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Abstract. We show that for a polynomial map, the size of the Jordan blocks for the eigenvalue
1 of the monodromy at infinity is bounded by the multiplicity of the reduced divisor at infinity
of a good compactification of a general fiber. The existence of such Jordan blocks is related to

global invariant cycles of the graded pieces of the weight filtration. These imply some applica-
tions to period integrals. We also show that such a Jordan block of size greater than 1 for the
graded pieces of the weight filtration is the restriction of a strictly larger Jordan block for the

total cohomology group. If there are no singularities at infinity, we have a more precise
statement on the monodromy.
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Introduction

Let X ¼ C
nþ1, S ¼ C, and f : X ! S be a polynomial map. Set Xs ¼ f �1ðsÞ for s 2 S.

Then there is a Zariski-open subset U of S such that the HjðXs;QÞ for s 2 U form a

local system on U. It is known that the behavior of the local monodromy at infinity

of this local system is rather different from the local monodromy around the points

in S, see [9, 16, 17], etc. Among others, it is often observed that the size of the Jordan

blocks for the eigenvalue 1 is smaller than the size for the other eigenvalues. The lat-

ter is bounded by jþ 1 due to (a generalization of) the monodromy theorem, and this

is optimal for the eigenvalues different from 1.

For a general s 2 U, let �Xs be a good compactification of Xs such that �Xs is smooth

and the (reduced) divisor at infinityDs :¼ �XsnXs is a divisor with normal crossings. Let

ms be the maximum of the multiplicity (i.e. the number of local irreducible compo-

nents) ofDs. This is independent of the choice of a general s 2 U. In this paper, we show

THEOREM 0.1. The size of the Jordan blocks for the eigenvalue 1 of the local

monodromy at infinity is bounded by ms and also by j for j > 0. In particular, this size is

1 if Xs admits a smooth compactification with a smooth divisor at infinity ðe.g. if the

hypersurface in P
n defined by the highest degree part of f is reduced and smoothÞ.
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More precisely, the size is bounded by the difference m0
s between the maximal

weight of HjðXs;QÞ and j, see (0.4). Note that ms 5m0
s in general by [7], and we have

the strict inequality, for example if n ¼ 2, ms ¼ 2 and the dual graph of Ds has no

cycle.

Another interesting fact is that there is a certain condition on the relation between

the Jordan blocks for the eigenvalue 1 and the weight filtration W of the natural

mixed Hodge structure [7] on HjðXs;QÞ, and such Jordan blocks are closely related

to global invariant cycles of the graded pieces of the weight filtration. Let G be the

monodromy group which is the image of the monodromy representation

p1ðU; sÞ ! AutHjðXs;QÞ. Note thatW is stable by the action of G, becauseW gives

the weight filtration on the local system fHjðXs;QÞgs2U which underlies a variation of

mixed Hodge structures. (This may be considered to be one of basic examples of geo-

metric variations of mixed Hodge structures defined on a Zariski-open subset of C.)

Let T1 denote the monodromy at infinity. This is an element of G, and is defined by

choosing a path between s and 1 in U.

THEOREM 0.2. For an integer i, assume the monodromy at infinity ofGrWi HjðXs;QÞ

has a Jordan block of size r ð>0Þ for the eigenvalue 1. Then GrWi0 H
jðXs;QÞ has a

nonzero global invariant cycle ði.e. ðGrWi0 H
jðXs;QÞÞ

G
6¼ 0Þ with i0 ¼ iþ rþ 14

jþm0
s ð4 minf2j; jþmsgÞ, or i0 ¼ i > j and r ¼ 1. In particular, we have natural

isomorphisms

ðGrWi HjðXs;QÞÞ
G
¼ ðGrWi HjðXs;QÞÞ

T1 for i� j > m0
s � 2:

In the case i0 ¼ iþ rþ 1 ðe.g. if r > 1Þ, the given Jordan block is the restriction of a

strictly larger Jordan block for the monodromy of HjðXs;QÞ to the graded piece GrWi .

This is a special case of (2.4-5). If n ¼ 2, it implies that the size of the Jordan

blocks for the eigenvalue 1 of the monodromy at infinity on GrWi HjðXs;QÞ is at most

1 (compare to the example in [13] mentioned after (0.4) below). When n ¼ 1, (0.2)

follows from [9] (because GrW1 H
1ðXs;QÞ coincides with the cohomology of a smooth

compactification). The last assertion of (0.2) means that if the restriction of T1 to

GrWi has a Jordan block of size >1 for the eigenvalue 1, then there is a strictly larger

Jordan block for T1 on HjðXs;QÞ. In some special case, this was observed in [10].

Note that the relation between the Jordan blocks of the local monodromies and

the weight filtration is rather complicated in general, and the above assertion does

not follow from the conditions of admissible variation of mixed Hodge structure.

See (2.9) for an application to period integrals.

If f : C
nþ1

! C does not have singularities at infinity (more precisely, if f is coho-

mologically tame [28]), then the situation becomes quite simple. We have
~HjðXs;QÞ ¼ 0 for s 2 U and j 6¼ n. Let mðs; l; rÞ denote the number of Jordan blocks
of the local monodromy of fHnðXs;QÞgs2U at s with eigenvalue l and size r, and

similarly for m0ðs; l; rÞ with HnðXs;QÞ replaced by GrWn HnðXs;QÞ. Let ri ¼

dimGrWi HnðXs;QÞ for s 2 U. The following assertion (except for the one about
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the monodromy around s 2 S) was obtained in [10], 4.3-5 under an additional mild

assumption.

