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Abstract. We show that for a polynomial map, the size of the Jordan blocks for the eigenvalue
1 of the monodromy at infinity is bounded by the multiplicity of the reduced divisor at infinity
of a good compactification of a general fiber. The existence of such Jordan blocks is related to
global invariant cycles of the graded pieces of the weight filtration. These imply some applica-
tions to period integrals. We also show that such a Jordan block of size greater than 1 for the
graded pieces of the weight filtration is the restriction of a strictly larger Jordan block for the
total cohomology group. If there are no singularities at infinity, we have a more precise
statement on the monodromy.
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Introduction

Let X = C"*!, § = C, and /: X — S be a polynomial map. Set X, = f~!(s) for s € S.
Then there is a Zariski-open subset U of S such that the H/(X;, Q) for s € U form a
local system on U. It is known that the behavior of the local monodromy at infinity
of this local system is rather different from the local monodromy around the points
in S, see [9, 16, 17], etc. Among others, it is often observed that the size of the Jordan
blocks for the eigenvalue 1 is smaller than the size for the other eigenvalues. The lat-
ter is bounded by j + 1 due to (a generalization of) the monodromy theorem, and this
is optimal for the eigenvalues different from 1.

For a general s € U, let X,bea good compactification of X such that X, is smooth
and the (reduced) divisor at infinity D := X, s\ Xy is a divisor with normal crossings. Let
my be the maximum of the multiplicity (i.e. the number of local irreducible compo-
nents) of D;. This is independent of the choice of a general s € U. In this paper, we show

THEOREM 0.1. The size of the Jordan blocks for the eigenvalue 1 of the local
monodromy at infinity is bounded by my and also by j for j > 0. In particular, this size is
1 if Xy admits a smooth compactification with a smooth divisor at infinity (e.g. if the
hypersurface in P" defined by the highest degree part of f is reduced and smooth).

https://doi.org/10.1023/A:1025419000863 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025419000863

56 ALEXANDRU DIMCA AND MORIHIKO SAITO

More precisely, the size is bounded by the difference m between the maximal
weight of H/(X;, Q) and j, see (0.4). Note that m, > m, in general by [7], and we have
the strict inequality, for example if n = 2, m; = 2 and the dual graph of D, has no
cycle.

Another interesting fact is that there is a certain condition on the relation between
the Jordan blocks for the eigenvalue 1 and the weight filtration W of the natural
mixed Hodge structure [7] on H/(X;, Q), and such Jordan blocks are closely related
to global invariant cycles of the graded pieces of the weight filtration. Let G be the
monodromy group which is the image of the monodromy representation
(U, s) — Aut H/(X,, Q). Note that W is stable by the action of G, because W gives
the weight filtration on the local system {H/(X|, Q)},c,, which underlies a variation of
mixed Hodge structures. (This may be considered to be one of basic examples of geo-
metric variations of mixed Hodge structures defined on a Zariski-open subset of C.)
Let T denote the monodromy at infinity. This is an element of G, and is defined by
choosing a path between s and oo in U.

THEOREM 0.2. For an integer i, assume the monodromy at infinity ofGrl-WHj(Xs, Q)
has a Jordan block of size r(>0) for the eigenvalue 1. Then Gr;,'VHj(XS, Q) has a
nonzero global invariant cycle (i.e. (GrlfVHj(XS, QNG #£0) with i =i+r+1<
J+m, (< min{2),j+my}), or ¥ =i>j and r=1. In particular, we have natural
isomorphisms

(Gr ' H/(X,, Q) = (Gr/ H/(X,, Q)'>  for i—j > m| —2.

In the case i = i+r+1 (e.g. if r > 1), the given Jordan block is the restriction of a
strictly larger Jordan block for the monodromy of H/(X;, Q) to the graded piece Griw.

This is a special case of (2.4-5). If n =2, it implies that the size of the Jordan
blocks for the eigenvalue 1 of the monodromy at infinity on GriWHj (Xs, Q) is at most
1 (compare to the example in [13] mentioned after (0.4) below). When n =1, (0.2)
follows from [9] (because Grlw H'(X,, Q) coincides with the cohomology of a smooth
compactification). The last assertion of (0.2) means that if the restriction of T, to
Gr,W has a Jordan block of size >1 for the eigenvalue 1, then there is a strictly larger
Jordan block for T, on H/(X;, Q). In some special case, this was observed in [10].
Note that the relation between the Jordan blocks of the local monodromies and
the weight filtration is rather complicated in general, and the above assertion does
not follow from the conditions of admissible variation of mixed Hodge structure.
See (2.9) for an application to period integrals.

If f: C"*' — C does not have singularities at infinity (more precisely, if f'is coho-
mologically tame [28]), then the situation becomes quite simple. We have
H/(X,, Q) =0 for s € Uand j # n. Let m(s, 4, r) denote the number of Jordan blocks
of the local monodromy of {H"(X,, Q)},cy at s with eigenvalue 4 and size r, and
similarly for m/(s,4,r) with H"(X,, Q) replaced by GrgVH"(XS, Q). Let r,=
dim Gr,.WH”(XS, Q) for s € U. The following assertion (except for the one about
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the monodromy around s € S) was obtained in [10], 4.3-5 under an additional mild
assumption.

