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Potential Theory of the Farthest-Point
Distance Function

Richard S. Laugesen and Igor E. Pritsker

Abstract. We study the farthest-point distance function, which measures the distance from z ∈ C to

the farthest point or points of a given compact set E in the plane.

The logarithm of this distance is subharmonic as a function of z, and equals the logarithmic poten-

tial of a unique probability measure with unbounded support. This measure σE has many interesting

properties that reflect the topology and geometry of the compact set E. We prove σE(E) ≤ 1
2

for

polygons inscribed in a circle, with equality if and only if E is a regular n-gon for some odd n. Also we

show σE(E) =
1
2

for smooth convex sets of constant width. We conjecture σE(E) ≤ 1
2

for all E.

1 Introduction

Throughout the paper, E is a compact set in the complex plane that contains at least
two points. Write D(z,R) for the closed disk centered at z with radius R.

The function that measures the distance from a point z ∈ C to the farthest point
or points of E is

dE(z) := max
t∈E

|z − t| > 0, z ∈ C.

This distance function is Lipschitz continuous with constant 1, because if z1, z2 ∈ C

and t ∈ E then

|z1 − t| ≤ |z1 − z2| + |z2 − t|

≤ |z1 − z2| + dE(z2),

and so dE(z1) ≤ |z1 − z2| + dE(z2) by maximizing over t . Now interchange z1 and z2,
also.

Next, log dE(z) = maxt∈E log |z − t| is subharmonic since it is the maximum of
the subharmonic functions z 7→ log |z − t|. In this paper we will study the interplay

between the analytic properties of the distance function, particularly the potential
theory of log dE, and the topological and geometric properties of the set E.

The Riesz decomposition theorem (cf. [7, p. 76]) applied to log dE gives that

log dE(z) =

∫

C

log |z − t| dσr(t) + hr(z), |z| < r,
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where hr is a harmonic function and σr is a Borel measure supported in |z| < r, for
any r > 0. By uniqueness, if r < s then σr = σs in |z| < r. Letting r → ∞, then, we

obtain the Riesz measure σE on C corresponding to the subharmonic function log dE.
Moreover, one can show hr vanishes in the limit, so that the Riesz decomposition
takes the following form.

Theorem 1.1 log dE(z) is a subharmonic function in C and

(1.1) log dE(z) =

∫

C

log |z − t| dσE(t), z ∈ C,

where the integral converges absolutely and σE is a unique positive unit Borel measure

in C with unbounded support, so that

σE(C) = 1 and ∞ ∈ supp(σE).

Furthermore, if dE ∈ C2(U ) for some domain U , then σE can be calculated in U by

(1.2) dσE(z) =
1

2π
∆

(

log dE(x + i y)
)

dx dy, z = x + i y ∈ U .

And if E = V for some bounded domain V , then supp(σE) ∩V is nonempty.

Except for the uniqueness of σE (which we prove in Section 3), the theorem was
previously obtained by the second author [6, Lemma 5.1], in connection with certain
inequalities for norms of products of polynomials. We also give an alternative proof

of the Riesz representation (1.1), in Section 3 of this paper. Note that Theorem 1.1
generalizes a result of D. W. Boyd [1, Lemma 2] in which E consists of a finite number
of points. Incidentally, (1.2) follows of course from the Riesz decomposition for
potentials (see [7, p. 76]).

We exclude the case of a singleton set in this paper; in fact several of our results
and proofs break down when E = {a} is a singleton, because d{a} vanishes at the
point a. But in any case, the representation of log d{a} is trivial:

log d{a}(z) = log |z − a| =

∫

log |z − t| dδa

where δa is a unit point mass at a. That is, σ{a} = δa.

The most elementary examples for Theorem 1.1 are disks and segments.

Example 1.2 Consider the closed disk E = D(0,R), where R > 0. It is easy to see

that
dD(0,R)(z) = |z| + R, z ∈ C,

and so dD(0,R) ∈ C2(C \ {0}). Therefore we immediately obtain that

(1.3)

dσD(0,R)(z) =
1

2π
∆(log dD(0,R))(z) dx dy =

R

2π|z|(R + |z|)2
dx dy, z = x + i y ∈ C.
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(We need not worry what happens at the origin, since σD(0,R)({0}) = 1 −
σD(0,R)(C \ {0}) = 0.)

Observe that σE is supported on the whole plane, in this example. We show in
Proposition 2.1 (b) that this is always the case when ∂E is smooth.

