Wearable Technologies (2025), 6, €30

doi:10.1017/wtc.2025.10016 Ul CAMBRIDGE

|77 UNIVERSITY PRESS

RESEARCH ARTICLE

Design optimization platform for assistive wearable devices
applied to a knee damper exoskeleton

Asghar Mahmoudi'~ @, Stephan Rinderknecht', Andre Seyfarth” and Maziar A. Sharbafi’

"Institute for Mechatronic Systems, Faculty of Mechanical Engineering, Technical University of Darmstadt, Darmstadt, Germany
Lauflabor Locomotion Lab, Institute of Sports Science, Technical University of Darmstadt, Darmstadt, Germany
Corresponding author: Asghar Mahmoudi; Email: asghar.mahmoudi@tu-darmstadt.de

Received: 06 December 2024; Revised: 30 May 2025; Accepted: 19 June 2025

Keywords: optimisation; exoskeletons; design; biomechanics; human motor control

Abstract

Designing optimal assistive wearable devices is a complex task, often addressed using human-in-the-loop optimi-
zation and biomechanical modeling approaches. However, as the number of design parameters increases, the growing
complexity and dimensionality of the design space make identifying optimal solutions more challenging. Predictive
simulation, which models movement without relying on experimental data, provides a powerful tool for anticipating
the effects of assistive devices on the human body and guiding the design process. This study aims to introduce a
design optimization platform that leverages predictive simulation of movement to identify the optimal parameters for
assistive wearable devices. The proposed approach is specifically capable of dealing with the challenges posed by
high-dimensional design spaces. The proposed framework employs a two-layered optimization approach, with the
inner loop solving the predictive simulation of movement and the outer loop identifying the optimal design
parameters of the device. It is utilized for designing a knee exoskeleton with a damper to assist level-ground and
downhill gait, achieving a significant reduction in normalized knee load peak value by 37% for level-ground and by
53% for downhill walking, along with a decrease in the cost of transport. The results indicate that the optimal device
applies damping torques to the knee joint during the Stance phase of both movement scenarios, with different optimal
damping coefficients. The optimization framework also demonstrates its capability to reliably and efficiently identify
the optimal solution. It offers valuable insight for the initial design of assistive wearable devices and supports
designers in efficiently determining the optimal parameter set.

1. Introduction

Optimizing the design of assistive wearable devices is crucial for enhancing their usability, effectiveness,
and adoption (Shore etal., 2018). The optimal design of these devices’ mechanical and control parameters
can be achieved by developing prototypes and testing them through systematic experiments involving
human participants (Zhang et al., 2017). This Human-in-the-Loop Optimization (HILO) process, how-
ever, is inherently time-consuming and physically demanding for participants, often making it tiresome
and costly. Furthermore, the results are typically limited to specific gait conditions, making generalization
to diverse real-world scenarios challenging. Adjusting design parameters during experiments also
requires emulators, which, despite their flexibility, are expensive and fail to fully replicate the final
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product (Slade et al., 2024). To address these limitations, biomechanical models are used as a viable
alternative (Firouzi et al., 2025; Mahdian et al., 2023).

On the one hand, the inverse dynamics method is a widely used approach in biomechanical modeling
for designing wearable assistive devices (Zhou et al., 2017). In this approach, the experimentally
measured movement parameters taken from motion capture systems and Ground Reaction Forces
(GRF) are used as the inputs to the model to determine the joint angles, muscle forces, and joint torques
(Firouzi et al., 2021; Naseri et al., 2022). For instance, Marconi et al. employed inverse dynamics to
evaluate the effects of weight distribution of powered ankle-foot orthoses on muscle activation and forces,
assuming user kinematics remain unchanged by the device (Marconi et al., 2023). However, this
assumption is a major limitation of the inverse dynamics method.

On the other hand, forward dynamics approaches do not require experimental measurements and rely
solely on the neural controllers as inputs to the neuromuscular model to perform predictive simulation of
movement (De Groote and Falisse, 202 1; Febrer-Nafria et al., 2023). This method has been employed to
optimize exoskeleton designs. For example, Bianco et al. demonstrated that multi-joint torque assistance
yields 50% greater metabolic savings than single-joint devices (Bianco et al., 2022). Ratnakumar et al.
used OpenSim Moco software to identify hip joint assistance as the most effective single-joint assistance
case (Dembia et al., 2020; Ratnakumar et al., 2022), while Jin et al. proposed a framework based on
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) for predictive simulation of reflex-
based models with exoskeleton interaction (Jin et al., 2024). SCONE software (Geijtenbeek, 2019), also
using the CMA-ES method, has been utilized for diverse applications, including optimal torque assistance
for hip exoskeletons (Ratnakumar and Zhou, 202 1), investigating ankle-foot orthosis stiffness for patients
with muscle weakness (Waterval et al., 2023), and analyzing actuation mechanisms for balance recovery
(Jabeen et al., 2023). Additionally, predictive simulation has been applied to design assistance modes for
sloped walking (Li et al., 2020). While forward dynamics simulations offer a powerful tool for exploring
the design space of assistive devices without the need for extensive experimental data, it is important to
acknowledge the potential for discrepancies between simulated results and real-world performance. As
highlighted by Franks et al. (2020), the translation from simulated assistance strategies to actual device
performance can present significant challenges. They illustrated that the expected metabolic savings for
the optimal device controller settings showed a similar trend between the experiment and simulation
results, but the metabolic cost reductions were greatly overestimated in simulations. However, recent
study by Jin et al. (2024) has demonstrated promising agreement between forward dynamics simulations
and experimental data in the context of exoskeleton design, suggesting increased reliability of these
methods. Similarly, Drewing et al. (2024) have shown improvement in some muscle activation pre-
dictions in comparison between Al-optimized control parameters using forward simulation and an
empirical controller in follow-up experiments of assisted walking with an exosuit.