THEOREM 0.3. Assume f: C"™' — C is cohomologically tame [28) with n = 1. Then
the local systems {Grl-WH"(XS, Q)}ser are constant for i # n and

a1 = m(co, 1, 1) = dim TH (P!, R"/,Qxly),
Fpgrge1 = m' (00, 1, 1) = m(oo, 1, r+ 1) for r > 0,
m(s, 2, r) =m'(s, A, r) + 9,10, Zr,- Sfor s € S\U.
i#n
Furthermore, the difference between rny1 and dim TH'(P', R'f.Qyxly) is given by the

length of the direct factor with discrete support of the perverse sheaf Gr,lfjrl
PR™L Qy (see also [12], 0.8 for the case n = 1).

Here TH'(P!, R'f,Qx|y) is the intersection cohomology with coefficients in the
local system {H"(X,, Q)},cy on U, and ?R'f, = ?H'f, with the notation of [2] (see also
(1.1.1) below). Theorem (0.3) means that each Jordan block of size r for the eigen-
value 1 of the local monodromy of {Gr,I:VH”(XS, Q)} ey at oo has a nontrivial exten-
sion with a global section of {GrZrHH’(XS, Q)} e, and gives a Jordan block of size
r+ 1 of the local monodromy of {H"(Xj, Q)},cr- Otherwise there are no nontrivial
extensions between the Jordan blocks of the graded pieces of the weight filtration.
See (2.6).

In this paper we show that Theorem (0.1) is a special case of the following
assertion on the relation between the local monodromy and the weights of the
cohomology [7]:

THEOREM 0.4. Letf: X — S be a morphism of complex algebraic varieties such that
dimX = n + 1 and S is a smooth curve. Let S be the smooth compactification of S. Let j
be a positive integer, and r, ¥ be integers such that v' < r. Assume H/(X;, Q) for a
general s € S has weights in [j+7v,j+r] (i.e. Gr,fVHf(XY, Q)=0fork¢[j+71,j+r])
and H (X, Q) has weights < j+r. Then the Jordan blocks of the monodromies of
HI(X,, Q) around s« € S\ S for the eigenvalue 1 have size <r—r.

This means that the restriction on the weights of the cohomology of the total
space and a general fiber implies a certain restriction on the monodromy at infi-
nity. The converse of Theorem (0.4) is true in a weak sense if f is proper and X
is smooth so that H/(X,, Q) is pure of weight j for a general s. See Remark (ii)
after (2.3).

For the proof of Theorems, we use the fact that the action of the nilpotent part N
of the monodromy on the nearby cycles at infinity (endowed with the limit mixed
Hodge structure) is a morphism of mixed Hodge structures of type (—1, —1) (see
[7]) so that the assertion is reduced to the estimate of the weights of the nearby cycles
at infinity. Then the point is that we can estimate the weights of the /imir mixed
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Hodge structure on the nearby cycles in terms of the weights of the natural mixed
Hodge structure [7, III] on the cohomology of the general fiber and the total space.
We first consider the spectral sequence (1.6.1) which relates the hypercohomology
over S of the (perverse) direct image of the constant sheaf by f to that of the graded
pure pieces of the direct image. For each graded piece, the weight filtration on its
nearby cycles is given by the monodromy filtration up to a shift. The weights on
the nearby cycles can be estimated by using its higher direct image by the inclusion
to the compactification of S (1.4.4), and then using its hypercohomology over S
(1.5.1). Thus we can deduce the assertions. However, we do not discuss the number
of the local irreducible components of the deleted fiber which may be assumed to be
a divisor with normal crossings if X is smooth. (The condition on A/*'(X, Q) can be
replaced by that on H'(S,” R/£,Qy), see (2.3).)

Theorem (0.1) was proved in the case n = 1 by [9], and the estimate by j follows
from [28], Corollary 10, if f'is cohomologically tame in the sense of loc. cit. See also
[16,17]. For n = j = 2, there is an example such that the size of a Jordan block is j
(see [13], Example (5.3.2): f(x,y,z) = x + y + z + x*»?2%). Note that Theorem (0.1)
does not hold for the monodromy around a point of S\U (consider, e.g.,
fix,y) = »* + x> — 3x), although the local analogue is true (0.5).

The corresponding local assertion is more or less well-known. Let f be a holo-
morphic function on a complex manifold X (or, more generally, on an analytic space
X which is a rational homology manifold). Then we have N"*' =0 on the nearby
cycle sheaf i, Qy[n] (by reducing to the normal crossing case). See, e.g., [26]. Conse-
quently, Jordan blocks of the monodromy on the jth cohomology of the Milnor fiber
at any point of X have size <j+ 1 (by restricting to a generic hyperplane and using
the vanishing of certain relative cohomology [25]). See also [15]. Restricting to the
eigenvalue 1 (and to the reduced cohomology), it is known that the size is bounded
by j due to J. Steenbrink [33] (in the isolated singularity case), D. Barlet [1] (for j = n)
and V. Navarro Aznar [27] (in general).

Actually, we can get a slightly better estimate (which is similar to Theorem (0.1),
but is much easier), when the singularity has certain equisingularity.

PROPOSITION 0.5. Let {S,} be a Whitney stratification of X satisfying Thom’s
Ay-condition (which exists at least locally by [20]). Let r = maxcodim S,. Then the
support of the perverse sheaves N/ Yy Qyln] and N/ @71 Qx[n] have dimension <n —j,
and for j = r we have Nfll{f» Qy[n] = Nf_lgpfll@x[n] = 0. See (2.8).

