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1. Introduction. Given an integer g 5* 2 and a class SF of finite groups let N(g, ?P)
denote the order of the largest group in 3> that a compact Riemann surface of genus g
admits as a group of automorphisms. For the classes of all finite groups, cyclic groups,
abelian groups, nilpotent groups, /7-groups (given p), soluble groups and finally for
metabelian groups, an upper bound for N(g, 5F) as well as infinite sequences for g for
which this bound is attained were found in [5, 6, 7, 8, 13], [4], [10], [15], [16], [1], [2]
respectively. This paper deals with that problem for the class of finite supersoluble groups
i.e. groups with an invariant series all of whose factors are cyclic. In addition, it goes
further by describing exactly those values of g for which the bound is attained. More
precisely we prove:

THEOREM A. A supersoluble group of automorphisms of a compact Riemann surface
of genus g 2= 3 has no more than 18(g — 1) elements. A surface of genus g = 2 can admit a
supersoluble group of automorphisms of order 24.

THEOREM B: A necessary and sufficient condition for the existence of a Riemann
surface of genus g s* 3 that admits a supersoluble group of automorphisms of order
I8(g — 1) is that 32 divides g — 1 and the only other prime divisors ofg — 1 are congruent to
1 mod 3.

2. Preliminaries. Groups of automorphisms of compact Riemann surfaces are
quotient groups of Fuchsian groups. The basic results on Fuchsian groups for application
to this problem are outlined in this section and can be found in [9]. A Fuchsian group is a
discrete subgroup F of orientation preserving isometries of the upper half plane D with
hyperbolic structure. If D/T is a compact surface then F has a presentation of the form

, . . . , * „ at, bu... , ag, bg-.xV (i = 1, . .. , r), f\ x, Yl afooT^T1) (2.1)
;=1 1=1 /

and is said to have a signature
(g;ml,...,mr) (2.2)

or to be a Fuchsian (g; m,, . . . , mr)-group. The integers m1, . . . ,mr are called periods of
F, and g the genus.

Every Fuchsian group F has an associated fundamental region whose hyperbolic area
depends only on the group. If F has signature (2.2) then

(2.3)

and in addition for a subgroup Fj of finite index the following Riemann-Hurwitz index
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formula holds:

M(r1)/M(r) = [r :r1]. (2.4)

It is well known that a compact Riemann surface of genus g 5= 2 can be represented
as D/T, where T is a Fuchsian group with signature (g; —) called a surface group of
genus g. Moreover given a surface so represented, a finite group G acts as a group of
automorphisms if and only if there exists a Fuchsian group A and a homomorphism 6
from A onto G having F as the kernel. Such a homomorphism is said to be a
surface-kernel homomorphism and a group G represented in such a form a surface-kernel
factor group while A is said to admit G as a surface-kernel factor group.

It is also well known that a homomorphism from A onto G is a surface-kernel
homomorphism if and only if it preserves the periods of A.

REMARK 2.1. We see that given a class of finite groups ^ the problem of finding the
bound for N(g, 3F) is equivalent to the problem of finding a Fuchsian group with minimal
area that admits a group in 3F as a surface-kernel factor group.

This general method is standard (see e.g. [9]) and has been used to investigate this
problem for the various classes of groups mentioned in the introduction.

3. On finite supersoluble groups generated by two elements of orders 2 and 3
respectively. We collect here some basic results on finite supersoluble groups which will
be used later. Throughout G' denotes the commutator subgroup of G.

LEMMA 3.1. (a) If G is a finite supersoluble group, then G' is nilpotent.
(b) If H is a nilpotent normal subgroup of a finite group G such that G/H' is

supersoluble, then G is also supersoluble.
(c) (Zappa) / / G is a finite supersoluble group then G has an invariant series

1 = GO<G1<. ..<Gn = G

with cyclic factors of prime order of decreasing magnitude.

Proof. For (a) and (c) see [12, 5.4.8 and 5.4.10]. Result (b) is deducible from [12,
9.4.5].

LEMMA 3.2. A group G of order 2 x 3 " generated by two elements of orders 2 and 3 is
supersoluble.

