THE SCHUR DERIVATIVE OF A POLYNOMIAL
by L. CARLITZ
(Received 31st January, 1953)
1. Introduction. For a given ’sequence {a,,} and p=£0, Schur (2) defined
Oy = A0y, = (A1 — ) [P™,

al) =A"a, =A@l=Y), a@=m. ....cocorriiiiiniiiiinninn, (1.1)

In particular if p is a prime, a an integer and a,, =a®™, then by Fermat’s theorem
ay, = (@™ @™ fprit

is integral. Schur proved that if p 1 @, then all the derivatives

A2a?™,  A3q2™, ..., A7-lg¥"
are integral. Zorn (3) using p-adic methods proved Schur’s results and also found the residue

of X,, (mod p™), where X,, = (x?™ —~1)/p™+! and xz =1 (mod ). The writer (1) proved Zorn’s
congruences by elementary methods as well ag certain additional results of a similar sort.
In the present note we consider polynomials

F@)=F(®y, ooy X)) e (1-2)
in an arbitrary number of indeterminates ; the coefficients of f(x) are rational integers, or, a
little more generally, rational numbers that are integral (mod p), where p is a fixed prime.
Let F denote the set of polynomials (1.2). Then as is familiar

FP@) = @P) +0g(T), i, (1.3)
where g(x) e F. It follows from (1.3) that
TP @) S FP™(@P) + pHL LD (E)y eenrieneinn rrererarer———— .(1.4)
where f; () ¢ F. In analogy with (1.1) we define
AfP™ (@) =f7 (@) = (FF" (@) =7 @) [P e (1.5)
Higher derivatives are defined by means of o ,
Ara1 ™ () = £V (@) = (i (@) 77 (@) —f) @) P @) [, e (1.6)

for r>1. If f(x)=a, then it is easily verified that A7f*"(x) reduces to a?™*' ... 4 pm+r-1
times the r-th Schur derivative as defined by (1.1).

With these definitions we show that A”f*™(x) has integral coefficients (mod p) for 1<r
<p-1;if g(x) in (1.3) is divisible by p then 47f*™(x) ¢ F for all r=1, m>0. More precisely
we have the congruence '

,
T 1 (p'-1)
m 7 \r epr— 1=
A'rfp (x)Eﬂ(fm) »er—r) (le) —(p _1)7
valid for 1<<r<p, where e, is defined in (3.1) ; if r<p -1, (1.7) holds (mod p™+r).

Finally we consider a generalization of (1.5) and (1.6) valid for any commutative ring
that contains the rational integers. The results stated above carry over with very slight
change.

(MO P™) o, 1.7)
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160 L. CARLITZ
Remark. One might think it natural to define 47f*™ (x) by means of

APf™ () = (FO 3 (@) = FD @) D™ 5 e (1.8)

however, (1.8) does not lead to a generahzatlon of Schur’s results.
2. Some Lemmas. We shall require the following lemmas.
Lremma 1.

1_7 (@ - 5 [ ] PREDgrs e, 2.1)

where l::] = (p (Tp__l)l) fz();—:ill) - [r is:l ’ [(7)] =1

This is well known,
Lemma 2.  In the notation of (1.5) and (1.8), we have

7 4 r - -
Pmﬂr('fﬂ)ﬂn) (x) =8§0( -1y [s‘l PO f e Fmtsfmas oo Fmbrots woveeennn (2.2)

where

Fn=fT" (@), Fn =P (). ©eeveeeoreeiireeeee s (2.3)

Lemma 2 is easily proved by induction making use of familiar properties of [Z-J .