The first assertion concerning the nearby cycles is equivalent to the assertion that
dim supp Gr,zilﬂ/-Q[n] < n—jby (1.4.2), and the last assertion is equivalent to the
vanishing of Gr,?i A Q[n] for j = r. They imply the assertions on the vanishing cycle
sheaf with unipotent monodromy ¢, Qy[n], because the latter is isomorphic to
Ny Qx[n] by the sheaf version of the local invariant cycle theorem (1.4.5). This
gives also dim supp Gr,” Qx[n] <n—j, and Gr,” Qx[n] =0 for j > r, where W
is the weight filtration of the mixed Hodge Module [30]. Note that we can replace

https://doi.org/10.1023/A:1025419000863 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025419000863

MONODROMY AT INFINITY AND THE WEIGHTS 59

r by the maximal number of the local irreducible components of an embedded
resolution of ~1(0).

In Section 1 we review some basic facts from the theory of mixed Hodge Modules
[29, 30], and prove (0.1-5) in Section 2.

In this paper, cohomology of a complex algebraic variety means that of the
associated analytic space.

1. Preliminaries
1.1. MIXED HODGE MODULES

For a complex algebraic variety X, let MHM(X) denote the category of mixed Hodge
Modules on X. See [30, 4.2]. If X is smooth, an object M of MHM(X) consists of
(M, F, W), (K, W), «) where (M, F) is a filtered Dy-Module with the filtration W,
(K, W) is a filtered perverse sheaf with rational coefficients on X*", and o is an iso-
morphism of perverse sheaves DR(M) ~ K ® C compatible with W. They satisfy
several good conditions. The filtrations F and W are called respectively the Hodge
and weight filtrations. The category MHM(X) is an abelian category, and every
morphism is strictly compatible with the two filtrations (£, W) in the strong sense
[29]. Furthermore, the weight filtration W gives a filtration of mixed Hodge Modules
such that the functor M — Gr}’ M is exact.

In general, MHM(X, Q) is defined by using closed embeddings of open subvari-
eties of X into smooth varieties. See [30, 31]. Then the underlying perverse sheaf K
of a mixed Hodge Module M is globally well-defined, and the forgetful functor
assigning K to M is faithful and exact. Note that the category of perverse sheaves
Perv(X, Q) is an abelian category, and is a full subcategory of the bounded derived
category of sheaves of (Q-vector spaces with algebraically constructible cohomologies
DX(X, Q), see [2].

For morphisms f of complex algebraic varieties, we can construct canonical func-
tors f,, fi, /*, f* between the bounded derived categories of mixed Hodge Modules
D"MHM(X) [30, 4.3-4]. We will denote by H': D°MHM(X) — MHM(X) the natural
cohomology functor. This corresponds to the perverse cohomology functor [2]
PHJ: Db(X, Q) — Perv(X, Q) by the forgetful functor. We define

PRf,K ="HRf,K for K € D’(X, Q). (1.1.1)

This corresponds to H'f, M for M € D’MHM(X) by the forgetful functor. Let
ay: X — pt denote the structure morphism. For M € DPMHM(X), we define

H' (X, M) = H'(ay),M, H.(X, M) = H'(ax) M. (1.1.2)

Remark. Let f X — Y be a morphism of complex algebraic varieties, and M a
bounded complex of mixed Hodge Module on X with a finite decreasing filtration G.

https://doi.org/10.1023/A:1025419000863 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025419000863

60 ALEXANDRU DIMCA AND MORIHIKO SAITO

Then we have a spectral sequence in the category of mixed Hodge Modules

E'" = Hf,GrlM = Hf, M. (1.1.3)
Indeed, the direct image f, M is represented by a complex of mixed Hodge Modules
endowed with a filtration induced by the filtration G on M by the definition of direct
image [30, 4.3]. In particular, Gry; commutes with the direct image, and the spectral
sequence follows (see, e.g., [7, (1.3.1)]). (We have a similar assertion for the pull-back
functor f*.)

If fis proper, M is a mixed Hodge Module, and G is the weight filtration W of M,
then we get the weight spectral sequence [7]:

E;" = HIf,Gr M = HIf,M. (1.1.4)

Since H: ’j’*Gr,WM is pure of weight i 4 j (see Remark after (1.2)), it degenerates at
E», and its abutting filtration is the weight filtration of H/f, M by the same argument
as in [7], see [30], 2.15.

Applying (1.1.3) to the truncation 7 on f, M, we get the Leray spectral sequence

EDY = HPg, HIf, M = H'(gf), M, (1.1.5)

as in [7, (1.4.8)] for morphisms f: X — Y and g: Y — Z.

1.2. INTERSECTION COMPLEXES

We say that M is pure of weight r if Gr}f//\/l =0 for k # r. A pure Hodge Module is
also called a polarizable Hodge Module. It admits a decomposition by strict support

M=oz Mz, (1.2.1)

where the direct sum is taken over irreducible closed subvarieties Z of X, and M,
has support Z or ¢, but has no nontrivial subobject or quotient object with strictly
smaller support. The underlying perverse sheaf K, of M is an intersection complex
with local system coefficients, i.e. there exist a dense open smooth affine subvariety U
of Z with the inclusion j: U — Z, and a local system Lz on U such that K, is the
intermediate direct image

Ju(Lz[dimZ]) := Im( ji(Lz[dimZ]) — j.(Lz[dimZ])) (1.2.2)

in the sense of [2]. It is also called the intersection complex IC, L, and its cohomol-
ogy is called the intersection cohomology IH*(Z, Ly).