Example 1.3 Consider the segment E = [−a, a], where a > 0. Then

u(z) := log d[−a,a](z) = max(log |z − a|, log |z + a|), z ∈ C.

Note that u(z) is harmonic in <z > 0 and <z < 0, so that σ[−a,a] is supported on the
imaginary axis <z = 0. Using Theorem II.1.5 of [9, p. 92], we obtain that

(1.4) dσ[−a,a](i y) =
1

2π

(

∂u

∂n−
(i y) +

∂u

∂n+
(i y)

)

dy =
a dy

π(a2 + y2)
, y ∈ R,

where n+ and n− are unit normals to the y-axis, in the positive and negative direc-
tions.

Observe that σE is supported precisely on the set where the “farthest point”

changes from −a to +a. We will generalize this observation in Proposition 2.1 (a).

In Section 2, we study the fundamental properties of the measure σE, especially its
support and concentration properties, and its moments.

We also study the scale-invariant quantity 1 − σE(E), which appears to act

(roughly) as a measure of the “width-variation” of E. For instance, we see from Ex-
amples 1.2 and 1.3 that σE(E) equals 1

2
for the disk and 0 for the line segment. We

will show in Theorem 2.5 that σE(E) =
1
2

for every regular n-gon with n odd, and
further in Theorem 2.6 that σE(E) =

1
2

for every smooth set of constant width. We

conjecture σE(E) ≤ 1
2

for every set E, and prove this for polygons inscribed in a circle,
in Theorem 2.5.

2 Properties of the Distance function and Its Representing Measure

The results in this section are all proved in Section 3.

The first proposition deals with the support of σE: when is an open set not in the
support, and when does the support equal the whole plane?

Proposition 2.1

(a) Let G be a domain in the plane. Then log dE is harmonic in G, that is

(2.1) supp(σE) ∩ G = ∅,

if and only if there exists a point ζ ∈ ∂E \ G such that

dE(z) = |z − ζ| ∀z ∈ G.
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(b) If ∂E is C1-smooth then supp(σE) = C.

The next result shows how the mass of σE is distributed in the plane with respect

to small and large disks. The diameter of E occurs in our estimates.

Theorem 2.2 For each z ∈ C,

σE

(

D(z, r)
)

≤
r

dE(z) − r
for all sufficiently small r > 0,(2.2)

1 −
3diam(E)

r + diam(E)
< σE

(

D(z, r)
)

≤ 1 for all sufficiently large r > 0.(2.3)

Hence σE

(

D(z, r)
)

≤ O(r) as r → 0, and 1 − O( 1
r
) ≤ σE

(

D(z, r)
)

≤ 1 as r → ∞.

Remarks 1. One cannot hope for a lower bound on σE

(

D(z, r)
)

as r → 0, because
σ might be identically zero on D(z, r), as happens say in Example 1.3 where E is a line

segment.
2. Perhaps one could prove an upper bound of the form σE

(

D(z, r)
)

≤ 1−O( 1
r
)

as r → ∞, but we have not done this.
3. The estimates in Theorem 2.2 are sharp in order of magnitude, as one finds

easily by considering the disk as in Example 1.2.
Now that we know the distribution of mass, we show certain moments of σE are

finite.

Corollary 2.3 For all z ∈ C and −1 < p < 1,

∫

C

|z − t|p dσE(t) <∞.

The range p ∈ (−1, 1) is sharp, as can be seen from the case E = D(0,R) in
Example 1.2.

We now ask how much of the σE-measure can be captured within E itself. Since

σE(C) = 1 and we know that σE concentrates, roughly speaking, at points where the
“farthest point” changes, it seems plausible that the more the width of E varies, the
less will σE(E) be. Indeed for the closed disk E = D(0,R) one finds σE(E) =

1
2
, using

Example 1.2, whereas for the line segment E = [−a, a] we have σE(E) = 0. Further,

by integrating (1.2) over the interior of E and applying Green’s theorem, one arrives
formally at the expression

σE(E) =
1

2π

∫

∂E

1

dE(z)

∂

∂n
dE(z) |dz|,

which plainly measures in some fashion the width variation of E.
After investigation of numerous examples, one arrives at the following:

Conjecture 2.4 σE(E) ≤ 1
2
.
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We can prove the conjecture in the class of polygons inscribed in a circle. (We
regard these polygons as consisting of their interior as well as the boundary.)