In the mentioned studies, the predictive simulation problem is solved for a predefined set of design
parameters, and the best solution is selected from the tested cases. However, as the dimensionality of the
design space increases, the number of candidate solutions grow exponentially, significantly increasing
computational cost. Advanced optimization methods can mitigate this issue by efficiently navigating
high-dimensional design spaces within a defined range of parameters to identify optimal solutions.
Therefore, we propose an optimization framework that leverages predictive simulation and advanced
optimization techniques to efficiently explore high-dimensional design spaces and identify optimal
assistive device configurations. In this article, the design of a passive knee exoskeleton with a damping
characteristic and a specific activation timing is optimized.

Optimizing the design of assistive wearable devices, such as knee exoskeletons, is essential to enhance
their functionality and adaptability. The knee joint plays a crucial role in maintaining stability, absorbing
shocks, supporting body weight, and assisting in swing motion (Amer etal., 2020; Zhang et al., 2020). It is
also quite a vulnerable joint, susceptible to injuries, impairments, and conditions like osteoarthritis, spinal
cord injury, and stroke (Flandry and Hommel, 2011). Knee exoskeletons aim to support individuals with
these impairments (Wu et al., 2023) or augment healthy users’ locomotion by reducing metabolic cost,
muscle fatigue, and improving load-carrying capacity (Shamaei et al., 2014; Tucker et al., 2017). Passive
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and semi-active exoskeletons often incorporate dampers at the knee joint to provide controllable resistance,
enhancing energy efficiency during braking and enabling regenerative braking (Ma et al., 2017; Auberger
etal., 2020). These dampers help mitigate excessive vibrations and shocks, and reduce the forces transmitted
to the joint (Alvarado-Rivera et al., 2022; Andoh and Huang, 2023). Notably, the application of damping
forces during the Stance phase, when the knee exhibits negative joint power, effectively dissipates energy
and reduces the biological joint’s negative power (Xie et al., 2019; Zhang et al., 2020). This functionality is
particularly advantageous during downhill walking, which increases negative power, negative work, and
joint forces compared to level-ground gait (Kuster et al., 1995; Alexander and Schwameder, 2016;
Masayuki et al., 2018; Montgomery and Grabowski, 2018; Nuckols et al., 2020). Additionally, varying
damping characteristics based on the user’s physical attributes and specific movement activities, such as
stair ascent or descent and sit-to-stand transitions, is critical for optimizing the exoskeleton’s performance
across diverse conditions (Amer et al., 2020).

The primary objective of this study is to present a novel two-level optimization framework for
designing exoskeletons based on predictive simulation of human movement. It addresses the key
limitations of existing methods, particularly their difficulty in navigating high-dimensional design spaces
by using an advanced optimization method. The framework identifies the optimal physical and control
design parameters in the outer loop and solves the predictive simulation of movement in the inner loop. To
illustrate its efficacy, we applied the framework to the design of a knee exoskeleton with a damper, aimed
at assisting level-ground and downbhill gait in able-bodied users. Specifically, the optimization determines
the optimal damping coefficient and the phases of the gait cycle in which the damper should be engaged.
We hypothesize that applying a damping torque to the knee joint will reduce both knee load and the
negative knee power peak, consistent with established knee biomechanics during gait and previous
findings on knee damper exoskeletons (Xie et al., 2019; Zhang et al., 2020). Furthermore, we expect the
optimal damping coefficient for level-ground and sloped gait to differ, which highlights the importance of
incorporating a variable damper in the device for different movement scenarios.

The remainder of this article is structured as follows: Section 2 details the methodology, beginning with
an overview of the proposed optimization framework (Section 2.1), followed by the formulation of the
passive knee exoskeleton design problem (Section 2.2), and concluding with the description of validation
and performance evaluation methods (Section 2.3). Section 3 presents the results, starting with the
baseline gait simulations (Section 3.1) and then discussing the optimization outcomes and their effects on
biomechanics (Section 3.2). Section 4 provides a discussion of the methodology validation and the
optimal exoskeleton design (Sections 4.1 and 4.2), along with the limitations of the study and potential
future research directions (Section 4.3). Finally, Section 5 concludes the article by summarizing the key
findings and contributions.

2. Methods

2.1. Overview of the optimization framework

The overview and important components of the proposed optimization framework are illustrated in
Figure 1. Itis atwo-level modular optimization platform developed in Python. Its aim is to find the optimal
design parameters of an assistive device by minimizing a given cost function. The platform consists of two
nested optimization loops. The outer loop optimizes the design parameters of the assistive device, and the
inner loop solves the predictive simulation of movement.