The following lemma, is a slight extension of Lemma 2 of (1).
Lemma 3. Put

W, = % é Ls] g (P pHe,
where g;(u) isa polynomial of degree ¢ with integral coeﬁiczente. Then
0 ' (i)
(@71_71 (»"-p°) (t=r)
W, i=<1l =0 ) ererrerrerieieeaa 2.4)
15¢N“UUH (i>7)

where ay is the highest coefficient of g;(u), and U, ; is integral.
3. Formulas for 47f*™(x). Using the abbreviated notation (2.3), we rewrite (1.4) as
fm+1 =fm +./pm+lf1,n'

If we put =(P—1}/(P—=1) ceriiii e, (3.1)
it is seen that

Frir +o- FmssFmss - Frvrra = (B + 071 f1) 58 () 2oer—s
- 2 (%) s,
=0

since e, + p%e,_s=e,. Thus substitﬁting in the rlght member of (2.2), we obtain

prm+&r(r+1) f}y'b) () N

-z (_1)r—s[ ]p&(r—n(r-s—l) 2( > PEED(fYi(fryer—s
=0 i=0\ ¥

— Zpt(m+1)(j‘ )z ef—z 2 ( _ l)r s|: ](i‘?) p}(r—s)(r—s-—l)

—szWffeH2<nLK%ﬁww>

8=0 ?
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where, for e,<%, <?> is taken to be zero. We now apply Lemma 3 to the inner sum, and
(3.2) becomes

. Hl(p 1)
2 @) = (Far Folorr o
b2 A e (£ T, e (3.3)
i=pi10]

We can generalize (3.3) in the following way. For arbitrary A>1, consider 47f*#™ (z).
Cléarly Lemma 2 gives

T T - -
prHrlr) Ar fre™ () = Zo (=1)r> [s] pRODEDFL o FoteSmta s Frr—1e
=
. 3 Y3 Th Th 7 7
Since fm+1 nee fm+s fm+'s coe fm+r—1 = (fm +Pm+lfm)hes (fm)hpur_’

kes (he\ . il )
= 3 (") g e,
§=0

a little manipulation leads to

T
A (p*-1)
i
rfhp'Tn(x fm (f )her——r ———-p 1)"'
he, 1
+ 2+ L pmDE=n(fL)E( N L SR (3.4)
i=rr11!
where U, ; , is integral (mod p) For k=1, (3.4) reduces to (3.3) ; forA=p —1, (3.4) becomes
Arfe-03™ () (fm)’ f Y- I (pP - 1)
i=1
et |
+ X p(m+1)("”(f Y (Frm i PN (3.5)

i=r+1?
where V, ;=U, ; ,_, is integral (mod p).
It is perhaps worth noting that for f(x) =a, (3.4) yields

11 (5 -1)

—r)i=1
Arahpm__hr( )" ar™(her—r) Ty

he,
+ E _1_p(m+1)(z—'r)(a ) ap‘m(hor-t)U
= r+1
in agreement with (2.11) of (1).

4. The main result. Using (3.4) we can determine when A7f*»™(x)e F, that is when
Arf*»™ (x) has integral coefficients (mod p). It is only necessary to examine p+D6-n/;1, Ag
in [1, § 3] we suppose i>r, r<p. Then pi~—7/i! is integral (mod p); moreover, p*—/i! is
divisible by p unless (i) i=p, r=p -1, or (ii) i=p+1, r=p. An immediate consequence is

THEOREM 1. Let h==1. Then A7f*"™ (x) has integral coefficients (mod p) for 1<<r<<p - 1.

In the next place since p?/i! is always integral (mod p), and since f?(x) =f(x?) (mod p?)
implies

frmtt (@) =fr"(z) (mod pm+t)
(that is, f,, =0 (mod p)), we have also
THEOREM 2. Let hz=1. If f7(x) =f(x?) (mod p?) then A"f*™(x) e F for all r =1, m>=0.
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We may also state the following more precise
THEOREM 3. Let hz=l, 1<r<p. Then

. . . -
Arfrem () =5 BT (f2)7 (f)hor—T ?*(_;)T (mod p™). ceveiiriiiiianens (4.1)

If r<p -1, the congruence (4.1) holds (mod pm+1).
For A =1, (4.1) reduces to (1.7). The special case

m 1 ’ 7 L ;
a0 @) = ) (T (1) (mod )
! i
may also be mentioned.