If Z is a curve, then K,[—1] is a sheaf in the usual sense, and is isomorphic to j, L,
where the direct image is in the usual sense. In particular, we have

H'(Z,K;) = H (U, Ly). (1.2.3)

Remark. Let f be a proper morphism of complex algebraic varieties, and M a
pure Hodge Modules of weight n on X. Then the cohomological direct image H'f, M
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is pure of weight n+j. See [30, 4.5]. A pure Hodge Module is also stable by the
intermediate direct image (1.2.2), see loc. cit.

1.3. VARIATION OF MIXED HODGE STRUCTURE

For X = pt, we have naturally an equivalence of categories
MHM(pt) = MHS?, (1.3.1)

where the right-hand side denotes the category of graded-polarizable mixed Hodge
structures with rational coefficients [7] (and F? = F_,). See [30, (4.2.12)]. So mixed
Hodge Modules on pr will be identified with graded-polarizable mixed Hodge
structures.

More generally, a mixed Hodge Module (M, F, W), (K, W); ) on a smooth vari-
ety X such that K[—d] is a local system can be naturally identified with an admissible
variation of mixed Hodge structure [22, 34] by replacing K with K[—d], and W with
W[—d], where d =dimX and (W[-d]), = Wi+a. See [30, 3.27]. In particular, a
polarizable Hodge Module of weight w such that the underlying perverse sheaf is
a local system (up to a shift) can be identified with a polarizable variation of Hodge
structure of weight w — d.

If X is smooth, we will denote by Q?[d] € MHM(X) the pure Hodge Module of
weight d corresponding to the constant variation of Hodge structure of type (0, 0).
In general, Q? is defined in the derived category of bounded complexes of mixed
Hodge Modules D’MHM(X). See [30]. By the direct image under the structure
morphism X — pt, we get a mixed Hodge structure on the cohomology of X. This
coincides with Deligne’s mixed Hodge structure [7]. See [31].

1.4. VANISHING CYCLES

Let g be a nonconstant function on X. Put Y = g~!(0). Then we have the nearby and
vanishing cycle functors i, and ¢,. They are exact functors from MHM(X, Q) to
MHM(Y, Q), and correspond to the exact functors ,[—1], ¢ [—1] on the underlying
perverse sheaves [6].

The semisimple part 7 of the monodromy acts naturally on , M, ¢, M, and the
submodules defined by Ker(7; — 1) are denoted by ¥, | M, ¢, ;M. Let N = Qi)
logT,, where T, is the unipotent part of the monodromy. Then N gives morphisms of
mixed Hodge Modules

N: Yy M -y M(=1), N: oM — o, M(=1), (1.4.1)

where (—1) is the Tate twist as in [7] (i.e. the Hodge filtration is shifted by —1 and the
weight filtration by 2).

The weight filtration is given by the relative monodromy filtration in the sense
of [8, (1.6.13)] and [34]. In particular, if M is pure of weight k, then we have
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isomorphisms
N': Gl M= Gl g M(—i),
' B (1.4.2)
N': Gr,?jri(pgyl./\/l — Gr,f’il.q)gyl/\/l(—i).
Let U= X\Y with the inclusion morphisms i: Y — X, j: U— X. Since ¢, M
depends only on M|y, ¥ jxM for M € MHM(U) will be denoted by ¢, M. By
[30, 2.24] we have a canonical isomorphism

"jxM = Cone(N: o \M — Yoy M(=1)). (1.4.3)

Indeed, Var: ¢, ,juM — ¥, 1 M(1) is an isomorphism (because Var corresponds
to the action of ¢ on the underlying D-Module, see e.g. [29, 3.4.12]) and
can: Y, ;M — @, 1j.M is identified with N. (This is related to [34] when X is a
smooth curve and the local monodromies are unipotent.)

In particular, we have

GT/ZHZ‘HOZ'*J'*M = (PNGT/meg,lM)(—l): (1.4.4)

and H'i*j, M has weights > k + 1. Here the right-hand side of (1.4.4) denotes the
primitive part by the action of N. So the dimension of H%*j, M coincides with the
number of Jordan blocks for the eigenvalue 1 in the case dim X' = 1 and g is a local
coordinate.

Remarks. (i) With the above notation, assume X smooth, or more generally, X is
a rational homology manifold so that Qy[dim X]is the intersection complex. Since Y
is a locally principal divisor, Q y[n] is a perverse sheaf, where n = dimY. So @[;[n] isa
mixed Hodge Module on Y, and we have a short exact sequence of mixed Hodge
Modules

0 — O¥[n] — Y, QI+ 11 = ¢, Q% +1] -0,

because the cokernel of can corresponds to the maximal quotient object supported
on g~!(0), and it vanishes in this case. See [30, (2.4.3)]. Combined with [29, 5.1.7],
this implies

QY[n] = Ker(N: p, , O [n + 1] > ¢, , Q¥[n + 11(—1)),

1.4.5
0o Q¥ [n+ 1] = Coim(N: ¢, , Q[n + 11 — ¥, , QY[ + 11(—1)). (1.4.5)

The first isomorphism may be viewed as the sheaf version of the local invariant
cycle theorem, and implies the second. These hold also in the case X and g are
analytic by loc. cit.