Theorem 2.5 If E is a polygon that can be inscribed in a circle then σE(E) ≤ 1
2
, with

equality if and only if E is a regular n-gon for some odd n.

The disks and the regular n-gons with n odd are not the only sets with σE(E) =
1
2
:

Theorem 2.6 If E is a C2-smooth convex body of constant width, then σE(E) =
1
2
.

We suspect that Theorem 2.6 could be extended to the non-smooth case by some
approximation argument, though we have not yet succeeded in doing so.

Recall that there are many convex bodies of constant width (see [10, §7.6] and
[2]). Perhaps the most famous one, other than the ball, is the Reuleaux triangle.

Even with the addition of the sets of constant width, we still have not identified
all possible extremal sets for our conjecture. For if we continuously expand the equi-
lateral triangle E0 (with sidelength 1) into the corresponding Reuleaux triangle E1,
by deforming with arcs of circles whose radii vary from ∞ down to 1, then we can

show (using tools from the proofs of Theorems 2.5 and 2.6) that dEλ = dE0
on E1 and

hence σEλ(Eλ) =
1
2
, for all λ ∈ [0, 1].

Perhaps the conjecture that σE(E) ≤ 1
2

might be proved as follows. It is known

that E can be “completed” to a compact convex set F, with F having constant width
equal to the diameter of E (see [2, p. 61]). If one could show σE(E) ≤ σF(F), then
Theorem 2.6 would finish the proof (at least when F is smoothly bounded). Thus the
question can be phrased: how does the completion procedure affect the σ-measure?

Our final proposition connects the distance function to convex geometry. Let
conv(E) be the convex hull of E. Notice that conv(E) is compact because E is compact
[10, p. 57]. And write extr(E) for the set of extreme points of conv(E), so that extr(E)
is compact because conv(E) is compact, convex and two-dimensional [10, p. 90].

Proposition 2.7 The following distance functions coincide:

dE = dconv(E) = dextr(E).

Furthermore, conv(E) is determined by dE, by means of the following reconstruction

formula:

conv(E) =

⋂

z∈C

D
(

z, dE(z)
)

.

Thus two compact sets have the same distance function if and only if their convex hulls

agree.

The proposition implies σE = σconv(E), since dE determines σE uniquely. Thus
one might as well assume E is convex, when trying to prove σE(E) ≤ 1

2
, because

E ⊂ conv(E) and so

σE(E) ≤ σE

(

conv(E)
)

= σconv(E)

(

conv(E)
)

.
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Higher Dimensions The analogue of log dE(z) in dimension n ≥ 3 is −1/dE(z)n−2.
One can again develop the potential theory of this function, using Riesz potentials.

In this setting, Conjecture 2.4 claims that:

σE(E) ≤ 21−n

with equality holding if and only if E is a closed ball. Our results on the measure σE

in higher dimensions will be published separately.

3 Proofs

Proof of Theorem 1.1 We will use Theorem 2.2, which does not depend on Theo-

rem 1.1, in this alternative proof of (1.1).
We first show that the integral in (1.1) is absolutely convergent. The absolute

convergence in any open disk D0(ζ, 1) of radius 1 actually follows just by taking
z = ζ in the Riesz decomposition formula for log dE(z) in D0(ζ, 1), and using that

log |ζ − t| < 0 when t ∈ D0(ζ, 1). The absolute convergence in C \ D0(ζ, 1) (near
infinity) is less obvious, but can be deduced from the following estimate, which uses
(2.3) and integration by parts:

∫

|z−t|>1

log |z − t| dσE(t)

= −

∫ ∞

1

log r

(

d

dr
σE

(

C \ D(z, r)
)

)

dr

= − log rσE

(

C \ D(z, r)
)

∣

∣

∣

∞

1
+

∫ ∞

1

r−1σE

(

C \ D(z, r)
)

dr

=

∫ ∞

1

r−1σE

(

C \ D(z, r)
)

dr

<∞.

This estimate also shows that
∫

C
log |z − t| dσE(t) defines a subharmonic function in

C, by part (b) of the Theorem in [3, §1.IV.9].

Observe that σE(C) = 1 by (2.3). Hence

lim inf
r→∞

(

σE

(

D(0, r)
)

log r −
1

2π

∫ 2π

0

log dE(reiθ) dθ

)

≤ lim inf
r→∞

1

2π

∫ 2π

0

log
r

dE(reiθ)
dθ ≤ lim inf

r→∞

1

2π

∫ 2π

0

log
r

r − dE(0)
dθ ≤ 0.