THEOREM 0.3. Assume f : C
nþ1

! C is cohomologically tame ½28� with n5 1. Then

the local systems fGrWi HnðXs;QÞgs2U are constant for i 6¼ n and

rnþ1 ¼ mð1; 1; 1Þ5 dim IH1ðP1;Rnf�QXjUÞ;

rnþrþ1 ¼ m0ð1; 1; rÞ ¼ mð1; 1; rþ 1Þ for r > 0;

mðs; l; rÞ ¼ m0ðs; l; rÞ þ dl;1dr;1
X
i6¼n

ri for s 2 SnU:

Furthermore, the difference between rnþ1 and dim IH
1ðP

1;Rnf�QXjUÞ is given by the

length of the direct factor with discrete support of the perverse sheaf GrWnþ1
pRnþ1f�QX ðsee also ½12�, 0:8 for the case n ¼ 1Þ:

Here IH1ðP1;Rnf�QXjUÞ is the intersection cohomology with coefficients in the

local system fHnðXs;QÞgs2U on U, and
pRif� ¼

pHif� with the notation of [2] (see also

(1.1.1) below). Theorem (0.3) means that each Jordan block of size r for the eigen-

value 1 of the local monodromy of fGrWn HnðXs;QÞgs2U at1 has a nontrivial exten-

sion with a global section of fGrWnþrþ1H
nðXs;QÞgs2U, and gives a Jordan block of size

rþ 1 of the local monodromy of fHnðXs;QÞgs2U. Otherwise there are no nontrivial

extensions between the Jordan blocks of the graded pieces of the weight filtration.

See (2.6).

In this paper we show that Theorem (0.1) is a special case of the following

assertion on the relation between the local monodromy and the weights of the

cohomology [7]:

THEOREM 0.4. Let f : X ! S be a morphism of complex algebraic varieties such that

dimX ¼ nþ 1 and S is a smooth curve. Let �S be the smooth compactification of S. Let j

be a positive integer, and r, r0 be integers such that r0< r. Assume HjðXs;QÞ for a

general s 2 S has weights in ½ jþ r0; jþ r� ði.e. GrWk HjðXs;QÞ ¼ 0 for k =2 ½ jþ r0; jþ r�Þ

and Hjþ1ðX;QÞ has weights 4 jþ r. Then the Jordan blocks of the monodromies of

HjðXs;QÞ around s1 2 �S n S for the eigenvalue 1 have size 4 r� r0.

This means that the restriction on the weights of the cohomology of the total

space and a general fiber implies a certain restriction on the monodromy at infi-

nity. The converse of Theorem (0.4) is true in a weak sense if f is proper and X

is smooth so that HjðXs;QÞ is pure of weight j for a general s. See Remark (ii)

after (2.3).

For the proof of Theorems, we use the fact that the action of the nilpotent part N

of the monodromy on the nearby cycles at infinity (endowed with the limit mixed

Hodge structure) is a morphism of mixed Hodge structures of type ð�1;�1Þ (see

[7]) so that the assertion is reduced to the estimate of the weights of the nearby cycles

at infinity. Then the point is that we can estimate the weights of the limit mixed
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Hodge structure on the nearby cycles in terms of the weights of the natural mixed

Hodge structure [7, III] on the cohomology of the general fiber and the total space.

We first consider the spectral sequence (1.6.1) which relates the hypercohomology

over S of the (perverse) direct image of the constant sheaf by f to that of the graded

pure pieces of the direct image. For each graded piece, the weight filtration on its

nearby cycles is given by the monodromy filtration up to a shift. The weights on

the nearby cycles can be estimated by using its higher direct image by the inclusion

to the compactification of S (1.4.4), and then using its hypercohomology over S

(1.5.1). Thus we can deduce the assertions. However, we do not discuss the number

of the local irreducible components of the deleted fiber which may be assumed to be

a divisor with normal crossings if X is smooth. (The condition on Hjþ1ðX;QÞ can be

replaced by that on H0ðS; pR jþ1f�QXÞ, see (2.3).)

Theorem (0.1) was proved in the case n ¼ 1 by [9], and the estimate by j follows

from [28], Corollary 10, if f is cohomologically tame in the sense of loc. cit. See also

[16; 17]. For n ¼ j ¼ 2, there is an example such that the size of a Jordan block is j

(see [13], Example (5:3:2): fðx; y; zÞ ¼ xþ yþ zþ x2y2z2). Note that Theorem (0.1)

does not hold for the monodromy around a point of SnU (consider, e.g.,

fðx; yÞ ¼ y2 þ x3 � 3x), although the local analogue is true (0.5).

The corresponding local assertion is more or less well-known. Let f be a holo-

morphic function on a complex manifold X (or, more generally, on an analytic space

X which is a rational homology manifold). Then we have Nnþ1 ¼ 0 on the nearby

cycle sheaf cf QX½n� (by reducing to the normal crossing case). See, e.g., [26]. Conse-

quently, Jordan blocks of the monodromy on the jth cohomology of the Milnor fiber

at any point of X have size 4 jþ 1 (by restricting to a generic hyperplane and using

the vanishing of certain relative cohomology [25]). See also [15]. Restricting to the

eigenvalue 1 (and to the reduced cohomology), it is known that the size is bounded

by j due to J. Steenbrink [33] (in the isolated singularity case), D. Barlet [1] (for j ¼ n)

and V. Navarro Aznar [27] (in general).

Actually, we can get a slightly better estimate (which is similar to Theorem (0.1),

but is much easier), when the singularity has certain equisingularity.

PROPOSITION 0.5. Let fSag be a Whitney stratification of X satisfying Thom’s

Af-condition ðwhich exists at least locally by ½20�Þ. Let r ¼ max codimSa. Then the

support of the perverse sheaves Njcf QX½n� and Nj�1jf;1QX½n� have dimension 4 n� j,

and for j5 r we have Njcf QX½n� ¼ Nj�1jf;1QX½n� ¼ 0. See ð2:8Þ.

The first assertion concerning the nearby cycles is equivalent to the assertion that

dim supp GrWn�jcf Q½n�4 n� j by (1.4.2), and the last assertion is equivalent to the

vanishing of GrWn�jcf Q½n� for j5 r. They imply the assertions on the vanishing cycle

sheaf with unipotent monodromy jf;1QX½n�, because the latter is isomorphic to

Ncf;1QX½n� by the sheaf version of the local invariant cycle theorem (1.4.5). This

gives also dim supp GrWn�jQX0 ½n�4 n� j, and GrWn�jQX0 ½n� ¼ 0 for j5 r, where W

is the weight filtration of the mixed Hodge Module [30]. Note that we can replace
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r by the maximal number of the local irreducible components of an embedded

resolution of f�1ð0Þ.