Proof. We will prove the lemma by induction on n. Note that the lemma is true for
n = 1 and 2 since the only one of the five groups of order 18—the direct product of the
cyclic group of order 3 and the dihedral group of order 6—can be generated in this way.
Now assume that the assertion holds for all groups in question of order smaller than the
order of G.

The Sylow 3-subgroup G3 of G is normal in G. Thus the generator of order 3 belongs
to G3 and if Go is the normal closure of that generator then Go c G3. Since however G/G^,
is either trivial or of order 2, Go = G3. Now by using Reidemeister-Schreier algorithm for
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determining a presentation for subgroups of given groups, it is easy to see that Go is
generated by two elements of order 3. If Go is abelian then n is either 1 or 2. Assume then
that Go is non-abelian. Then Go is non-trivial and hence G/G'Q is supersoluble by the
induction hypothesis. Therefore G is supersoluble by the previous lemma.

LEMMA 3.3. Let G be a supersoluble group of order 2 x 3 " generated by two elements
x and y of orders 2 and 3 respectively, whose product has order 18. Then Gab = Z6.

Proof. Let G be the group in question and let H be its normal subgroup of index 18.
First note that y does not belong to H, otherwise G = G/H would be the cyclic group of
order 2. Thus G is a group of order 18 generated by two elements of orders 2 and 3
respectively. Thus, as noted in the proof of the previous lemma, Gafcs=z6. So Gab = Z6

since Gab is its homomorphic image, whilst Gab is a homomorphic image of Tab = Z6,
where T is a Fuchsian group with signature (0:2, 3,18) (see table below).

r
(0; 2, 3, 7)
(0; 2, 3, 8)
(0; 2, 3, 9)
(0; 2, 3, 10)
(0;2, 3, 11)
(0; 2, 3, 12)
(0; 2, 3, 13)
(0; 2, 3, 14)
(0; 2, 3, 15)
(0; 2, 3, 16)
(0; 2, 3, 17)
(0; 2, 3, 18)
(0; 2, 4, 5)
(0; 2, 4, 6)
(0; 2, 4, 7)
(0; 2, 5, 5)
(0; 3, 3, 4)

TABLE

M(H

a/21
jr/12
n/9

2*715
5JT/33
a/6

7a/39
4»/21
a/5

5JT/24
HJT/51
2JC/9
a/10
a/6 Z

3a/14
a/5
a/6

4.1

r/r-
l

z2z3z21

z61

z2z3z21

z6z2
2 ez 2
z2z5

r
(0; 2, 3, 7)
(0; 3, 3, 4)
(0; 2, 2, 2, 3)
(0;3,3,5)
(0;2, 3, 11)
(i;2)
(0; 2, 3, 13)
(0; 3, 3, 7)
(0; 2, 2, 2, 5)
(0; 3, 3, 8)
(0; 2, 3, 17)
(i;3)
(0;5,5,2)
(0; 2, 2, 3, 3)
(0; 7, 7, 2)
(0; 2, 2, 2, 2, 2)
(0; 4, 4, 4)

4. Supersoluble surface-kernel factors of Fuchsian groups with small
area. Zomorrodian [15] has shown that a nilpotent automorphism group of a compact
Riemann surface of genus g s= 2 has no more than 16(g — 1) elements. In terms of
Fuchsian groups and its signatures (see Remark 2.1) this means that there is no Fuchsian
group with area strictly smaller than JI/A that admits a nilpotent surface-kernel factor. A
finite nilpotent group is supersoluble ([12, 5.4.6]). Thus in order to find a bound for the
order of a supersoluble group of automorphisms of a compact Riemann surface we have
to inspect the Fuchsian groups with area =s jr/4 and find the one with minimal area that
admits supersoluble surface-kernel factor groups.

By inspecting all Fuchsian groups with area =£ 2JI/9 we are going to show that the
ones that we are looking for are those with area 2n/9 and jt/6, although the last one
admits only one supersoluble surface-kernel factor group. To do that we need the
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above table of Fuchsian groups with area *&2JI/9 as well as the signatures of their
commutator subgroups.

The results given on p. 323 can, for example, be proved using a theorem of Singerman
[14] and the Riemann-Hurwitz formula.

LEMMA 4.1. Among the Fuchsian groups with area strictly smaller than 2JZ/9 the group
F with signature (0; 2, 4, 6) is the only one that admits a supersoluble surface-kernel factor
group. Moreover T admits only one such group (a semidirect product of the cyclic group of
order 3 and the dihedral group of order 8).