(i1)) Assume X is a smooth curve, and let 0 € X with a local coordinate ¢ such that
{0} = r~'(0). Let M be an admissible variation of mixed Hodge structure on U,
which is identified with a mixed Hodge Module on U. Assume the monodromy
around 0 is unipotent. Then the nearby cycles /, M can be defined as in [32, 34]
by extending the Hodge bundles to Deligne’s canonical extension [5] as subbundles,
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and then restricting them to the fiber at 0. (In general, we have to use the filtration ¥
([21, 26]) indexed by rational numbers as in [29].)

In particular, the set of integers p such that Gr/ # 0 does not change by passing to
the limit Hodge filtration. This is used for an estimate of the size of Jordan blocks,
see (2.7).

LEMMA 1.5. Let S be a smooth affine curve, and S be the smooth compactification of
S with the inclusions i: £:= S\ S — S, j: S — S. Let M be a pure Hodge Module of
weight k on S, and let j, M = Im(jjM — j. M), the intermediate direct image. Then
we have an exact sequence of mixed Hodge structures

0 — HS, juM) — H(S, M) - H°(Z, *j.M)

L (1.5.1)
— H (S, juM) — 0,
and an isomorphism
HY(S, juM) = H(S, M). (1.5.2)

In particular, H='(S, M) is pure of weight k — 1, and is isomorphic to the dual of
H'(S, juM) up to a Tate twist.

Proof. Since S is affine, it is enough to show the short exact sequence of mixed
Hodge Modules

0— jiuM— jM— i, H%*j .M — 0.

Indeed, H(S, ji,M) is pure of weight k + i (see Remark after (1.2)), and M is self-
dual up to a Tate twist due to the polarization.

Let K be the underlying perverse sheaf of M. Replacing S with an open neighbor-
hood of S\ S, we may assume that M is a variation of mixed Hodge structure, i.e.
K[—1] is a local system. Then the underlying Q-complex of (ji, M)[—1] is j.(K[—1])
where j, is the direct image in the usual sense. So the assertion follows from the
distinguished triangle

= Ju(K[~1]) > Rju(K[~1]) = RUu(K[~1]) —.
which gives the exact sequence of the underlying perverse sheaves after shifting the

complexes by 1. O

Remark. If every local monodromy of K[—1]|; is unipotent, we can prove the
assertion by using [34].

LEMMA 1.6. With the notation of (1.5), we have spectral sequences of mixed Hodge

structures
El—k,k-b-m — Hm(S, GI'kWM) = Hm(S, M), (1.6.1)
E(kJ(JrWI — H’”(Z, l*j*GI'][:VM) = H’“(Z, i*j*/\/l), (1.6.2)

together with a natural morphism of the spectral sequence (1.6.1) to (1.6.2).
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Proof. The first spectral sequence is clear by (1.1.3), and the argument is similar
for the second. The morphism of spectral sequences follows from the canonical
morphism j,M — i,i*j, M which is compatible with the filtration induced by
W on M. L]

Remark. The functor *j, calculates the cohomology of the punctured neighbor-
hood of the points at infinity of S, see (1.4.3). For a perverse sheaf K (whose
restriction to U is a local system shifted by 1), H~'i*j,K and H *j,K give respectively
the local invariant and coinvariant cycles (i.e. the kernel and cokernel of the variation
Too — id).

If the differential d,: E;%—"k+—1 — E-%k of the spectral sequence (1.6.2) is non-
zero, some element of Coker (GrZV T — id) belongs to the image of T, — id, and
the corresponding Jordan block for GrZVToo is the restriction of a bigger Jordan
block for T.

2. Proof of Theorems

PROPOSITION 2.1. Let S be a smooth affine curve, and M a mixed Hodge Module
on S with the weight filtration W. Let U be a dense open subvariety of S on which M is
a variation of mixed Hodge structure. If H°(S, M) has weights < m and M| has
weights < m+ 1, then HO(S, Gr,fVM) has weights < m. More precisely, if H°(S, M)
has weights <m and Gr]"H°(S,Gr)/M)#0 for an integer i>m, then
H\(S,Grl[, M) #0, and Gr}” of the differential dip1_: E;\' — E;N%, of the
spectral sequence (1.6.1) is surjective.

Proof. Consider the spectral sequence (1.6.1). Since S is affine, we see that
EM=0ifp+qg<—1orp+g>0.By(l5), Efk’kfl is pure of weight k — 1, and
Efk’kfl =0 for k—1 > m using the decomposition (1.2.1) applied to Gr,fVM,
because the direct factor of Gr,’ M with discrete support does not contribute to
H'(S, Gr,?/ M). So the assertion follows from the strict compatibility of the
differential with the weight filtration, see [7]. O

PROPOSITION 2.2. With the above notation, assume M is a pure Hodge Module of
weight k on S. For s € S\ S, let t be a local coordinate at s. If H°(S, M) has weights
<m, then ;M has weights between min{k — 1,2k —m} and max{k —1,m —2}.
Conversely, if the monodromy of y, \ M has a Jordan block of size r for the eigenvalue
1, then it gives a nonzero element of Gr,Z_rHO(Z, *j M) which induces a nonzero
element of Gr,Z_rHO(S, M) or Gr?i,,Hl(S_',j!*M) by (1.5.1). Furthermore, we have
r =1 if the last group is nonzero.