In Section 1 we review some basic facts from the theory of mixed Hodge Modules

[29, 30], and prove (0.1-5) in Section 2.

In this paper, cohomology of a complex algebraic variety means that of the

associated analytic space.

1. Preliminaries

1.1. MIXED HODGE MODULES

For a complex algebraic variety X, let MHMðXÞ denote the category of mixed Hodge

Modules on X. See [30, 4.2]. If X is smooth, an object M of MHMðXÞ consists of

ððM;F;WÞ; ðK;WÞ; aÞ where ðM;FÞ is a filtered DX-Module with the filtration W,

ðK;WÞ is a filtered perverse sheaf with rational coefficients on Xan, and a is an iso-
morphism of perverse sheaves DRðMÞ ’ K�Q C compatible with W. They satisfy

several good conditions. The filtrations F and W are called respectively the Hodge

and weight filtrations. The category MHMðXÞ is an abelian category, and every

morphism is strictly compatible with the two filtrations ðF;WÞ in the strong sense

[29]. Furthermore, the weight filtrationW gives a filtration of mixed Hodge Modules

such that the functor M ! GrWi M is exact.

In general, MHMðX;QÞ is defined by using closed embeddings of open subvari-

eties of X into smooth varieties. See [30, 31]. Then the underlying perverse sheaf K

of a mixed Hodge Module M is globally well-defined, and the forgetful functor

assigning K to M is faithful and exact. Note that the category of perverse sheaves

PervðX;QÞ is an abelian category, and is a full subcategory of the bounded derived

category of sheaves ofQ-vector spaces with algebraically constructible cohomologies

Db
cðX;QÞ, see [2].

For morphisms f of complex algebraic varieties, we can construct canonical func-

tors f�, f!, f
�, f ! between the bounded derived categories of mixed Hodge Modules

DbMHMðXÞ [30, 4.3-4]. We will denote byHi : DbMHMðXÞ !MHMðXÞ the natural

cohomology functor. This corresponds to the perverse cohomology functor [2]
pH j : Db

cðX;QÞ ! PervðX;QÞ by the forgetful functor. We define

pRif�K ¼ pHiRf�K for K 2 Db
cðX;QÞ: ð1:1:1Þ

This corresponds to Hif�M for M 2 DbMHMðXÞ by the forgetful functor. Let

aX : X ! pt denote the structure morphism. For M 2 DbMHMðXÞ, we define

HiðX;MÞ ¼ HiðaXÞ�M; Hi
cðX;MÞ ¼ HiðaXÞ!M: ð1:1:2Þ

Remark. Let f : X ! Y be a morphism of complex algebraic varieties, and M a

bounded complex of mixed Hodge Module on X with a finite decreasing filtration G.
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Then we have a spectral sequence in the category of mixed Hodge Modules

Ej;i�j
1 ¼ Hif�Gr

j
GM ) Hif�M: ð1:1:3Þ

Indeed, the direct image f�M is represented by a complex of mixed Hodge Modules

endowed with a filtration induced by the filtration G onM by the definition of direct

image [30, 4.3]. In particular, GriG commutes with the direct image, and the spectral

sequence follows (see, e.g., [7, (1.3.1)]). (We have a similar assertion for the pull-back

functor f �.)

If f is proper,M is a mixed Hodge Module, and G is the weight filtrationW ofM,

then we get the weight spectral sequence [7]:

E�i;iþj
1 ¼ Hjf�Gr

W
i M ) Hjf�M: ð1:1:4Þ

Since Hjf�Gr
W
i M is pure of weight iþ j (see Remark after (1.2)), it degenerates at

E2, and its abutting filtration is the weight filtration of H
jf�M by the same argument

as in [7], see [30], 2.15.

Applying (1.1.3) to the truncation t on f�M, we get the Leray spectral sequence

E
p;q
2 ¼ Hpg�H

qf�M ) Hpþqðgf Þ�M; ð1:1:5Þ

as in [7, (1.4.8)] for morphisms f : X ! Y and g : Y ! Z.

1.2. INTERSECTION COMPLEXES

We say thatM is pure of weight r if GrWk M ¼ 0 for k 6¼ r. A pure Hodge Module is

also called a polarizable Hodge Module. It admits a decomposition by strict support

M ¼ �ZMZ; ð1:2:1Þ

where the direct sum is taken over irreducible closed subvarieties Z of X, and MZ

has support Z or ;, but has no nontrivial subobject or quotient object with strictly

smaller support. The underlying perverse sheaf KZ ofMZ is an intersection complex

with local system coefficients, i.e. there exist a dense open smooth affine subvariety U

of Z with the inclusion j : U ! Z, and a local system LZ on U such that KZ is the

intermediate direct image

j!�ðLZ½dimZ�Þ :¼ Imð j!ðLZ½dimZ�Þ ! j�ðLZ½dimZ�ÞÞ ð1:2:2Þ

in the sense of [2]. It is also called the intersection complex ICZLZ, and its cohomol-

ogy is called the intersection cohomology IH�ðZ;LZÞ.

If Z is a curve, then KZ½�1� is a sheaf in the usual sense, and is isomorphic to j�LZ

where the direct image is in the usual sense. In particular, we have

H�1ðZ;KZÞ ¼ H0ðU;LZÞ: ð1:2:3Þ

Remark. Let f be a proper morphism of complex algebraic varieties, and M a

pure Hodge Modules of weight n on X. Then the cohomological direct image Hjf�M
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is pure of weight nþ j. See [30, 4.5]. A pure Hodge Module is also stable by the

intermediate direct image (1.2.2), see loc. cit.

1.3. VARIATION OF MIXED HODGE STRUCTURE

For X ¼ pt, we have naturally an equivalence of categories

MHMðptÞ ¼MHSp; ð1:3:1Þ

where the right-hand side denotes the category of graded-polarizable mixed Hodge

structures with rational coefficients [7] (and Fp ¼ F�p). See [30, (4.2.12)]. So mixed

Hodge Modules on pt will be identified with graded-polarizable mixed Hodge

structures.