Proof. The groups with signatures (0; 2, 3, k), where k is relatively prime to 6 as
perfect groups do not admit such factors.

Suppose that F has a signature (0; 2, 3, 8). Assume, by way of contradiction, that G
admits a supersoluble surface-kernel factor group G and let 6 be the corresponding
surface-kernel homomorphism. G' is nilpotent by Lemma 3.1 and clearly is a surface-
kernel factor group of V, where d\r, is the corresponding homomorphism. The group F'
is generated by two elements xx, x2 subject to the relations x\ = x\ = (xlx2)

4 = 1. Since G'
is a surface-kernel factor group of F' the homomorphism 6 preserves the orders of xx, x2,
x1x2- On the other hand since a finite nilpotent group is a direct product of its Sylow
subgroups the order of 6(xxx2) is a power of 3. A contradiction.

The groups with signatures (0;2,3,9), (0;2,3,10) (0;2,3,14), (0; 2,3,15),
(0;2, 3,16), (0; 2, 4, 5), and (0;2, 4, 7) can similarly be ruled out. Thus it remains to
consider the groups (0; 2, 3,12), (0; 2, 3,18), (0; 2, 4, 6), (0; 2, 5, 5), (0; 3, 3,4).

Let us consider the group F with signature (0; 2, 3,12). Assume that F admits a
supersoluble surface-kernel factor group and let G be one such group with minimal order.
We will show first that the order of G is of the form 2*3'. Assume, by way of
contradiction, that p ¥=3 is the largest odd prime divisor of G. Then by the theorem of
Zappa, G possesses a normal subgroup P of order p and clearly F admits G/P as a
surface-kernel factor group, which contradicts the minimality of G. Thus |G|=2*3'.
Again by the theorem of Zappa, G possesses a normal subgroup H of order 3. Recall that
the group F is generated by two elements xlt x2 subject to the relations

x2
1=x3

2=(x1x2)
a = l.

If the image of x2 in G belongs to H then G/H is the cyclic group of order 2. Hence
\G\ = 6, a contradiction. If the image of (xxx2Y in G belongs to H then G/H is a group
generated by two elements of orders 2 and 3 whose product has order 4, i.e. is the
symmetric group of degree 4 which fails to be supersoluble, a contradiction once more.

Neither the image of x2 nor of (xiX2)
4 belongs to H. Consequently F admits a group

G/H as a surface-kernel factor, which again contradicts the minimality of G. Thus the
Fuchsian group with signature (0; 2, 3,12) does not admit supersoluble surface-kernel
factor groups.

The groups with signatures (0; 2, 5, 5) and (0; 3, 3, 4) can be ruled out similarly.
Finally suppose that F has the signature (0,2,4,6) and let a group G be its
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supersoluble surface-kernel factor group. Then G' is a nilpotent surface-kernel factor
group of (0; 2,2, 3, 3). Hence G' is generated by three elements a, b, c, that satisfy the
following relations:

a2 = b2 = c3 = {abcf = 1. (4.1)

But since a finite nilpotent group is a product of its Sylow subgroups this set of relations
implies that a = b. Hence G' is isomorphic to Z6 and a supersoluble surface-kernel factor
group of a (0; 2,4, 6)-group has order 24. One can readily check that the only such group
is a semi-direct product of the cyclic group of order 3 and the dihedral group of order 8.

In the next section we will show that the remaining Fuchsian group, the one with
signature (0; 2, 3,18), admits infinitely many supersoluble surface-kernel factors.

5. Proofs of the announced results. We start with the proof of Theorem A.
The second part follows directly from the proof of Lemma 4.1. So let G be a

supersoluble group of automorphisms of a compact Riemann surface of genus g s= 3. Then
G = A/F, where A is a Fuchsian group and T is the surface group of genus g.

By the Lemma 4.1 A is either a Fuchsian group with signature (0; 2,4,6) or
ju(A) 3= 2nl9.