A word may be added about the additional hypothesis f?(x) =f(x?) (mod p?). In general
this will, of course, not be satisfied. It is not difficult to show that f;=0 (mod p) if and only
if )

f@)=azl ... x> a?=a (mod p?).

5. A generalization. The notation (2.3) suggests a possible generalization of the results
of §§ 3, 4. Let now 2 denote a commutative ring which contains the integers ; in particular
then we can define congruences (mod p™) in L. Let a, b denote numbers of £2 such that
a? =b (mod p), which implies
| a#™ 1l =ppm (mod p™) (m=0,1,2,...). ...... s (5.1)
We rewrite (5.1) in the form

AP =B L DL G e (5.2)
and define
daP™ =ap, = (@P™T = bP™) [P, e (5.3)
Higher derivatives are defined recursively by means of

Aril g™ — dﬁff V= (ai,?+1 Cmy1 — agrrn) bnir) D™,

where we put a,,=a?”. (For a=b, 47a*™ reduces to a,, ... @,,,_, times the r-th Schur
derivative (1.1). It is now not difficult to verify that the results of § 3 can be carried over
to the general case. In particular (3.3) becomes -

' .
. Irp-1)
TaPm — = (gl yrper—r¥=Lt
dTa r!(am) bm‘ =Ty
£ F LG @ Uy (5.5)
i=r417%:

where ¢, has the same meaning as in (3.1) and U, ; € 2. Since (5.1) implies
ah?™tl =pro™ (mod pmtl)
it follows that (3.4) can also be generalized. We have indeed
1 -1)

1 .
rahp™ _ r (! \r phor—ri=1
dra P @) by (p-1)

1 man)mr) (g yi pher—i
+ zﬂi_‘p el (Y L Al VS SR (5.6)
i=r :
valid for A>1.
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Finally, using (5.6), we obtain immediate generalizations of the theorems of § 4. We
may state

TuEOREM 4. Let h=1. Then 47a*?™ € Q for 1<r<p - 1.

TuporeM 5. Let h>1. If aj=0 (mod p) then A7a*™ ¢ Q2 for all r=>1, m>0.
THEOREM 6. Let h=1, 1<r<p; then

,
1 1I(p*-1)
Arghem == BT () bhor—T h (Mod P™). erreeriiiiiiinns (5.7)

If v<<p ~ 1, then congruence (5.7) holds (mod pm+1). )
6. An application. As an instance of the generalization, let 2 be the ring of Gaussian

integers @ +b¢ and let the prime p=3 (mod 4). If a=a +bi e £2 we put x=a —bi, so that we
have the familiar congruence

aP=% (MO P). ceiriieiiiiiiiiii e (6.1)
In view of (6.1), it is evident that (5.3) and (5.4) become
Aapm - oC;n — (o‘pm+1 _ &pm)/pm+1’
ArHly?™ = oc},TL'H) = (oci}?_,_locpm"'1 —aDa?™ ) [P e (6.2)

Then Theorems 4 and 5 apply without change, while Theorem 6 yields the congruence

r
1 I (pt-1)
ATeh o™ = 5 B (og, )T () P (her =) W (mod p™) iirviiiiiinn, (6.3)

for 221, 1<r<{p; if r<<p -1, (5.7) holds (mod p™*1).

It is elear how (6.2) and (6.3) can be stated for any quadratic field and how other applica-
tions of the same kind can be constructed. We remark that the generalization of the Schur
derivative for algebraic numbers in [1, § 4] is of a somewhat different nature from the above.

Finally one can also consider polynomials with coefficients in the Gaussian ring. The
starting point is now (compare (1.3))

@) =fla") +pg (@),
where f(z) is obtained by replacing each coefficient of f(x) by its conjugate. It is clear how
to modify the definitions (1.5), (1.6). The final results are exactly like those of § 4.
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