More generally, a mixed Hodge Module ððM;F;WÞ; ðK;WÞ; aÞ on a smooth vari-
ety X such that K½�d � is a local system can be naturally identified with an admissible

variation of mixed Hodge structure [22, 34] by replacing K with K ½�d �, andW with

W½�d �, where d ¼ dimX and ðW ½�d �Þk ¼ Wkþd. See [30, 3.27]. In particular, a

polarizable Hodge Module of weight w such that the underlying perverse sheaf is

a local system (up to a shift) can be identified with a polarizable variation of Hodge

structure of weight w� d.

If X is smooth, we will denote by Q
H
X ½d � 2MHMðXÞ the pure Hodge Module of

weight d corresponding to the constant variation of Hodge structure of type ð0; 0Þ.

In general, Q
H
X is defined in the derived category of bounded complexes of mixed

Hodge Modules DbMHMðXÞ. See [30]. By the direct image under the structure

morphism X ! pt, we get a mixed Hodge structure on the cohomology of X. This

coincides with Deligne’s mixed Hodge structure [7]. See [31].

1.4. VANISHING CYCLES

Let g be a nonconstant function on X. Put Y ¼ g�1ð0Þ. Then we have the nearby and

vanishing cycle functors cg and jg. They are exact functors from MHMðX;QÞ to

MHMðY;QÞ, and correspond to the exact functors cg½�1�, jg½�1� on the underlying

perverse sheaves [6].

The semisimple part Ts of the monodromy acts naturally on cgM, jgM, and the

submodules defined by KerðTs � 1Þ are denoted by cg;1M, jg;1M. Let N ¼ ð2piÞ�1

logTu, where Tu is the unipotent part of the monodromy. Then N gives morphisms of

mixed Hodge Modules

N : cgM ! cgMð�1Þ; N : jgM ! jgMð�1Þ; ð1:4:1Þ

where (�1) is the Tate twist as in [7] (i.e. the Hodge filtration is shifted by �1 and the

weight filtration by 2).

The weight filtration is given by the relative monodromy filtration in the sense

of [8, (1.6.13)] and [34]. In particular, if M is pure of weight k, then we have
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isomorphisms

Ni : GrWk�1þicgM!
�
GrWk�1�icgMð�iÞ;

Ni : GrWkþijg;1M!
�
GrWk�ijg;1Mð�iÞ:

ð1:4:2Þ

Let U ¼ XnY with the inclusion morphisms i : Y ! X, j : U ! X. Since cgM
depends only on MjU, cgj�M for M 2MHMðUÞ will be denoted by cgM. By

[30, 2.24] we have a canonical isomorphism

i�j�M ¼ ConeðN : cg;1M ! cg;1Mð�1ÞÞ: ð1:4:3Þ

Indeed, Var : jg;1j�M ! cg;1Mð1Þ is an isomorphism (because Var corresponds

to the action of t on the underlying D-Module, see e.g. [29, 3.4.12]) and
can : cg;1M ! jg;1j�M is identified with N. (This is related to [34] when X is a

smooth curve and the local monodromies are unipotent.)

In particular, we have

GrWkþ1þiH
0i�j�M ¼ ðPNGr

W
k�1þicg;1MÞð�1Þ; ð1:4:4Þ

and H0i�j�M has weights 5 kþ 1. Here the right-hand side of (1.4.4) denotes the

primitive part by the action of N. So the dimension of H0i�j�M coincides with the

number of Jordan blocks for the eigenvalue 1 in the case dim X ¼ 1 and g is a local

coordinate.

Remarks. (i) With the above notation, assume X smooth, or more generally, X is

a rational homology manifold so thatQX½dim X� is the intersection complex. Since Y

is a locally principal divisor,QY½n� is a perverse sheaf, where n ¼ dimY. SoQ
H
Y ½n� is a

mixed Hodge Module on Y, and we have a short exact sequence of mixed Hodge

Modules

0! Q
H
Y ½n� ! cg;1Q

H
X ½nþ 1� �!

can
jg;1Q

H
X ½nþ 1� ! 0;

because the cokernel of can corresponds to the maximal quotient object supported

on g�1ð0Þ, and it vanishes in this case. See [30, (2.4.3)]. Combined with [29, 5.1.7],

this implies

Q
H
Y ½n� ¼ KerðN : cg;1Q

H
X ½nþ 1� ! cg;1Q

H
X ½nþ 1�ð�1ÞÞ;

jg;1Q
H
X ½nþ 1� ¼ CoimðN : cg;1Q

H
X ½nþ 1� ! cg;1Q

H
X ½nþ 1�ð�1ÞÞ:

ð1:4:5Þ

The first isomorphism may be viewed as the sheaf version of the local invariant

cycle theorem, and implies the second. These hold also in the case X and g are

analytic by loc. cit.

(ii) Assume X is a smooth curve, and let 0 2 X with a local coordinate t such that

f0g ¼ t�1ð0Þ. Let M be an admissible variation of mixed Hodge structure on U,

which is identified with a mixed Hodge Module on U. Assume the monodromy

around 0 is unipotent. Then the nearby cycles ctM can be defined as in [32, 34]

by extending the Hodge bundles to Deligne’s canonical extension [5] as subbundles,
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and then restricting them to the fiber at 0. (In general, we have to use the filtration V

([21, 26]) indexed by rational numbers as in [29].)

In particular, the set of integers p such that Gr
p
F 6¼ 0 does not change by passing to

the limit Hodge filtration. This is used for an estimate of the size of Jordan blocks,

see (2.7).

LEMMA 1.5. Let S be a smooth affine curve, and �S be the smooth compactification of

S with the inclusions i : S :¼ �S n S ! �S, j : S ! �S. Let M be a pure Hodge Module of

weight k on S, and let j!�M ¼ Imð j!M ! j�MÞ, the intermediate direct image. Then

we have an exact sequence of mixed Hodge structures

0! H 0ð �S; j!�MÞ ! H 0ðS;MÞ ! H 0ðS; i�j�MÞ

! H1ð �S; j!�MÞ ! 0;
ð1:5:1Þ

and an isomorphism

H�1ð �S; j!�MÞ ¼ H�1ðS;MÞ: ð1:5:2Þ

In particular, H�1ðS;MÞ is pure of weight k� 1, and is isomorphic to the dual of

H1ð �S; j!�MÞ up to a Tate twist.