The inner optimization loop solves the predictive simulation of movement using the SCONE software,
with the high fidelity dynamics (Hyfydy) simulation engine (Geijtenbeek, 2021) employed to accelerate
forward dynamics computations. It comprises three key components: (1) a combined neuromuscular model
of the human and a model of the assistive device, linked via interaction dynamics; (2) a neuromuscular
feedback controller for the human model and a device controller; and (3) a cost function derived from
solving the forward dynamics equations. The inner loop optimizes the neuromuscular controller parameters
using the CMA-ES algorithm.
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Figure 1. Overview of the optimization framework for designing assistive wearable devices. The inner
loop, implemented in the SCONE software, solves the predictive simulation of movement and includes the
device and neuromuscular models and controllers, a cost function, and the CMA-ES optimizer for
optimizing the neuromuscular controller parameters. The outer loop, implemented in Python, employs a
Bayesian optimizer to identify the optimal design parameters of the assistive device by minimizing a cost
function derived from the inner loop s simulation results.

The outer loop optimizes the assistive device’s design parameters using Bayesian Optimization,
implemented via the Scikit-Optimize library in Python Scikit-Optimize Contributors (2024). This method
is well-suited for noisy, expensive to evaluate, and black-box cost functions (Garnett, 2023). A Gaussian
process models the objective function with a Matern kernel, with hyperparameters (kernel length scales,
covariance amplitude, and noise level) tuned during optimization. After initializing with a predefined
number of random evaluations, the optimizer generates new parameter sets, continuing until either
convergence or a maximum iteration limit is reached. Convergence is defined by minimal improvement
over the best cost value in the last » iterations. At each step, the acquisition function, chosen probabi-
listically from the lower confidence bound, expected improvement, or probability of improvement
functions, guides the search Scikit-Optimize (2024). The outer loop thus minimizes the cost function
derived from the inner loop’s predictive simulation results for both the assistive device’s physical and
control parameters.

2.2. Design of a passive knee exoskeleton

To demonstrate the performance of the proposed design framework, a passive knee exoskeleton is
simulated to assist able-bodied users during level-ground and downhill gait. Predictive simulations of
both movement scenarios without the exoskeleton are conducted in SCONE and used as baseline
conditions. The validity of the baseline simulations is qualitatively assessed by comparison with
experimental data, which is presented in the next section.

A two-dimensional sagittal plane musculoskeletal model (H0918v3.hfd) is used for the predictive
simulation of both baseline and assisted conditions. The model includes 9 degrees of freedom (pelvis tilt,
pelvis translation in the x and y directions, right and left hip flexion, knee, and ankle angles) and
18 muscles (right and left hamstrings, biceps femoris short-head, gluteus maximus, iliopsoas, rectus
femoris, vasti, gastrocnemius, soleus, and tibialis anterior). The muscles are Hill-type musculotendon
units configured according to Delp et al. (1990) with the modified version of the muscle dynamics from
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Millard et al. (2013) to enhance performance in the Hyfydy solver. Two contact spheres per foot provide
linear damped spring contact forces. For downhill gait, the ground is tilted by 5 degrees clockwise relative to
the level-ground condition. A modified reflex-based controller from Geyer and Herr (2010) governs muscle
activation, validated for predictive simulations of level-ground and inclined gait (Dorn etal., 2015; Li et al.,
2020). The cost function used to optimize the parameters of the SCONE model consists of four terms:

J =100 'Jvelocity +0.1 ‘Emet + (01 ’Jankleangle +0.01 'Jknee force) +10 'JGRF (l)

where (1) Jyelocity 18 @ penalty term that forces the model to move with the predefined speed of 1 (m/s),
2) E et is 2 measure for the estimated metabolic cost based on Wang et al. (2010), (3) Jankle angle and
Jknee force are the ankle joint position and the knee joint force penalties, and (4) Jgrr is @ measure that
penalizes the normalized GRFs above 1.4. A CMA-ES optimizer solves the predictive simulation over a
10-second duration. The optimization seeks the optimal values for 45 neuromuscular controller
parameters, 7 joint offset terms for degrees of freedom, and 1 stance load threshold parameter used
to identify the Stance phase.

Additionally, the exoskeleton’s model and controller are integrated into the neuromuscular model of both
legs. The structural components of the exoskeleton, specifically the thigh (1.02kg) and shank (1.57kg)
sections, are modeled based on the center of mass (COM), mass, and inertia derived from CAD files of a
previously developed and tested knee exoskeleton (Mahmoudi et al., 2025) (as is seen in Figure 2). While this
model replicates the physical structure, it does not include the damper and clutch mechanism of the device
designed in this study. As such, potential effects of modifications to segment sizes and weights are not
considered in the simulation. The optimization of the neuromuscular controller for assisted conditions begins
with the mean and standard deviation (std) values obtained from the baseline simulation. Given that these std
values are relatively small, this approach ensures minimal deviation from the optimal parameters of the
baseline gait. Even slight variations in the device parameters can cause significant deviations in the optimal
parameter solutions, as highlighted by Firouzi et al. (2024). This constraint helps avoid large deviations of the
optimized parameters from the baseline values during assisted gait.