It follows that the condition (9.3) of part (d) of the Theorem in [3, §1.IV.9] is satisfied,
and we have the Riesz decomposition

log dE(z) =

∫

C

log |z − t| dσE(t) − h(z), z ∈ C,
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where h(z) is the harmonic function in C given by

h(z) = lim
r→∞

(

σE(C) log r −
1

2π

∫ 2π

0

log dE(z + reiθ) dθ

)

= lim
r→∞

1

2π

∫ 2π

0

log
r

dE(z + reiθ)
dθ = lim

r→∞

1

2π

∫ 2π

0

log
r

r + O(1)
dθ = 0.

Thus (1.1) is proved.

Suppose there exist two positive finite Borel measures σE and νE such that

∫

C

log |z − t| dσE(t) = log dE(z) =

∫

C

log |z − t| dνE(t), z ∈ C,

with the integrals converging absolutely. Then we have for any open disk D that

∫

D

log |z − t| dσE(t) =

∫

D

log |z − t| dνE(t) + u(z), z ∈ D,

where u(z) is harmonic in D. Taking the Laplacian of both sides, or more precisely
applying the unicity theorem for potentials [9, Theorem II.2.1], now implies that
σE = νE and u ≡ 0 on D. Since D is arbitrary, we obtain that σE = νE.

Proof of Proposition 2.1 (a) Fix t ∈ G and choose ζ ∈ ∂E so that |t − ζ| = dE(t).
Observe that the function

u(z) := log |z − ζ| − log dE(z)

is subharmonic in G, and u ≤ 0 in G because |z − ζ| ≤ dE(z) for all z ∈ G. But
u(t) = 0 and so u ≡ 0 in G by the strong maximum principle (cf. [7, p. 29]). That is,

dE(z) = |z − ζ| for all z ∈ G. Notice that ζ /∈ G, since dE(ζ) > 0.

(b) Assume supp(σE) 6= C, so that supp(σE) ∩ G = ∅ for some domain G. Then
by part (a) there exists ζ ∈ ∂E \ G such that dE(z) = |z − ζ| for all z ∈ G. But the
segment [z, ζ] must be orthogonal to ∂E at ζ , which is not possible for all z ∈ G.
Contradiction.

Proof of Theorem 2.2 (a) Fix z ∈ C and denote the mean values of log dE on circles
around z by

(3.1) M(r) :=
1

2π

∫ 2π

0

log dE(z + reiθ) dθ, r > 0.

It is known (cf. [9, p. 85]) that the σE-measure of a disk can be calculated by

(3.2) σE

(

D(z, r)
)

= r lim
h→0+

M(r + h) − M(r)

h
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(formally this follows from integrating (1.2) and using Green’s formula). Now,

(3.3) M(r + h) − M(r) =
1

2π

∫ 2π

0

log
dE

(

z + (r + h)eiθ
)

dE(z + reiθ)
dθ,

and by using the Lipschitz continuity of the distance function, we obtain that

∣

∣

∣

∣

∣

dE

(

z + (r + h)eiθ
)

dE(z + reiθ)
− 1

∣

∣

∣

∣

∣

≤
h

dE(z + reiθ)
.

Taylor’s formula and the above estimate imply for small h > 0 that

(3.4) log
dE

(

z + (r + h)eiθ
)

dE(z + reiθ)
≤

h

dE(z + reiθ)
+ O

(

h

dE(z + reiθ)

)2

.

If 0 < r < dE(z) then dE(z + reiθ) ≥ dE(z) − r > 0, and therefore

lim
h→0+

M(r + h) − M(r)

h
≤

1

dE(z) − r

by (3.3) and (3.4). Equation (2.2) now follows from (3.2).

On the other hand, if z ∈ E then dE(z + reiθ) ≥ r, and so

lim
h→0+

M(r + h) − M(r)

h
≤

1

r

by the same argument. This gives σE

(

D(z, r)
)

≤ 1 by (3.2), for all r, so that σE(C) ≤
1. The upper bound of (2.3) follows.

(b) Fix z ∈ E and consider r > diam(E). Then there exists 0 < α(r) < π/2 such
that for all θ ∈ [0, 2π], the set E is visible from z + reiθ within a sector of aperture

2α(r) and direction −eiθ, meaning that

(3.5) | arg(z + reiθ − ζ) − θ| ≤ α(r) ∀ζ ∈ E.