Proof. Since S is affine, it is enough to show the short exact sequence of mixed

Hodge Modules

0! j!�M ! j�M ! i�H
0i�j�M ! 0:

Indeed, Hið �S; j!�MÞ is pure of weight kþ i (see Remark after (1.2)), and M is self-

dual up to a Tate twist due to the polarization.

Let K be the underlying perverse sheaf ofM. Replacing �S with an open neighbor-

hood of �S n S, we may assume thatM is a variation of mixed Hodge structure, i.e.

K ½�1� is a local system. Then the underlying Q-complex of ð j!�MÞ½�1� is j�ðK ½�1�Þ

where j� is the direct image in the usual sense. So the assertion follows from the

distinguished triangle

! j�ðK ½�1�Þ ! Rj�ðK ½�1�Þ ! R1j�ðK ½�1�Þ !;

which gives the exact sequence of the underlying perverse sheaves after shifting the

complexes by 1. &

Remark. If every local monodromy of K½�1�jU is unipotent, we can prove the

assertion by using [34].

LEMMA 1.6. With the notation of ð1:5Þ, we have spectral sequences of mixed Hodge

structures

E�k;kþm
1 ¼ HmðS;GrWk MÞ ) HmðS;MÞ; ð1:6:1Þ

E�k;kþm
1 ¼ HmðS; i�j�Gr

W
k MÞ ) HmðS; i�j�MÞ; ð1:6:2Þ

together with a natural morphism of the spectral sequence ð1:6:1Þ to ð1:6:2Þ.
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Proof. The first spectral sequence is clear by (1.1.3), and the argument is similar

for the second. The morphism of spectral sequences follows from the canonical

morphism j�M ! i�i
�j�M which is compatible with the filtration induced by

W on M. &

Remark. The functor i�j� calculates the cohomology of the punctured neighbor-

hood of the points at infinity of S, see (1.4.3). For a perverse sheaf K (whose

restriction to U is a local system shifted by 1),H�1i�j�K andH
0i�j�K give respectively

the local invariant and coinvariant cycles (i.e. the kernel and cokernel of the variation

T1 � id ).

If the differential dr : E
�k�r;kþr�1
r ! E�k;k

r of the spectral sequence (1.6.2) is non-

zero, some element of Coker ðGrWk T1 � id Þ belongs to the image of T1 � id, and

the corresponding Jordan block for GrWk T1 is the restriction of a bigger Jordan

block for T1.

2. Proof of Theorems

PROPOSITION 2.1. Let S be a smooth affine curve, and M a mixed Hodge Module

on S with the weight filtration W. Let U be a dense open subvariety of S on which M is

a variation of mixed Hodge structure. If H 0ðS;MÞ has weights 4m and MjU has

weights 4mþ 1, then H 0ðS;GrWk MÞ has weights 4m. More precisely, if H 0ðS;MÞ

has weights 4m and GrWi H 0ðS;GrWk MÞ 6¼ 0 for an integer i > m, then

H�1ðS;GrWiþ1MÞ 6¼ 0, and GrWi of the differential diþ1�k : E
�i�1;i
iþ1�k ! E�k;k

iþ1�k of the

spectral sequence ð1:6:1Þ is surjective.

Proof. Consider the spectral sequence (1.6.1). Since S is affine, we see that

E
p;q
1 ¼ 0 if pþ q < �1 or pþ q > 0. By (1:5), E�k;k�1

1 is pure of weight k� 1, and

E�k;k�1
1 ¼ 0 for k� 1 > m using the decomposition (1.2.1) applied to GrWk M,

because the direct factor of GrWk M with discrete support does not contribute to

H�1ðS;GrWk MÞ. So the assertion follows from the strict compatibility of the

differential with the weight filtration, see [7]. &

PROPOSITION 2.2. With the above notation, assume M is a pure Hodge Module of

weight k on S. For s 2 �S n S, let t be a local coordinate at s. If H 0ðS;MÞ has weights

4m, then ct;1M has weights between minfk� 1; 2k�mg and maxfk� 1;m� 2g.

Conversely, if the monodromy of ct;1M has a Jordan block of size r for the eigenvalue

1, then it gives a nonzero element of GrWkþrH
0ðS; i�j�MÞ which induces a nonzero

element of GrWkþrH
0ðS;MÞ or GrWkþrH

1ð �S; j!�MÞ by ð1:5:1Þ. Furthermore, we have

r ¼ 1 if the last group is nonzero.

Proof. We have the symmetry of the weights of nearby cycles by (1.4.2). So it is

enough to estimate the maximal weight for the first assertion, and it is verified by

using the exact sequence (1.5.1) and taking H 0 of (1.4.3). For the last assertion, the

existence of a Jordan block of size r corresponds to a nonzero element of the pri-

mitive part of GrWkþrH
0ðS; i�j�MÞ by (1.4.4). Then it corresponds by (1.5.1) to a
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nonzero element of GrWkþrH
0ðS;MÞ or GrWkþrH

1ð �S; j!�MÞ. In the second case, we

have r ¼ 1 because H1ð �S; j!�MÞ is pure of weight kþ 1. So the assertion follows.

2.3. PROOF OF (0.4)

We may assume S connected and then affine (because otherwise �S ¼ S). Let M ¼

Hjþ1f�Q
H
X so that

pRjþ1f�QX is the underlying perverse sheaf of M (in particular,

its restriction to U is ðRjf�QXjUÞ½1�Þ. Here
pRjþ1f� means

pHjþ1Rf�, see (1.1.1).