Proof. We have the symmetry of the weights of nearby cycles by (1.4.2). So it is
enough to estimate the maximal weight for the first assertion, and it is verified by
using the exact sequence (1.5.1) and taking H° of (1.4.3). For the last assertion, the
existence of a Jordan block of size r corresponds to a nonzero element of the pri-
mitive part of Gr,?jr,,HO(Z, i*j.M) by (1.4.4). Then it corresponds by (1.5.1) to a
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nonzero element of GrZHHO(S, M) or GrK,Hl(S,jg*M). In the second case, we
have r = 1 because H'(S, ji, M) is pure of weight k + 1. So the assertion follows.

2.3. PROOF OF (0.4)

We may assume S connected and then affine (because otherwise S = S). Let M =
H*'f,0% so that ?RH1f,Qy is the underlying perverse sheaf of M (in particular,
its restriction to U is (R/f,Qy|,)[1]). Here ?R71f, means ? H'*'Rf,, see (1.1.1).

By hypothesis M| has weights in [j+ " + 1,7+ r + 1] See (1.3) for the shift of
weight. By the spectral sequence (1.1.5) (with Z = pr), we have an exact sequence
of mixed Hodge structures

0— HS, H/f,0%) — B/ (X, Q) - H'(S, HPf.0%) - 0, (2.3.1)

because S is an affine curve so that E5*? = 0 except for p = —1,0 and the spectral
sequence degenerates at E>. So H(S, M) has weights < j+r, and hence
H(S, Gr}Y M) has weights <j+r by (2.1).

This implies that the l//,’lGI'}:VM for k e [j+ 7 +1,j+r+ 1] (and hence ¥, | M)
have weights in [j — r+ 21 + 1, j+ r] by (2.2). This completes the proof of (0.4).

Remarks. (1) Theorem (0.1) follows from (0.4) by using (2.7) below.

(ii) Assume X is smooth and f'is proper. Then H/*!(X, Q) has weights < j+r+ 1
if the Jordan blocks for the eigenvalue 1 of the local monodromies of H/(Xy, Q) at
any points of S\ S have size < r. This follows by the same argument as above using
(1.4.3), (1.5.1-2) and (2.3.1).

(iii) Assume fis a polynomial map. Let M = H/*!f, O for j > 0. Then H'(S, M) =
0 for any i by (2.3.1). Let DM be the dual of M. Then H.(S, DM) = 0 by the duality,
and we get natural isomorphisms

H(S,DM) = H'(Z, i*j,]DM),

using the distinguished triangle — ji — j, — i,i*j, —. For i = —1, this reproves a
result of Dimca and Némethi [11]: Hi(Xj, Q)¢ = Hi(X;, Q).

THEOREM 2.4. Let f: X — S and S be as in (0.4). Assume the monodromy Ts of
Grl.WH-/(XS, Q) around s« € S\ S has a Jordan block of size r for the eigenvalue 1, and
HFY(X, Q) has weights < i+r. Let j+ m., be the maximal weight of H/(Xs, Q). Then
Gr!" H/(X,, Q) has a nonzero global invariant cycle (i.e. (Grl H/(X;, Q)% # 0) with
P=i+r+1<j+m (< min{2j,j+ms}), or i =i and r =1. In the former case
(e.g. if r > 1), the given Jordan block is the restriction of a strictly larger Jordan block
for the monodromy of H/(X, Q) to the graded piece Gr,-W . In the latter case, letting
j4+ v be the minimal weight of H/(X;, Q), we have i =i > j+ v if H/(X, Q) has
weights > j+ 1.

Proof. The given Jordan block of size r corresponds by (2.2) (with k replaced by
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i+ 1) to a nonzero element u of

Grll, (HY(S, Grll, M) or Gr}},, H'(S, juGr/}, M)
with the notation of (1.5) and (2.3) (in particular, M = Hj+1f*Q§). In the first case,
we have H7U(S,Gr!,,,M)#0 by (2.1), and i+r+ 1< min{2j,j+ m,, 2n} by
[7,(8.2.4)] (see also (2.7) below). Furthermore, (2.1) says that u belongs to the image
of Gr/,,, of the differential

. —i—r=2,i+r+1 —i—1,i+1
drp1: E. 7 - E.

of the spectral sequence (1.6.1). The corresponding differential of (1.6.2) is also non-
zero, because the image of v in the corresponding term of (1.6.2) does not vanish by
the definition of u (i.e. it comes from the given Jordan block, see (2.2)). This nonvan-
ishing implies the assertion on the extension of Jordan blocks, see Remark after
(1.6). In the second case, we have r = 1 by (2.2), and i > j + 1’ because the hypothesis
on the weights of H/(X, Q) implies that {Gr_/m/Hf(X s» Q)}sey has no nonzero global
section (using (1.6.1)). So we get the assertion. O

COROLLARY 2.5. Let f: X — S and T be as above. Assume H/(X,, Q) and
H*Y(X, Q) have weights < m. Then we have natural isomorphisms

(Gr)"H(X,, )¢ = (GrVH/(X,, Q)™ fori>m—2 (2.5.1)

and both are zero if |S\ S| > 1.