We claim that α(r) can be chosen to satisfy

(3.6) sinα(r) ≤
diam(E)

r
.

Indeed, consider a triangle formed by the points z, z + reiθ, and an arbitrary ζ ∈ E.

Writing α(r, ζ) := | arg(z + reiθ − ζ) − θ| for the angle opposite the side [z, ζ] and β
for the angle opposite the side [z + reiθ, z], we obtain from the Law of Sines that

sinα(r, ζ) =
|z − ζ|

|z + reiθ − z|
sinβ ≤

diam(E)

r
.
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Furthermore, the triangle has sidelengths A = |z − ζ|, B = r, C = |z + reiθ − ζ| and
so the Law of Cosines gives

2BC cosα(r, ζ) = B2 + C2 − A2
= 2r

(

r + <[(z − ζ)e−iθ]
)

≥ 2r
(

r − diam(E)
)

> 0,

so that α(r, ζ) < π/2. Therefore we can satisfy (3.6) simply by taking α(r) =

maxζ∈E α(r, ζ) < π/2.

Given θ ∈ [0, 2π], assume ζ ∈ E is a point such that dE(z + reiθ) = |z + reiθ − ζ|.
Then

dE

(

z + (r + h)eiθ
)

− dE(z + reiθ) ≥ |z + (r + h)eiθ − ζ| − |z + reiθ − ζ|

=
2h<[(z + reiθ − ζ)e−iθ] + h2

|z + (r + h)eiθ − ζ| + |z + reiθ − ζ|

≥ h cosα(r) + O(h2) as h → 0+

(3.7)

by (3.5), where the error term O(h2) is uniform in θ. Hence by Taylor’s formula
again,

log
dE

(

z + (r + h)eiθ
)

dE(z + reiθ)
≥

h cosα(r)

dE(z + reiθ)
+ O(h2) ≥

h cosα(r)

r + diam(E)
+ O(h2).

Hence using (3.2) and (3.3), we have

σE

(

D(z, r)
)

≥
r cosα(r)

r + diam(E)

> 1 −
r sinα(r) + diam(E)

r + diam(E)

≥ 1 −
2diam(E)

r + diam(E)
,

where we also employed (3.6).

Now take z0 ∈ C. Then for all r ≥ 3|z − z0| we have D(z, 2r/3) ⊂ D(z0, r), and so

σE

(

D(z0, r)
)

≥ σE

(

D(z, 2r/3)
)

≥ 1 −
2diam(E)

2r/3 + diam(E)
> 1 −

3diam(E)

r + diam(E)

for all sufficiently large r, by above. This completes the proof.

Proof of Corollary 2.3 When p = 0, the moment simply equals the total mass,
σE(C) = 1.
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Suppose next that −1 < p < 0. Using integration by parts and (2.2), we obtain
that

∫

|z − t|p dσE(t) =

∫ ∞

0

rp

(

d

dr
σE

(

D(z, r)
)

)

dr

= rpσE

(

D(z, r)
)

∣

∣

∣

∞

0
− p

∫ ∞

0

rp−1σE

(

D(z, r)
)

dr

= |p|

∫ ∞

0

rp−1σE

(

D(z, r)
)

dr

<∞.

(3.8)

A similar idea works for 0 < p < 1:

∫

|z − t|p dσE(t) = −

∫ ∞

0

rp

(

d

dr
σE

(

C \ D(z, r)
)

)

dr

= −rpσE

(

C \ D(z, r)
)

∣

∣

∣

∞

0
+ p

∫ ∞

0

rp−1σE

(

C \ D(z, r)
)

dr

= p

∫ ∞

0

rp−1σE

(

C \ D(z, r)
)

dr

<∞,

(3.9)

where we have used that

σE

(

C \ D(z, r)
)

= 1 − σE

(

D(z, r)
)

= O

(

1

r

)

as r → ∞,

by (2.3).

Note Formulas (3.8) and (3.9) can be obtained without integrating by parts; they
represent an Lp-norm in terms of a distribution function (cf. [8, Theorem 8.16]).