By hypothesis MjU has weights in ½ jþ r0 þ 1; jþ rþ 1� See (1.3) for the shift of

weight. By the spectral sequence (1.1.5) (with Z ¼ pt), we have an exact sequence

of mixed Hodge structures

0! H 0ðS;Hjþ1f�Q
H
X Þ ! Hjþ1ðX;QÞ ! H�1ðS;Hjþ2f�Q

H
X Þ ! 0; ð2:3:1Þ

because S is an affine curve so that E
p;q
2 ¼ 0 except for p ¼ �1; 0 and the spectral

sequence degenerates at E2. So H0ðS;MÞ has weights 4 jþ r, and hence

H0ðS;GrWk MÞ has weights 4 jþ r by (2.1).

This implies that the ct;1Gr
W
k M for k 2 ½ jþ r0 þ 1; jþ rþ 1� (and hence ct;1M)

have weights in ½ j� rþ 2r0 þ 1; jþ r� by (2.2). This completes the proof of (0.4).

Remarks. (i) Theorem (0.1) follows from (0.4) by using (2.7) below.

(ii) Assume X is smooth and f is proper. Then Hjþ1ðX;QÞ has weights 4 jþ rþ 1

if the Jordan blocks for the eigenvalue 1 of the local monodromies of HjðXs;QÞ at

any points of �S n S have size 4 r. This follows by the same argument as above using

(1:4:3), (1:5:1�2) and (2:3:1).

(iii) Assume f is a polynomial map. LetM ¼ Hjþ1f�Q
H
X for j > 0. ThenH

iðS;MÞ ¼

0 for any i by (2:3:1). LetDM be the dual ofM. ThenHi
cðS;DMÞ ¼ 0 by the duality,

and we get natural isomorphisms

HiðS;DMÞ ¼ HiðS; i�j�DMÞ;

using the distinguished triangle ! j! ! j� ! i�i
�j� !. For i ¼ �1, this reproves a

result of Dimca and Némethi [11]: HjðXs;QÞ
G
¼ HjðXs;QÞ

T1 .

THEOREM 2.4. Let f : X ! S and �S be as in ð0:4Þ. Assume the monodromy T1 of

GrWi HjðXs;QÞ around s1 2 �S n S has a Jordan block of size r for the eigenvalue 1, and

Hjþ1ðX;QÞ has weights 4 iþ r. Let jþm0
s be the maximal weight of H jðXs;QÞ. Then

GrWi0 H
jðXs;QÞ has a nonzero global invariant cycle (i.e. ðGrWi0 H

jðXs;QÞÞ
G
6¼ 0Þ with

i0 ¼ iþ rþ 14 jþm0
s ð4 minf2j; jþmsgÞ, or i0 ¼ i and r ¼ 1. In the former case

ðe.g. if r > 1Þ, the given Jordan block is the restriction of a strictly larger Jordan block

for the monodromy of H jðXs;QÞ to the graded piece GrWi . In the latter case, letting

jþ r0 be the minimal weight of HjðXs;QÞ, we have i0 ¼ i > jþ r0 if H jðX;QÞ has

weights > jþ r0.

Proof. The given Jordan block of size r corresponds by (2:2) (with k replaced by
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iþ 1) to a nonzero element u of

GrWiþrþ1H
0ðS;GrWiþ1MÞ or GrWiþrþ1H

1ð �S; j!�Gr
W
iþ1MÞ

with the notation of (1:5) and (2:3) (in particular,M ¼ Hjþ1f�Q
H
X ). In the first case,

we have H�1ðS;GrWiþrþ2MÞ 6¼ 0 by (2.1), and iþ rþ 14 minf2j; jþms; 2ng by

[7; ð8:2:4Þ] (see also (2:7) below). Furthermore, (2:1) says that u belongs to the image

of GrWiþrþ1 of the differential

drþ1 : E
�i�r�2;iþrþ1
rþ1 ! E�i�1;iþ1

rþ1

of the spectral sequence (1:6:1). The corresponding differential of (1:6:2) is also non-

zero, because the image of u in the corresponding term of (1:6:2) does not vanish by

the definition of u (i.e. it comes from the given Jordan block, see (2:2)). This nonvan-

ishing implies the assertion on the extension of Jordan blocks, see Remark after

(1.6). In the second case, we have r ¼ 1 by (2:2), and i > jþ r0 because the hypothesis

on the weights of HjðX;QÞ implies that fGrWjþr 0H
jðXs;QÞgs2U has no nonzero global

section (using (1:6:1)). So we get the assertion. &

COROLLARY 2.5. Let f : X ! S and T1 be as above. Assume HjðXs;QÞ and

Hjþ1ðX;QÞ have weights 4m. Then we have natural isomorphisms

ðGrWi HjðXs;QÞÞ
G
¼ ðGrWi HjðXs;QÞÞ

T1 for i > m� 2 ð2:5:1Þ

and both are zero if j �S n Sj > 1.

Proof. For i > m� 2, the restriction of T1 to the unipotent monodromy part (i.e.

the generalized eigenspace for the eigenvalue 1) of GrWi HjðXs;QÞ is semisimple by

(2:4). Hence H 0i�j�Gr
W
iþ1M is pure of weight iþ 2, and

M
s12S

dim ðGrWi HjðXs;QÞÞ
T1 ¼ dimH1ð �S; j!�Gr

W
iþ1MÞ

¼ dim ðGrWi HjðXs;QÞÞ
G

by (1.5.1). In particular, j �S n Sj ¼ 1 if both sides are nonzero. So the assertion

follows. &

Remark. If f is a polynomial map and a general fiber Xs admits a smooth com-

pactification such that the divisor at infinity is smooth, then HjðXs;QÞ has weights in

½ j; jþ 1�, and (2:4) implies that 1 is not an eigenvalue of the monodromy at infinity of

GrWj HjðXs;QÞ and the size of the Jordan blocks for the eigenvalue 1 of the mono-

dromy of GrWjþ1H
jðXs;QÞ is at most 1. In particular, the last assertion holds also for

HjðXs;QÞ. (Note that it follows also from Theorem (0.1).)