' ' ¥ ' r '
QJ’ (/ A 1{ ‘47 ( {JT ‘f %
v e L\
\ A\ I\ h hAN I\
/ \ ) A \Y ] J \
) < W 4 N . | ¥ / -
/ \ Ly 4 \ 4 / / \
y \ 2 ! 74 ’ y \
=~ | g A - 7 - - 4
Touchdown | Heel Off Toe Off | Touchdown
Early ) Late . ! . . Il
| Stance | Stance | Lift Off | Swing | Landing |

Figure 2. lllustration of the gait cycle divided into five phases based on SCONE definitions Scone
Software (2024): Early Stance, Late Stance, Lift Off, Swing, and Landing. Each phase is depicted by a still
photo of the neuromuscular model at the onset of the corresponding phase. The knee exoskeleton
structure, adapted from a previously developed design (Mahmoudi et al., 2025), is integrated into the
neuromuscular model. Unlike the original design, which featured a Pneumatic Artificial Muscle (PAM) as
its actuator, this exoskeleton incorporates a damper and clutch mechanism at the knee joint. The damper,
highlighted in the figure, applies resistive torques during specific gait phases.
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The designed knee exoskeleton is a passive device with a linear rotational damper, engaged during
specific phases of the gait cycle via a clutch mechanism. The gait cycle is divided into five phases as
defined in SCONE: Early Stance, Late Stance, Lift Off, Swing, and Landing (Figure 2). Transitions
between phases are defined by the sagittal foot position and the normalized leg load. The Landing phase
transitions to Early Stance when the leg load exceeds the stance load threshold. Early Stance progresses to
Late Stance when the sagittal foot position falls below the Late Stance threshold. Late Stance transitions to
Lift Off when the contra-lateral leg load surpasses the stance load threshold or when the sagittal position
drops below the liftoff threshold. Lift Off transitions to Swing when the leg load falls below the Swing load
threshold. Finally, Swing transitions to Landing when the sagittal foot position exceeds the landing threshold,
completing the gait cycle Scone Software (2024). The damper is engaged only during selected phases,
applying zero torques during the disengaged phases. The resisting torque applied to the neuromuscular
model’s knee joint is:

Tdamper = —Cdamper * eknee (2)

where T gamper is the exoskeleton torque, cgamper is the damping coefficient, and Oxnee 18 the angular
velocity of the knee joint. The damping coefficient cgamper and the clutch activation pattern are the two
design parameters. The damping coefficient is a continuous parameter optimized within the range of 0-20
(N-m-s/rad), based on the maximum knee moment (approximately 120 N-m) and maximum knee
angular velocity (approximately 6 rad/s) of the baseline simulation of a 75 (kg) individual walking
downhill at a —5 °slope. These upper ranges are consistent with experimental data (Kuster et al., 1995;
Nuckols et al., 2020). The clutch activation pattern is a discrete parameter optimized across all 31 possible
combinations of the five gait phases, determining when the damper resists the knee motion.

The outer loop cost function combines two terms: (1) Biological Knee Load, calculated as the mean of
the top 25% of knee load values, averaged across strides for both legs; and (2) Cost of Transport (COT),
defined as the total metabolic cost (sum of estimated muscle metabolic costs) divided by the distance
traveled. Both terms are normalized by division to their respective baseline values for level-ground and
downhill gait. The final cost function is:

CFtotal =05 'KLnorm +0.5- COTnorm (3)

where CF'y is the total cost function, KL is the normalized knee load, and COT o is the
normalized cost of transport.

The Bayesian optimizer starts with 10 random evaluations and terminates if either the cost function
improvement over the last 15 iterations is <0.05 or 100 iterations are completed. A high cost value of 5 is
assigned to distinguish unstable solutions. To reduce the risk of reaching a local minimum and improve
the chance of global optimization, each problem is solved 5 times with different initial random seeds, and
the best result is selected as the final design solution. All simulations are performed on a system with an
Intel(R) Core(TM) i5-10400 CPU @ 2.90 GHz and 16 GB of RAM.

2.3. Validation methods

This section outlines the methods used to validate the predictive simulations and the performance of the
optimization framework. A more detailed discussion and supporting evidence for the validation of the
baseline simulations against experimental data are provided in Section 4.1. The predictive simulation results
for level-ground and sloped gait in SCONE have been previously validated against experimental data
(Li et al., 2020; Veerkamp et al.,, 2021). To further validate the accuracy of the baseline predictive
simulations in this study, the kinematics and kinetics variables of the predicted movements are qualitatively
matched with the changes observed in the experimental studies (Kuster et al., 1995; Alexander and
Schwameder, 2016; Masayuki et al., 2018; Montgomery and Grabowski, 2018; Nuckols et al., 2020).

https://doi.org/10.1017/wtc.2025.10016 Published online by Cambridge University Press


https://doi.org/10.1017/wtc.2025.10016

Wearable Technologies e30-7

Moreover, the performance of the optimization framework is evaluated by comparing the results of the
Bayesian optimizer with those obtained by exhaustively simulating the full design space at a fixed
resolution for both gaits. More specifically, 41 damping values (cgamper) between 0 and 20 (step size: 0.5)
and all 31 possible clutch mechanism configurations are evaluated, resulting in 1271 unique parameter
sets. Predictive simulations and cost functions for each set provide a detailed mapping of the design space,
enabling an evaluation of the optimal solution. Additionally, to assess the framework’s robustness and its
susceptibility to local minimum, the optimization is repeated with 20 additional different random seeds.