Proof of Theorem 2.5 Obviously σE(E) is unchanged under translations and rota-
tions of E, since these rigid motions leave distances invariant. But σE(E) is also un-
changed under dilations, for if a > 0 then Theorem 1.1 gives that for all z ∈ C,

∫

log |az − v| dσaE(v) = log daE(az) = log
(

adE(z)
)

= log a + log dE(z)

= log a +

∫

log |z − t| dσE(t)

=

∫

log |az − at| dσE(t),
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so that dσaE(at) = dσE(t), by uniqueness of σaE. In particular, σaE(aE) = σE(E),
which is the desired dilation invariance.

Therefore, it suffices to consider a polygon P inscribed into the unit circle
{z : |z| = 1}. Let the vertices of P be ei(ψk+π) for k = 1, . . . , n, with ψ1 < ψ2 <
· · · < ψn < ψ1 + 2π. For later use, we establish the convention that ψn+1 := ψ1 + 2π
and ψ0 := ψn − 2π, and so on.

In Remark 2 of [1], Boyd found that σP is supported on the rays Lk := {reiφk :
r ≥ 0} where

(3.10) φk =
ψk + ψk−1

2

for k = 1, . . . , n. Note that

(3.11) ψ0 < φ1 < ψ1 < φ2 < ψ2 < · · · < φn < ψn = ψ0 + 2π.

The density on the ray Lk is given by

(3.12)
dσP

dr
(reiφk ) =

1

π

sin θk

r2 + 2r cos θk + 1
, r ≥ 0,

where θk = (ψk − ψk−1)/2. (Note that there is a misprint in the above formula in
[1]: the sign before 2r cos θk must be “+”.) It is clear from (3.12) that the density of
σP is symmetric with respect to the reflection r 7→ 1

r
in the unit circle, on each ray Lk.

Thus

σP({reiφk : 0 ≤ r ≤ 1}) = σP({reiφk : r ≥ 1}).

Since the total mass of σP is 1, we deduce that

(3.13) σP(P) ≤ σP

(

D(0, 1)
)

=
1

2
,

as we wanted to prove.
For the equality case, suppose P is a regular n-gon with n odd. Then the intersec-

tion of Lk with P equals its intersection with the unit disk (because the perpendicular

bisector of any side passes through the “opposite vertex” of the n-gon, as in Figure 1
on the next page).

Hence

σP(P) = σP

(

D(0, 1)
)

=
1

2
when n is odd.

On the other hand, if n is even then the intersection of Lk with P is strictly smaller

than its intersection with the unit disk (because the perpendicular bisector of any
side passes through the “opposite side” of the n-gon). Hence

σP(P) < σP

(

D(0, 1)
)

=
1

2
when n is even.

To complete the proof of the equality case, we suppose σP(P) =
1
2

and prove P is
a regular n-gon. Necessarily n is then odd, by above.

https://doi.org/10.4153/CMB-2003-039-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-039-0


384 Richard S. Laugesen and Igor E. Pritsker

L1

L2 L3

Figure 1: An equilateral triangle P, with σP supported on the rays L1, L2, L3.

Observe that equality must hold at (3.13) above, since σP(P) =
1
2
, and so for each

k the entire segment [0, eiφk ] lies in P. Thus the points eiφk are precisely the n vertices
of P. Therefore the role of the ψk can also be played by the numbers ψ̃k = φk − π,
with the role of the φk being played by

φ̃k =
ψ̃k + ψ̃k−1

2
=
φk + φk−1

2
− π.

By the same reasoning as above, each point eiφ̃k = −ei(φk+φk−1)/2 is a vertex of P, and

that vertex must be ei(ψk−1+π), in view of (3.11). Thus

ψk−1 =
φk + φk−1

2

for k = 1, . . . , n. By this and (3.10), we have the averaging formulas

φk =
ψk + ψk−1

2
, ψk =

φk+1 + φk

2
, φk+1 =

ψk+1 + ψk

2
,

for k = 1, . . . , n. By solving the first and third equations for ψk−1 and ψk+1 respec-
tively, and using the second equation for ψk as it stands, we can check that

ψk+1 − ψk = ψk − ψk−1.

That is, the vertices are equally spaced and so P is a regular n-gon.

Proof of Theorem 2.6 We first show that

(3.14) dE(t) = dist(t, E) + diam(E), t ∈ Ec ∪ ∂E,
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provided ∂E is C1-smooth. Indeed, writing α ∈ E for the nearest point to t , and
ω ∈ E for the farthest point, we have

dE(t) = |t − ω| ≤ |t − α| + |α− ω| ≤ dist(t, E) + diam(E).