2.6. PROOF OF (0.3)

Recall that f : X ! S is cohomologically tame [28] if there is an algebraic compacti-

fication �f : �X ! S of f such that the support of the (shifted) perverse sheaf

j �f�c
pRm �j�ðQX½nþ 1�Þ is contained in X for any c 2 C and m 2 Z, where �j : X ! �X

66 ALEXANDRU DIMCA AND MORIHIKO SAITO

https://doi.org/10.1023/A:1025419000863 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025419000863


denotes the inclusion and pRm �j� means
pHmR �j�, see (1.1.1). Note that the condition

implies that j �f�c
pRm �j�ðQX½nþ 1�Þ ¼ 0 for m 6¼ 0 (because pRm �j�ðQX½nþ 1�Þ is sup-

ported on �X n X for m 6¼ 0), and j �f�c
pR0 �j�ðQX½nþ 1�Þ has discrete support. If fur-

thermore X ¼ C
nþ1 and S ¼ C, it is easy to show that pRmf�QX ¼ 0 for m 6¼ 1; nþ 1.

Let W be the weight filtration on the perverse sheaf pRnþ1f�QX coming from the

corresponding mixed Hodge Module. Note that there is a shift of index by 1

between this weight filtration and that on the cohomology HnðXs;QÞ, see (1.3).

We first show

GrWk
pRnþ1f�QX is a constant sheaf if k 6¼ nþ 1: ð2:6:1Þ

Consider the Leray spectral sequence

Ei;m
2 ¼ pRi �f�

pRm �j�ðQX½nþ 1�Þ )
pRiþmf�ðQX½nþ 1�Þ

in the category of perverse sheaves on S. It underlies a spectral sequence of mixed

Hodge Modules. Since the functorM ! GrWi M is an exact functor of mixed Hodge

Modules, we get a spectral sequence by applying this functor to the above spectral

sequence. So it is enough to show that GrWk
pRi �f�

pRm �j�ðQX½nþ 1�Þ are locally con-

stant sheaves for k 6¼ nþ 1, because S is simply connected. This is further reduced

to the vanishing of the functor jt�c applied to these perverse sheaves on S for

c 2 C. Here we may replace the perverse sheaves by pRi �f�Gr
W
k ðpRm �j�ðQX½nþ 1�ÞÞ,

using the weight spectral sequence (see (1.1.4))

E�k;kþi
1 ¼ pRi �f�Gr

W
k ðpRm �j�ðQX½nþ 1�ÞÞ

) pRi �f�ð
pRm �j�ðQX½nþ 1�ÞÞ;

together with the exactness of the vanishing cycle functor. Since this functor commu-

tes also with pRi �f�, the assertion (2.6.1) then follows from the hypothesis on the sup-

port of the vanishing cycle functor, because GrWk
pRm �j�ðQX½nþ 1�Þ is supported on

�X n X for k 6¼ nþ 1 or m 6¼ 0.

Now let M ¼ H 0f�ðQ
H
X ½nþ 1�Þ, and consider the spectral sequence (1.6.1). By

(2.6.1) we get

E�k;kþi
1 ¼ 0 unless i ¼ �1; k > nþ 1 or i ¼ 0; k ¼ nþ 1:

Furthermore E�k;k�1
1 is pure of weight k� 1, and E�k;kþi

1 ¼ 0 for any i; k in (1.6.1)

because HiðS; pRnþ1f�QXÞ ¼ 0 for any i.

Let M0
¼ GrWnþ1M, and �S ¼ P

1 with the inclusion morphisms i : f1g ! �S,

j : S ! �S. Then (1.6) gives commutative diagrams for r5 1:

H�1ðS;GrWkþ1MÞ !
� H�1i�j�Gr

W
kþ1M

! dr ! dr

GrWk H 0ð �S; j!�M0
Þ ! GrWk H 0ðS;M0

Þ ! GrWk H 0i�j�M0
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where k ¼ nþ r, and the bottom row is GrWk of the exact sequence (1.5.1) with

H1ð �S; j!�M0
Þ ¼ 0. By the above argument the left vertical morphism dr is an iso-

morphism for any r5 1. Since H 0ð �S; j!�M0
Þ is pure of weight nþ 1, and H 0i�j�M0

has weights 5 nþ 2 by (1.4), we see that the right vertical morphism, which is

induced by dr: E
�n�r�1;nþr
r ! E�n�1;nþ1

r of (1.6.2), vanishes for r ¼ 1, and is an iso-

morphism for r > 1. The first vanishing means the splitting of the extension between

the Jordan blocks for the eigenvalue 1 of the local monodromy at infinity of

GrWn HnðXs;QÞ and GrWnþ1H
nðXs;QÞ. So the assertions on the local monodromy at

infinity follows.

The triviality of local extensions at s 2 S nU follows from the local classification

of perverse sheaves or regular holonomic D-modules ([3, 4]) which implies that
locally there are no nontrivial extensions between intersection complexes with

unipotent local monodromies. This completes the proof of (0.3).

2.7. GENERALIZATION OF THE MONODROMY THEOREM

Let f : X ! S be a morphism of complex algebraic varieties such that dimS ¼ 1. By

Remark (ii) after (1.4), the size of the Jordan blocks of the local monodromies does

not exceed the maximal length of successive numbers p such that Gr
p
FH

jðXs;CÞ 6¼ 0,

because the HjðXs;QÞ for s 2 U form an admissible variation of mixed Hodge struc-

ture on a Zariski-open subset U of S ([14, 19, 34], etc.) The assertion was first shown

in [32] when the generic fiber is proper smooth (see also [23]). Combined with

Remark below, this gives a generalization of the monodromy theorem (see [18, 24]

in the case the generic fiber is proper smooth).

Remark. Let Y be a complex algebraic variety of dimension n. Let

h j;p;qðYÞ ¼ dimGr
p
FGr

W
pþqH

jðY;CÞ. Then by [7, (8.2.4)], h j;p;qðY Þ ¼ 0 except when

ð p; qÞ 2 ½0; j � � ½0; j � with j4 n, or ð p; qÞ 2 ½ j� n; n� � ½ j� n; n� with j5 n. If Y is

smooth, we have furthermore hj;p;qðY Þ ¼ 0 for pþ q < j by loc. cit. In particular,

HjðY;QÞ has weights in ½ j; 2j� for j4 n, and in ½ j; 2n� otherwise.