Proof. Fori> m — 2, the restriction of T, to the unipotent monodromy part (i.e.
the generalized eigenspace for the eigenvalue 1) of Gr[WHf(X 5, Q) is semisimple by
(2.4). Hence Hoi*j*Grfi/lM is pure of weight i + 2, and

P dim (Gr" Hi(x,, ©)"> = dim H'(S, ji.Gr[}, M)
Se0€X .
= dim (Gr) H/(X,, Q)¢
by (1.5.1). In particular, |S\ S| =1 if both sides are nonzero. So the assertion
follows. O

Remark. 1If fis a polynomial map and a general fiber X admits a smooth com-
pactification such that the divisor at infinity is smooth, then H/(X;, Q) has weights in
[j,j+ 1], and (2.4) implies that 1 is not an eigenvalue of the monodromy at infinity of
GerH-/(XS, Q) and the size of the Jordan blocks for the eigenvalue 1 of the mono-
dromy of Gr;i/lH-" (X5, Q) is at most 1. In particular, the last assertion holds also for
H/(X;, Q). (Note that it follows also from Theorem (0.1).)

2.6. PROOF OF (0.3)

Recall that /: X — S is cohomologically tame [28] if there is an algebraic compacti-
fication f: X — S of f such that the support of the (shifted) perverse sheaf
;'R j«(Qx[n + 1]) is contained in X for any ¢ € C and m € 7, where j: X — X
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denotes the inclusion and ”R"j, means ? H"R ,, see (1.1.1). Note that the condition
implies that_ qoj:_(}’R’"T*(QX[n +1]) = 0 for m # 0 (because ? R"j,(Qx[n + 1]) is sup-
ported on X'\ X for m # 0), and (p/-_chOT*(lQX[n + 1]) has discrete support. If fur-
thermore X = C"*' and S = C, it is easy to show that ?R"f,Qy = 0 form # 1,n + 1.

Let W be the weight filtration on the perverse sheaf ?R"T'f,Qy coming from the
corresponding mixed Hodge Module. Note that there is a shift of index by 1
between this weight filtration and that on the cohomology H"(Xj, Q), see (1.3).
We first show

Gr,fV”R”“f;QX is a constant sheaf if k £ n+ 1. (2.6.1)
Consider the Leray spectral sequence

E}" =R R"j(Qxln + 1) = 7 R f(Qxln + 1))
in the category of perverse sheaves on S. It underlies a spectral sequence of mixed
Hodge Modules. Since the functor M — GriW M is an exact functor of mixed Hodge
Modules, we get a spectral sequence by applying this functor to the above spectral
sequence. So it is enough to show that Gr,?/ PRIf,”R"j(Qx[n + 1]) are locally con-
stant sheaves for k ## n + 1, because S is simply connected. This is further reduced
to the vanishing of the functor ¢,_. applied to these perverse sheaves on S for

¢ € C. Here we may replace the perverse sheaves by ”R’f*Gr,ZV (P R"j(Qyln + 17)),
using the weight spectral sequence (see (1.1.4))

ETHH = PRIEGr (" R/ (Qxln + 1]))
= PRI, (" R"[(Qx[n + 1])),

together with the exactness of the vanishing cycle functor. Since this functor commu-
tes also with ? R'f,, the assertion (2.6.1) then follows from the hypothesis on the sup-
port of the vanishing cycle functor, because Gr,fV ?R"j,(Qyln + 1]) is supported on
X\ Xfork#n+1orm#0.

Now let M = HQf*(Qﬁ[n + 1)), and consider the spectral sequence (1.6.1). By
(2.6.1) we get

E =0 unlessi=—1,k>n+1ori=0k=n+1.
Furthermore E; ! is pure of weight k — 1, and E**+ =0 for any i, k in (1.6.1)
because H'(S,”R""'f,Qx) = 0 for any i.

Let M' = Gr,f'jr]M, and S=P! with the inclusion morphisms i: {co} — S,
j: S — S. Then (1.6) gives commutative diagrams for r > 1:

HYS, Grf M) =, H'#,.Gr/ M
d, d,

Gr/HS, juM) . Gr/H'S. M) __, Gr/H%"j M
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where k = n+r, and the bottom row is GrkW of the exact sequence (1.5.1) with
H'(S, juM') = 0. By the above argument the left vertical morphism d, is an iso-
morphism for any r > 1. Since H(S, ji,M’) is pure of weight n + 1, and H *j M’
has weights > n+2 by (1.4), we see that the right vertical morphism, which is
induced by d,: E7"~" 1t — prn=lntl of (1.6.2), vanishes for r = 1, and is an iso-
morphism for r > 1. The first vanishing means the splitting of the extension between
the Jordan blocks for the eigenvalue 1 of the local monodromy at infinity of
GrgVH”(XS, Q) and GrLKlH"(XS, Q). So the assertions on the local monodromy at
infinity follows.

The triviality of local extensions at s € S\ U follows from the local classification
of perverse sheaves or regular holonomic D-modules ([3, 4]) which implies that
locally there are no nontrivial extensions between intersection complexes with
unipotent local monodromies. This completes the proof of (0.3).