If A were a Fuchsian group with signature (0; 2, 4, 6) then on the one hand \G\ = 24
by Lemma 4.1 while on the other |G|5=48 by the Riemann-Hurwitz index
formula (2.4), a contradiction. Therefore /u(A) 5=2;r/9 and consequently \G\ = ju(r)/|u(A)

Proof of Theorem B. First we will prove the necessity of the conditions in question.
Let G be a supersoluble group of automorphisms of a compact Riemann surface of genus
g5*3, of order 18(g - 1).

By Remark 2.1, G is a surface-kernel factor of the (0; 2, 3,18)-group since this is the
only Fuchsian group with the area 2JT/9. Thus G is a group generated by two elements x
and y of order 2 and 3 respectively whose product has order 18.

First we will show that g — 1 is odd. Assume, by way of contradiction, that 2 divides
g — 1. By the theorem of Zappa there is a normal subgroup H of G such that G = G/H is
a 2-group of order 5=4. On the other hand the generator y of G becomes the identity in
G, so G has order =s2, a contradiction.

Let p =£ 3 divide g — 1. By using Lemma 3.3, the fact that G' is a direct product of its
Sylow p-subgroups each of which is normal in G, and then the theorem of Zappa, we can
deduce that there is a supersoluble surface-kernel factor group G of (0; 2, 3,18), of order
2 X 3"p. From the proof of Lemma 3.2 it follows that G contains a subgroup Go of index 2
generated by two elements of order 3.

If p & 1 mod 3 then a Sylow 3-subgroup H of Go is normal and thus on the one hand
GJH is a group of order p whilst on the other it is generated by two elements of order 3,
a contradiction.

Now by using the theorem of Zappa once more we deduce that G has a factor group
G of order 2 x 3", which is also a supersoluble surface-kernel factor of (0; 2, 3,18). By
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Lemma 3.3 G contains G' as a subgroup of index 6. Moreover G' is generated by two
elements whose commutator has order 3. Thus G' is non abelian and in particular 33

divides \G'\. Thus 32 divides g - 1.
In the case where g — 1 is a power of 3, the sufficiency of the conditions given in

Theorem B follows from recent work of May [11] on M*-groups, which are maximal
groups of automorphisms of compact bordered Klein surfaces. Such groups are quotients
of the group of hyperbolic isometries generated by reflections in the sides of a triangle
with angles n/2, JZ/3, n/q [3]. The integer q is called an index of the group, and in [11] it
is shown that there exist supersoluble Af*-groups of index 18 and order 4.3"+2 for all
n ^ 2 . The algebraic genus g of the corresponding Klein surface is given by 12(g — 1) =
4.3"+2 and it has j(g — 1) boundary components. The subgroup of index two in the
M*-group which is the quotient of the (0; 2, 3,18)-group acts on a compact Riemann
surface of the same topological genus as that of the Klein surface [3] and so we obtain a
supersoluble group of automorphisms of a compact Riemann surface of genus 3" + 1.

Let D be an integer such that the prime divisors of D are all congruent to 1 mod 3,
and let H=(h) be a cyclic group of order D. Then the congruence a2- a + 1 = 0
(mod D) has a solution and <j>{h) = ha is an automorphism of H of order 6. From above,
given n 5= 2, there exists a supersoluble group G of automorphisms of order 18(g — 1) of a
compact Riemann surface of genus g with g = 3" + l. Thus G has generators xx,x2

satisfying x\ = x\ = (xxX2)
ls = 1. By the Lemma 3.3 G/G' = Z6 and so there is a

homomorphism T: G —* ((p) c Aut(Z/), with the images of the generators xu x2 of order
2 and 3 respectively being 03 and (f>2.

We form the semidirect product G of H by G with respect to the homomorphism T
so that the multiplication in G is defined by

(hufi)(h2, f2) = (M7X/i)(>*2)), fifi), h, eH,fieG.

Since H is normal in G and cyclic, G/H = G is supersoluble, it follows that G is
supersoluble.

The elements (1, jtj) and (h, x2) in G have orders 2 and 3 respectively and their
product has order 18. Also the commutator

Now [xi, x2] e G' which acts trivially on H and has order a power of 3. Thus a suitable
power of the commutator above is equal to (h, 1). It follows that (1, Xi), (h, x2) generate
G and exhibit G as a surface-kernel factor group of the (0; 2, 3,18)-group. This completes
the proof of Theorem B.
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