3. Results

This section presents the baseline simulation results for level-ground and downbhill gait without the
exoskeleton, followed by the optimization outcomes, including the performance evaluation of the
optimization framework. Finally, we analyze the changes in kinematics, kinetics, metabolic cost, and
muscle-tendon unit forces resulting from the addition of the exoskeleton.

3.1. Baseline simulations

The quality of the forward simulation of baseline gait in the level-ground and downhill conditions can be
evaluated in qualitative comparison to experimental findings (Kuster et al., 1995; Lay et al., 2006;
Alexander and Schwameder, 2016; Dewolf et al., 2018; Masayuki et al., 2018), using the predicted
kinematics and kinetics of movement. Figure 3 shows some of the most important differences observed
between the two movement scenarios.

The kinematics and kinetics of the knee joint show distinct trends during the downhill compared to the
level-ground gait. It is observed that the knee flexion angle increases in downhill gait during the Stance
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Figure 3. Kinematics and kinetics results of predictive simulation of baseline conditions (movement
without exoskeleton) in level-ground (dashed black line) and downhill slope (solid blue line) gait. The
results are normalized for each gait cycle (from touchdown of the right leg to the next touchdown of the
same leg) and averaged over the gait cycles of one full movement for each condition. The shaded area
around each curve indicates the standard deviation values. Stance and Swing phases are separated by the
respective vertical lines, indicating the Toe Off events.
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phase, from approximately 23°to 36°, and remains relatively similar to the level-ground gait during the
Swing phase. It can also be observed that the load on the knee joint increases during Early Stance in the
downbhill gait from the normalized peak value of 3.63 to 4.72. The peaks of the normalized knee moment
are fairly synced in the Early Stance phase while the downhill gait shows a higher positive peak (1.46
compared to 0.52) and a lower negative normalized peak value (—0.26 compared to —0.46). Similarly, the
highest negative normalized knee power peak occurs in the Early Stance for both movements and shows a
significant increase in the downhill walking (—4.75) compared to the level-ground gait (—1.78). The
positive power peak at the Early Stance shows an increase in the downhill gait (from 0.34 to 1.1), as well.
The M-shaped vertical component of the GRF can be observed in both gait conditions. However, the
downhill gait shows an increase in the first peak while the second peak decreases compared to the level-
ground gait. Additionally, the GRF is non-zero during the early Swing phase in downhill gait, which
indicates scuffing of the Swing leg in the simulated movement. The horizontal component of the GRF
shows a similar trend for the two conditions.

3.2. Optimization results

In the best of five runs, the optimizer converges to the optimal solution in 15 iterations for level-ground
gait and 28 iterations for downhill gait. Figure 4(a) shows heat-maps of the design space for the two
exoskeleton parameters, generated from simulations across 1271 considered solutions. The order of
exploration for the optimizer in the best run of the optimization platform is also presented in Figure 4(b).
The optimal solution for both scenarios activates the clutch during Early and Late Stance phases,
disengaging the damper during the other phases. The optimal damper coefficient cgamper is 14.8
(N-m-s/rad) for the level-ground and 16.5 (N -m - s/rad) for the downhill gait, yielding optimized cost
function values of 0.71 and 0.65, respectively. The best condition in the brute-force investigation of all
possible configurations resultes in the minimum cost function values of 0.71 for the level-ground (with
Cdamper 0f 12.5 (N - m - s/rad) and active during the Late Stance phase) and 0.65 for the downhill gait (with
Cdamper and clutch mechanism the same as the optimization result).

Figure 5 presents the results of repeating the optimization process with different random initial seeds
for the level-ground and downbhill slope gait scenarios. The points in the Figure represent the cost function
values of the optimal solutions in each implementation of the optimization process. The results of the five
runs that are used for the design of the device are presented separately from the 20 runs that are used for
verification of the optimizer performance. The results show that five runs of the optimization with
different initial random seeds give a comparable optimal solution to the 20 runs of the optimizer. For the
level-ground condition, the optimized cost function across 20 implementations has a median of 0.77
[0.70, 0.83] (median [min, max]), while the five implementations used for exoskeleton design show a
median of 0.76 [0.71, 0.81]. In the downhill condition, the median values are 0.73 [0.68, 0.84] and 0.69
[0.65, 0.75] for the 20 and 5 implementations, respectively.