2.8. PROOF OF (0.5)

It is well-known that Nnþ1 ¼ 0 on the nearby cycle sheaf cfQX½n�. See e.g. [26]. This

implies Nn ¼ 0 on the vanishing cycles with unipotent monodromy jf;1QX½n� by

(1.4.5). Now we take a Whitney stratification of X as in (0.5). (Here f�1ð0Þ is assumed

to be a union of strata.) For each stratum Sa in f�1ð0Þ, let Xa be a transversal space

which is a locally closed complex submanifold of X. Applying the above argument to

the restriction of f to Xa, we get the assertion on the dimension of the support of

ImNj.

Remarks. (i) We can replace r in (0.5) by the maximal number of the local irre-

ducible components of an embedded resolution of f �1ð0Þ. In this case, we can prove
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(0.5), or rather the equivalent assertion after (0.5), by reducing to the normal

crossing case and then using the calculation of nearby cycle sheaf as in [33] or [29,

(3.6.10)]. (See also [15, 24].)

(ii) Proposition (0.5) implies the assertion that the size of the Jordan blocks for the

eigenvalue 1 of the local monodromy on the jth reduced cohomology of the Milnor

fiber is bounded by j (see [1, 27, 33]), because a perverse sheaf K on an analytic space

Y satisfies HiK ¼ 0 for i < � dimY. This can be verified by induction on dimY using

the transversal space to each stratum with positive dimension of a Whitney stratifi-

cation of Y and also the long exact sequence associated to local cohomology.

As an application of Theorem (0.2), we have the following

PROPOSITION 2.9. Let t be the coordinate of S. With the assumption of ð0:2Þ, let i0

be as there. Then there exists g 2 HjðXs;ZÞ such that, for any algebraic differential

j-form o on X whose cohomology class in the de Rham cohomology of the generic

fiber has weights 4 i0, the period integral
R
gt
o is a ðunivalentÞ rational function of t,

where gt is a multivalued section of the local system consisting of the homology

groups of general fibers, and is obtained by the parallel translation of g using a local

C1 trivialization of the restriction of f over U. This rational function is nonzero if o
is generic.

Proof. Let W be the dual filtration on HjðXs;QÞ ¼ HjðXs;QÞ
_, i.e. W�kHj

ðXs;QÞ ¼ ðHjðXs;QÞ=Wk�1Þ
_ for k 2 Z. The assumption and (0.2) imply that

ðGrW�i 0HjðXs;QÞÞ
G
6¼ 0, because the local system fGrWi 0 H

jðXs;QÞg is selfdual by the

polarization, and is identified with fGrW�i0HjðXs;QÞg. Take a nonzero element in

ðGrW�i0HjðXs;QÞÞ
G, which is represented by g 2 W�i0HjðXs;QÞ. Then, for an algebraic

differential j-form o on X such that the de Rham cohomology class of its restriction

to the generic fiber of f is contained in Wi0 , the period integral
R
gt
o is univalent,

because the pairing factors through the pairing between GrW�i0HjðXs;QÞ and

GrWi0 H
jðXs;QÞ. It is a rational function by regularity, and is nonzero if o is generic.

So the assertion follows. &

Remarks. (i) Proposition (2.9) does not necessarily imply that g is extended to a
univalent section of the local system, because only GrW�i0g is extended in such a way.
Note that the G-invariant cycles coincide with the T1-invariant cycles for homology

(i.e. for the dual representation) by Dimca and Némethi [11]. However, every

invariant cycle of GrWHjðXs;QÞ does not necessarily come from an invariant cycle of

HjðXs;QÞ in general (e.g. f ¼ x2y2z2 � x2y2 þ x2 þ y2 þ w2).

(ii) As another application, we have the the following consequence to the behavior

of the period integral at infinity in general. For an algebraic differential form o and
g 2 HjðXs;ZÞ, consider the asymptotic expansion at infinity

Z
gt

o �
X
a4a0

XrðaÞ
r¼0

Cða; rÞtaðlog tÞr;
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where a0 2 Q, rðaÞ 2 N and Cða; rÞ 2 C. Then, by the theory of Nilson class func-

tions in [5], Theorem (0.1) implies

rðaÞ4m0
s � 1 ð4 minfms � 1; j� 1gÞ if a 2 Z: ð2:9:1Þ

Note that we have only rðaÞ4 j for a general a by the monodromy theorem.
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Fourier Grenoble 34 (4) (1984), 75–107.
2. Beilinson, A., Bernstein, J. and Deligne, P.: Faisceaux pervers, Astérisque 100, Soc. Math.
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17. Garcı́a López, R. and Némethi, A.: On the monodromy at infinity of a polynomial map II,
Compositio Math. 115 (1999), 1–20.

18. Griffiths, P.: Periods of integrals on algebraic manifolds: Summary of main results and

discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296.
19. Guillén, F., Navarro Aznar, V., Pascual-Gainza, P. and Puerta, F.: Hyperrésolutions cubi-

ques et descente cohomologique, Lecture Notes in Math. 1335, Springer, Berlin, 1988.

20. Hironaka, H.: Stratification and flatness, In: Real and Complex Singularities (Proc. Nordic
Summer School, Oslo, 1976) Sijthoff & Noordhoff, Alphen a/d Rijn, 1977, pp. 199–265.

21. Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations,

In: Lecture Notes in Math. 1016, Springer, Berlin, 1983, pp. 136–142.

70 ALEXANDRU DIMCA AND MORIHIKO SAITO

https://doi.org/10.1023/A:1025419000863 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025419000863


22. Kashiwara, M.: A study of variation of mixed Hodge structure, Publ. RIMS, Kyoto Univ.

22 (1986), 991–1024.
23. Katz, N.: Nilpotent connections and the monodromy theorem: Applications of a result of

Turrittin, Publ. Math. IHES 39 (1970), 175–232.

24. Landman, A.: On the Picard–Lefschetz transformation for algebraic manifolds acquiring
general singularities. Trans. Amer. Math. Soc. 181 (1973), 89–126.
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101–102 (1983), 243–267.
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