis assumed
above) is false.
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It is perhaps worth noting here that Rubel's result [3] also
provides a Tauberian condition under which convergence can be
deduced from Ingham- Wintner summability defined by:

lim = = Z da,.
x d

x>0 n<x d |n

(Tauberian conditions for the deduction of Ingham- Wintner sum-

mability from Abel or Cesaro summability have been discussed

in [5]. The Ingham- Wintner method lies between (C, -§) and

(C, 6§) butis not comparable with convergence.) In fact, appli-

cation of the Mdbius inversion formula, combined with [3] gives

the proposition:

L

*

S

=
|

= z dad=L+o(1/x) as x = o,
n<x d|n

then Za converges to L.
n

A similar connection exists between Theorem 1 and a sub-
class of the (Q, h(n))- summability methods recently introduced

[6].
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