Figure 6 illustrates the knee kinematics and Kinetics, and the metabolic cost (an estimation of the
metabolic cost of movement) for walking with the optimal exoskeleton design in the two movement
scenarios compared to the baseline (no device) condition. The maximum flexion angle of the knee joint
during the Stance phase decreases for both conditions, while the downhill gait scenario shows a more
significant drop from 36 to 23.5 (around 35% reduction). The results for both movement scenarios
indicate a significant reduction of the knee load during the Stance phase. The normalized peak value drops
by 37% in the level-ground condition and by 53% for the downhill slope condition. Additionally, the peak
positive knee moment in the Early Stance phase has decreased for the downhill gait by around 40%,
whereas it stayed relatively similar for the level-ground gait. The maximum torque applied by the damper
is 17.9 (N - m) in the level-ground (45% of the biological baseline value) and 50.5 (N - m) in the downhill
gait (42% of the biological baseline value), both at the Early Stance phase directly following touchdown.
Furthermore, the negative peak power of the knee joint during Early Stance has significantly reduced in
both conditions from —1.78 and —4.75 to —0.14 and —1.37 for the level-ground (92% reduction) and
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Figure 4. (a) Heat-map of the cost function values for the knee exoskeleton design in level-ground and
downhill (—5) gait. The design space comprises the damping coefficient (Cgamper) 0f the linear knee
damper and the clutch mechanism that determines damper engagement across the five gait phases: Early
Stance (ES), Late Stance (LS), Lift Off (LO), Swing (SW), and Landing (LN). The cost function, combining
knee load and estimated cost of transport, is calculated for 1271 simulated design configurations,
covering the entire design space. Green diamonds represent the iterations explored by the optimizer from
the best of five optimization runs and blue diamonds indicate their optimal solutions. Purple diamonds
mark the best solutions from the brute-force search of the entire design space. The best solution of the
optimizer and the brute-force search in the downhill gait condition are the same. (b) The exploration order
of the optimizer in each movement scenario. The abbreviations, shapes, and colors of indicated points are
consistent with the heat-map.
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Figure 5. The median, 25th and 75th percentiles, maximum, minimum, and the kernel density estimate of

the cost function values for the optimal results of multiple implementations of the optimization platform

for the level-ground (first two graphs on the left side) and downhill (first two graphs on the right side) gait

scenarios. The five runs of the optimizer used for the design of the device are also presented separately
from the 20 runs used for investigation of the optimization platform's performance.

downbhill (71% reduction) gaits, respectively. Moreover, the metabolic cost shows a decrease in the peak
values when the device is added.

Figure 7 compares normalized forces for the model’s nine muscles between baseline and optimal
assisted conditions in level-ground and downhill walking, using a consistent y-axis scale for direct
comparison. During level-ground walking, muscle force adaptation shows distinct patterns. Among knee
extensors, the Vasti (monoarticular) significantly decreases, while the Rectus Femoris (biarticular)
increases. For knee flexors, the Hamstrings (biarticular) reduces force, but the Gastrocnemius
(biarticular) increases. The Biceps Femoris Shorthead (monoarticular) shows minimal force and change.
Other muscles, including the Iliopsoas, Gluteus Maximus, and Tibialis Anterior, demonstrate reductions
in peak forces during Stance, while the Soleus shows increased force. In downhill walking, the muscular
response is generally characterized by force reductions or minimal changes for knee-crossing muscles.
The Vasti, Hamstrings, and Gastrocnemius all exhibit decreased peak forces during Stance. Unlike level-
ground, the Rectus Femoris force does not significantly increase, remaining similar to baseline. The
Biceps Femoris Shorthead again displays minimal activity. These results indicate a complex, condition-
dependent reorganization of muscle activity induced by the exoskeleton.

4. Discussion

4.1. Methodology validation

The kinematics and kinetics trends observed in the predictive simulation of baseline conditions align well
with the results of experimental studies. The simulated results show a more bent knee angle in downhill
walking compared to the flat terrain during the Stance phase (except the last 20%), closely replicating the
experimental results (Lay et al., 2006; Dewolfet al., 2018). Although, the increased knee flexion angle in
the experimental studies persists until the end of the Stance phase. This agreement extends to the knee
joint forces during sloped and level-ground walking, such as the rise in the first peak force during Early
Stance (Alexander and Schwameder, 2016; Masayuki et al., 2018). An increase in the second peak of the
knee load found in experimental studies is not predicted in our simulations, potentially due to the lower
ground inclination and walking speed in our modeling. Correspondingly, the predicted increase in knee
moment during the Stance phase, particularly in the first positive peak for downhill walking, agrees
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Figure 6. Knee kinematics, kinetics, and the metabolic cost of movement for the assisted scenario with the
optimal knee exoskeleton design (solid blue lines) compared to the baseline condition without an
exoskeleton (dashed black lines). The red dashed lines show the contribution of the exoskeleton joint. The
results are normalized for each gait cycle (between two sequential touchdowns of the right leg) and
averaged over all gait cycles of the entire movement for each condition. The shaded area around the lines
indicates the standard deviation values. The Stance and Swing phases are separated by the respective
vertical lines indicating the Toe Off event. The shaded blue area highlights the damper engagement phases.

reasonably well with experimental data (Kuster et al., 1995; Lay et al., 2006; Masayuki et al., 2018).
Additionally, the significant increase in the knee joint’s negative peak power during Early Stance for
downhill walking, reported in the experimental studies (Kuster et al., 1995), is consistent with our
simulated results. Finally, trends of GRF peak changes on sloped terrain versus flat terrain that match the
experimental studies (Kuster et al., 1995; Lay et al., 20006) further validate the accuracy of our simulations
in capturing the kinetic effects of environmental changes on locomotion. Overall, it can be concluded that
the predictive simulations of baseline conditions presented in this study successfully capture the key
kinematic and kinetic trends in level-ground and downhill gait with acceptable accuracy.