To get the reverse inequality, let ζ ∈ ∂E be a point such that the tangent lines to ∂E

at ζ and α are parallel, with the distance between these tangent lines being the width
of E in the normal direction. Then

width (E) ≤ |α− ζ| ≤ diam(E).

But the width equals diam(E), since E has constant width, and so equality must hold
throughout. Therefore the segment [α, ζ] is actually normal to the tangent lines.
Since the segment [t, α] is also normal, we deduce that t, α, ζ are collinear and so

dE(t) ≥ |t − ζ| = |t − α| + |α− ζ| = dist(t, E) + diam(E),

which proves (3.14).
Next we prove the theorem assuming ∂E is C2-smooth. The smoothness of the

boundary implies that t 7→ dist(t, E) is C2-smooth on Ec ∪∂E (see [4], [5, pp. 12 and
205] and the references therein). By (3.14), dE(t) inherits the same smoothness. Fix

z ∈ E and write by Green’s theorem on Ec,

σE(Ec) = lim
R→∞

σE(Ec ∩ {|t − z| < R})

= lim
R→∞

∫

Ec∩{|t−z|<R}

1

2π
∆

(

log dE(t)
)

dxdy, t = x + i y,

= lim
R→∞

1

2π

∫

{|t−z|=R}

1

dE(t)

∂

∂n
dE(t) |dt| −

1

2π

∫

∂E

1

dE(t)

∂

∂n
dE(t) |dt|

= lim
R→∞

1

2π

∫

{|t−z|=R}

1

dE(t)

∂

∂n
dE(t) |dt| −

1

2π

|∂E|

diam(E)
,

where we have used (3.14) and that the outward normal derivative of dist(t, E) equals
1, on ∂E. Now clearly,

(3.15)
1

R + diam(E)
≤

1

dE(t)
≤

1

R
on |t − z| = R.

And the Lipschitz continuity of dE gives that

dE

(

z + (R + h)eiθ
)

− dE(z + Reiθ) ≤ h,

while from (3.6) and (3.7) we obtain that

dE

(

z + (R + h)eiθ
)

− dE(z + Reiθ) ≥ h

(

1 −
diam(E)

R

)

+ O(h2), as h → 0+.
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Hence

1 −
diam(E)

R
≤

∂

∂n
dE(t) ≤ 1 on |t − z| = R,

and so

lim
R→∞

1

2π

∫

{|t−z|=R}

1

dE(t)

∂

∂n
dE(t) |dt| = 1,

using (3.15). It now follows that

σE(Ec) = 1 −
1

2π

|∂E|

diam(E)
.

Finally |∂E| = πdiam(E) according to Barbier’s theorem [10, Theorem 7.6.7], and
so σE(Ec) =

1
2
, or σE(E) =

1
2
.

Proof of Proposition 2.7 Observe that dE ≤ dconv(E) because E ⊂ conv(E). For the
reverse inequality, let ζ1, . . . , ζm ∈ E and t1, . . . , tm ∈ [0, 1] with

∑m
j=1 t j = 1. Then

∣

∣

∣
z −

m
∑

j=1

t jζ j

∣

∣

∣
≤

m
∑

j=1

t j |z − ζ j | ≤ dE(z), ∀z ∈ C,

so that dconv(E) ≤ dE. Hence dE = dconv(E).

But conv(E) equals the convex hull of its extreme points by the Krein-Milman the-

orem [10, p. 86] (since conv(E) is compact and convex), and so dconv(E) =

dconv(extr(E)) = dextr(E) as desired.

We must still prove F =
⋂

z∈C
D

(

z, dF(z)
)

where F = conv(E); notice dE = dF

by above. Now, clearly F ⊂ D
(

z, dF(z)
)

for all z ∈ C. Suppose though that there

exists z0 ∈
⋂

z∈C
D

(

z, dF(z)
)

with z0 /∈ F. Since F is convex, we can find a line `
separating z0 from F. Consider a line ` ′ through z0 that is perpendicular to `. One
can immediately see that if z ∈ ` ′ is near infinity and is in the half-plane of C \ `
containing F, then F ⊂ D

(

z, dist(z, `)
)

. It follows that dF(z) < dist(z, `) < |z − z0|.

But z0 ∈ D
(

z, dF(z)
)

and so |z − z0| ≤ dF(z), yielding a contradiction.
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