2.7. GENERALIZATION OF THE MONODROMY THEOREM

Let /> X — S be a morphism of complex algebraic varieties such that dimS = 1. By
Remark (ii) after (1.4), the size of the Jordan blocks of the local monodromies does
not exceed the maximal length of successive numbers p such that GriH/(X;, C) # 0,
because the H/(Xy, Q) for s € U form an admissible variation of mixed Hodge struc-
ture on a Zariski-open subset U of S ([14, 19, 34], etc.) The assertion was first shown
in [32] when the generic fiber is proper smooth (see also [23]). Combined with
Remark below, this gives a generalization of the monodromy theorem (see [18, 24]
in the case the generic fiber is proper smooth).

Remark. Let Y be a complex algebraic variety of dimension n. Let
hiPa(Y) = dimGrl{iGrquHj(Y, (). Then by [7, (8.2.4)], h/?4(Y) = 0 except when
(p,q) €10,j] x[0,j] with j<mn, or (p,q) €[j—n,n] x[j—n,n] with j =n. If Y is
smooth, we have furthermore #74(Y) =0 for p+ ¢ < j by loc. cit. In particular,
H/(Y, Q) has weights in [, 2j] for j < n, and in [}, 2n] otherwise.

2.8. PROOF OF (0.5)

It is well-known that N"*! = 0 on the nearby cycle sheaf ¥ Qx[n]. See e.g. [26]. This
implies N" =0 on the vanishing cycles with unipotent monodromy ¢, Qx[n] by
(1.4.5). Now we take a Whitney stratification of X as in (0.5). (Here f~'(0) is assumed
to be a union of strata.) For each stratum S, in f~'(0), let X,, be a transversal space
which is a locally closed complex submanifold of X. Applying the above argument to
the restriction of f to X,, we get the assertion on the dimension of the support of
Im N/.

Remarks. (1) We can replace r in (0.5) by the maximal number of the local irre-
ducible components of an embedded resolution of £~1(0). In this case, we can prove

https://doi.org/10.1023/A:1025419000863 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025419000863

MONODROMY AT INFINITY AND THE WEIGHTS 69

(0.5), or rather the equivalent assertion after (0.5), by reducing to the normal
crossing case and then using the calculation of nearby cycle sheaf as in [33] or [29,
(3.6.10)]. (See also [15, 24].)

(i1) Proposition (0.5) implies the assertion that the size of the Jordan blocks for the
eigenvalue 1 of the local monodromy on the jth reduced cohomology of the Milnor
fiber is bounded by j (see [1, 27, 33]), because a perverse sheaf K on an analytic space
Y satisfies H'K = 0 for i < — dim Y. This can be verified by induction on dim Y using
the transversal space to each stratum with positive dimension of a Whitney stratifi-
cation of Y and also the long exact sequence associated to local cohomology.

As an application of Theorem (0.2), we have the following

PROPOSITION 2.9. Let t be the coordinate of S. With the assumption of (0.2), let i
be as there. Then there exists y € H{(X, 7) such that, for any algebraic differential
J-form @ on X whose cohomology class in the de Rham cohomology of the generic
fiber has weights < i, the period integral fy,  is a (univalent) rational function of t,
where vy, is a multivalued section of the local system consisting of the homology
groups of general fibers, and is obtained by the parallel translation of y using a local
C* trivialization of the restriction of f over U. This rational function is nonzero if ®
is generic.

Proof. Let W be the dual filtration on Hj(X,, Q) = H/(X,, Q)", i.e. W_H;
Xy, Q) = (H/(X,, Q)/Wi_1)" for ke 7. The assumption and (0.2) imply that
(Gr”, Hi(X,, Q)% # 0, because the local system {Gr!/ H/(X,, Q)} is selfdual by the
polarization, and is identified with {Gr"”, H,(X;, Q)}. Take a nonzero element in
(GrZ,H_ (X, 0))%, which is represented by 7 € W_yHi(X,, Q). Then, for an algebraic
differential j-form w on X such that the de Rham cohomology class of its restriction
to the generic fiber of f is contained in W}, the period integral f' e is univalent,

because the pairing factors through the pairing between GrZ,Hj(XS, Q) and
GrlfVH-/(XS, Q). It is a rational function by regularity, and is nonzero if w is generic.
So the assertion follows. O

Remarks. (i) Proposition (2.9) does not necessarily imply that vy is extended to a
univalent section of the local system, because only GrKV,-,y is extended in such a way.
Note that the G-invariant cycles coincide with the T,.-invariant cycles for homology
(i.e. for the dual representation) by Dimca and Némethi [11]. However, every
invariant cycle of Gr' H;(X,, () does not necessarily come from an invariant cycle of
Hj(X;, Q) in general (e.g. f= x2)?z% — x%)? + x2 + )7 + w?).

(ii) As another application, we have the the following consequence to the behavior
of the period integral at infinity in general. For an algebraic differential form w and
y € Hi(Xy, 7Z), consider the asymptotic expansion at infinity

()
[ w ~ Z ZC(oc, r*(log 1),

o< oy r=0
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where oy € Q, r(e) € N and C(x, r) € C. Then, by the theory of Nilson class func-
tions in [5], Theorem (0.1) implies

r) <m,—1(< min{m;—1,j—1}) ifaeZ. (2.9.1)

Note that we have only r(x) < j for a general o by the monodromy theorem.
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