Repeating the optimization process with different random initial points results in relatively low
variations in the values of the optimal cost function (see Figure 5). The range of changes of the optimal
cost function values in the level-ground condition is 0.12 and in the downhill slope condition is 0.19.
These ranges are relatively low given that the improvements lower than 0.05 end the optimization process
due to satisfying the convergence criteria. The stable cost function values span approximately 1 unit,
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Figure 7. Normalized Muscle Tendon Unit (MTU) forces in the (a) level-ground, and (b) downhill slope
gait, for the optimal knee exoskeleton design (solid blue lines) compared to the baseline condition, when
the movement is simulated without an exoskeleton (dashed black lines). The results are normalized in each
gait cycle (from touchdown of the right leg to the next touchdown of the same leg) and averaged over the
gait cycles of one movement for each condition. The shaded area around the graphs illustrates the
standard deviations. The Stance and Swing phases are separated by the respective vertical lines
indicating the Toe-off events. The shaded area indicates the phases of the gait in which the damper is

engaged.
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ranging from 0.71 to 1.72 for level-ground gait, and around 0.75 units, from 0.65 to 1.40, for downhill
slope gait. Therefore, the variation in optimal cost function values represents about 12% of the total range
for level-ground condition values and 25% for downhill slope gait. Moreover, the median values of the
optimal solutions in both conditions are close to the best solutions found, which means that it is very likely
to reach a local minimum sufficiently close to the global optimum. Since the median of the 5 runs of the
optimization used for the design of the exoskeleton is almost identical to the 20 runs used for the validation
of the platform, it can be concluded that repeating the optimization for 5 times is sufficient to reach the
optimal value. Additionally, the kernel density estimate of the 5 runs is close to the 20 runs, which means
that the probability of achieving the same result is similar when the optimization is repeated 5 times
compared to 20 times. Even though the optimization problem is non-convex and contains multiple local
minima, the proposed optimization platform demonstrates the ability to achieve reasonable results with
relatively few iterations. More specifically, the platform requires 160 iterations for level-ground and
83 iterations for downhill gait conditions across the 5 runs for each case. This is significantly fewer than
the approximately 1300 combinations evaluated using the brute-force method in this study; a number that
can increase dramatically with finer step sizes. Given that each predictive simulation in SCONE has a
computational cost of approximately 5—10 min depending on the complexity of the movement (sloped
gait usually takes longer than over-ground gait), the total time required for the brute-force evaluation of
around 1300 parameter sets is in the order of 108-217 h. In contrast, our optimization platform achieves
comparable results in approximately 9-17 h, representing a significant reduction in computational time.
This advantage becomes even more critical when considering higher-dimensional design spaces, where
exhaustive search methods would be computationally infeasible. Thus, the proposed method is compu-
tationally efficient and reliable in finding high-quality optima for both design problems, offering a
significant advantage over brute-force approaches.

4.2. Optimization of the knee exoskeleton

The optimization results suggest that incorporating a damper into the knee joint during level-ground and
downhill gait can effectively reduce the joint load at the knee without significantly increasing the load on
the hip or ankle, the results of which are not presented in this article. This result agrees with our initial
hypothesis that adding a damping element at the knee joint reduces the load on the biological joint. It is
also observed that the amount of this reduction in load is higher for the downhill slope gait compared to the
level-ground gait. Furthermore, the amount of the biological joint’s negative peak power is decreased in
both gait conditions after the damper is added, which is in agreement with our initial hypothesis that the
damper is dissipating energy instead of the biological joint in the Early Stance phase, in line with the
findings of other studies (Xie et al., 2019). Moreover, the damper’s peak applied moment is less than half
of the required biological knee moment in the baseline condition for both gait scenarios, which is a
reasonable external torque to be applied to the human joint.

The passive exoskeleton beneficially reorganizes muscular forces and directly transfers load, resulting
in reduced biological knee joint load and influencing metabolic cost. The knee joint load is a composite of
muscle forces, body segment weights, GRFs, and critical interaction forces with the exoskeleton’s
attachments on the femur and tibia. These direct interaction forces allow the device to share the biological
joint’s burden, enabling the neuromuscular system to adopt new strategies. During level-ground walking,
muscle force changes are not uniform; some muscles decrease while others increase. This reflects a
coordinated adjustment where reductions in key knee muscles offload the joint, while increases may
maintain dynamic stability or compensate for the device, ultimately achieving a 37% knee load reduction.
The muscle forces during downhill walking show a more consistent trend towards force reduction for
muscles crossing the knee. This broader reduction in muscular forces around the knee aligns with the more
substantial decrease in biological knee joint load (53%) seen in this condition. Therefore, the observed
shifts in muscle force patterns, even those involving increased activity, enable the exoskeleton to reduce net
biological knee joint load. This interplay of load transfer and strategically altered muscle recruitment
confirms the device’s potential to reduce forces on the knee joint while maintaining overall gait function, as
reflected in changes to metabolic cost and our predictive simulation’s optimizations.
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To provide additional support to our optimal design solution and the predicted biomechanical out-
comes, we draw qualitative comparisons with experimental observations from other studies on knee
exoskeletons. For instance, the observed reduction in biological knee torque and power in our simulations
aligns well with the experimental results of Xie et al. (2019), which report similar beneficial effects with a
knee-braced energy harvester. While our predicted knee load reductions are substantial (37% for level-
ground and 53% for downhill gait), potentially overestimating the magnitude compared to the 12%
reduction of the impact forces on the user’s knee noted by Alvarado-Rivera et al. (2022) with their semi-
active knee orthosis, the qualitative agreement in the direction of the desired effect remains consistent.
Such over-estimations in magnitude are acknowledged in the predictive simulation literature (Franks
et al., 2020; Jin et al., 2024), but the ability of our framework to identify beneficial trends is crucial for
initial design guidance. This qualitative alignment with experimental findings from other exoskeleton
designs provides further support for the plausibility of our simulation results.

The results of the optimization for the two movement scenarios show that the same clutch mechanism can
be considered in the optimal design of the exoskeleton. The optimization process proposes a knee damper
exoskeleton that is only active during the Stance phase of both gait scenarios. Therefore, a mechanical clutch
system similar to the proposed design of Yandell et al. (2019) can be an option for the first prototype of the
exoskeleton. On the other hand, the optimization process concludes that the damping coefficient of the
device’s knee damper needs to be adjustable to have an optimal effect on level-ground and downhill gait.
Although the damper is not required to change its damping characteristics during the movement, the optimal
damping required for each movement scenario is different. Accordingly, semi-active systems such as
adjustable hydraulic dampers (Naseri et al., 2020) and Magnetorheological (MR) dampers (Bhat et al.,
2023), which are becoming more popular for wearable assistive devices, could be applied to implement our
designed system. MR dampers with controllable smart materials through adjusting the magnetic field (Liu
etal., 2022) have been used in the design of knee exoskeletons since they can function as brakes or clutches
in different movement phases (Chen and Liao, 2006). The viscosity of MR dampers changes under a
magnetic field, commonly adjusted in knee exoskeletons by altering the coil’s electrical current to modify
the magnetic flux density and damping characteristics (Chen et al., 2017; Liu et al., 2022). Alternatively, a
separate motor can displace a permanent magnet to achieve similar changes (Song et al., 2023).

4.3. Limitations and future directions

The main limitation of this study is that the predictive simulation results provide estimates of the expected
outcomes, which require validation through experimental studies with the developed exoskeleton
prototype. The potential for differences between simulated and real-world outcomes, as noted in the
literature by Franks et al. (2020), necessitates this crucial next step. While the simplified biomechanical
model used for forward simulation cannot fully replicate biological complexity, it still demonstrates
sufficient accuracy in predicting movement dynamics. For example, minor discrepancies in baseline
GRFs are primarily attributed to the simplified foot-ground contact model (De Groote and Falisse, 2021).
Despite this, the framework reliably identifies optimal design parameters that align with expected
biomechanical trends.

Another challenge is the sensitivity of the forward simulation method to small parameter changes,
which can lead to variations in the optimal neuromuscular controller parameters (Firouzi et al., 2024). To
mitigate this, we constrain the search space of the neuromuscular controller parameters, ensuring stability
and consistency across similar conditions. While this approach reduces drastic parameter shifts, it also
slightly restricts the flexibility of the optimization algorithm in finding a stable solution for a wide range of
device parameters. However, this trade-off is acceptable, as it supports the assumption that biological
feedback gains remain relatively stable across comparable scenarios. Additionally, while the non-
convexity of the design space may increase optimization complexity, the framework remains effective
in navigating these challenges to reach practical design solutions.

Future research can investigate the sensitivity of the optimal exoskeleton design to different weightings in
the cost function or explore a multi-objective optimization approach to generate a Pareto front of solutions
representing the trade-off between knee load reduction and cost of transport. In that case, the optimization
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platform can suggest a range and the optimized values can be selected by the human-in-the-loop optimi-
zation (Zhang et al., 2017), concemning other factors (e.g., user comfort). Furthermore, to enhance the
reliability and applicability of the proposed framework, our next steps will focus on developing a prototype
of the optimized exoskeleton design. This prototype will be tested in experimental studies across various
movement scenarios, such as level-ground and sloped gait, to validate the simulation outcomes and assess
the device’s performance in real-world conditions. These experiments will provide critical insights into the
accuracy of predicted kinematics and kinetics behavior, and can be utilized in improving the models used for
the next iterations of the design process via the optimization framework.

5. Conclusion

The proposed design framework for assistive wearable devices performs well in finding an optimal
solution. It serves as the initial design for the first prototype of the device, even though it might not be the
global optimum solution due to the limitations of the models used in the framework. The design of a knee
exoskeleton, which is used in this study to illustrate the performance of the proposed framework, shows
that the presented approach is quite robust in finding an optimal solution in different movement scenarios.
The value of the proposed method becomes more evident when the number of design parameters
increases, which makes the investigation of all candidate parameters computationally expensive. The
optimization process is also able to give insight into the type of design parameters needed for an optimal
device in more than one movement scenario. In our design question, for instance, it is concluded that the
clutch mechanism does not need to be adaptable, whereas the damper needs to be adjustable. This
information helps the designer make decisions based on the insights gained from biomechanical
simulations in the initial phases of the design process.
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