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Abstract. A semigroup S is said to be right pseudo-finite if the universal right congruence can
be generated by a finite set U ⊆ S × S, and there is a bound on the length of derivations for an
arbitrary pair (s, t) ∈ S × S as a consequence of those in U. This article explores the existence and
nature of a minimal ideal in a right pseudo-finite semigroup. Continuing the theme started in an
earlier work by Dandan et al., we show that in several natural classes of monoids, right pseudo-
finiteness implies the existence of a completely simple minimal ideal. This is the case for orthodox
monoids, completely regular monoids, and right reversible monoids, which include all commutative
monoids. We also show that certain other conditions imply the existence of a minimal ideal, which
need not be completely simple; notably, this is the case for semigroups in which one of the Green’s
preorders ≤L or ≤J is left compatible with multiplication. Finally, we establish a number of examples
of pseudo-finite monoids without a minimal ideal. We develop an explicit construction that yields
such examples with additional desired properties, for instance, regularity or J-triviality.

1 Introduction

The notion of being pseudo-finite for semigroups arises from a variety of sources
and may be expressed in several different ways, as explained in [5]. The simplest way
of approaching this condition is via the universal relation, regarded as a one-sided
congruence. Informally, a semigroup S is right (resp. left) pseudo-finite if the universal
right (resp. left) congruence on S is finitely generated and there is a bound on the
length of sequences required to relate any two elements. A more precise definition
will be given in Section 3.

The property of being (left) pseudo-finite was introduced by White in [16] in the
language of ancestry. This work was motivated by a conjecture of Dales and z̈elazko,
which states that a unital Banach algebra in which every maximal left ideal is finitely
generated is necessarily finite-dimensional. One of the main results of [16] states that
a monoid M is left pseudo-finite if and only if the augmentation ideal l 0

1 (M) is finitely
generated [16, Theorem 1.7].
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In [5], Dandan et al. systematically studied the condition of being left pseudo-
finite, within the broader context of semigroups having finitely generated universal
left congruence. These two conditions are certainly finiteness conditions (that is, every
finite semigroup satisfies them). The latter condition was shown to be equivalent to
several other concepts, which have previously been studied in different areas, e.g., the
homological finiteness property of being type left-FP1 [5, Theorem 3.10]. For a group
G , the universal left (or right) congruence on G is finitely generated if and only if G
is a finitely generated group, and G is left (or right) pseudo-finite if and only if it is
finite [5, Proposition 2.7]. In fact, it was noted in [16] that for weakly right cancellative
monoids, which include groups, being left pseudo-finite coincides with being finite.
This is far from true for arbitrary semigroups and monoids, as will become apparent.
For example, any monoid with zero is left (and right) pseudo-finite. Of course, a zero
is precisely a trivial minimal ideal.

If a semigroup contains no proper ideals, then it is said to be simple. A minimal
(left/right/two-sided) ideal of a semigroup is a (left/right/two-sided) ideal containing
no proper (left/right/two-sided) ideals. If a semigroup S has a minimal two-sided ideal,
it is unique and is a simple subsemigroup. If a simple semigroup contains minimal
left and right ideals, it is said to be completely simple. One strand of [5] concerns the
existence and nature of a minimal ideal in a (left) pseudo-finite semigroup. This was
partly motivated by a question posed to Gould by Dales and White, asking whether
every pseudo-finite semigroup is isomorphic to a direct product of a semigroup with
zero by a finite semigroup. This question was answered negatively in [5, Example 7.7].
On the other hand, it was shown in [5] that every pseudo-finite semigroup that is
inverse or a union of groups necessarily contains a completely simple minimal ideal.
It was noted in [5, Remark 8.9] that [5, Theorem 8.1] (which concerned the universal
left congruence being finitely generated) could potentially be adapted to provide
necessary and sufficient conditions for a semigroup with a completely simple minimal
ideal to be pseudo-finite. It was then observed in [5, Open Question 8.10] that every
pseudo-finite semigroup hitherto considered possesses a completely simple minimal
ideal, and the authors raised the question as to whether all pseudo-finite semigroups
have this property. (A positive answer would then yield a complete description of all
pseudo-finite semigroups.) This problem was later solved in the negative: in an article
investigating the related condition that every right congruence of finite index is finitely
generated, a counterexample was provided by way of a pseudo-finite simple (but not
completely simple) semigroup [12, Remark 7.3].

The above progress still leaves open the possibility that every pseudo-finite semi-
group possesses a minimal ideal. The aim of the present paper is to systematically
explore the existence and nature of a minimal ideal in a (right) pseudo-finite semi-
group. After some generalities concerning semigroups and their actions in Section 2,
the notion of pseudo-finiteness is introduced in Section 3. The main theme of the
paper, i.e., the relationship between pseudo-finiteness and minimal ideals, is properly
started in Section 4. The next four sections contain the main results of the article. In
Sections 5 and 6, we exhibit a number of natural classes of semigroups within which
pseudo-finiteness implies the existence of a minimal ideal, and, often, a completely
simple minimal ideal. It turns out, however, that in general pseudo-finiteness need
not imply the existence of a minimal ideal. We present a specific transformation
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semigroup that is pseudo-finite, but has no minimal ideal at the beginning of Sec-
tion 8. To enable us to provide further such examples, in Section 7, we introduce a
general construction based on an ideal extension of a Rees matrix semigroup. This
construction is then deployed in the remainder of Section 8 to exhibit pseudo-finite
monoids without a minimal ideal that possess some additional desirable properties.
The article concludes with some open questions and directions for future research in
Section 9.

2 Preliminaries: semigroups, ideals, and actions

In this section, we establish some basic definitions and facts about semigroups
and actions. We refer the reader to [9] for a more comprehensive introduction to
semigroup theory, and to [10] for further details on actions.

Unless stated otherwise, S will always denote a semigroup and S1 the monoid
obtained from S by adjoining an identity (if S is already a monoid, then S1 has a new
identity). We denote the set of idempotents of S by E(S). If S = E(S), it is called a
band. A semilattice is a commutative band.

An element a ∈ S is said to be regular if there exists b ∈ S such that a = aba. The
semigroup S is said to be regular if every element of S is regular. It turns that for every
regular element a ∈ S there exists b ∈ S such that a = aba and b = bab; in this case,
the element b is said to be an inverse of a, and vice versa. If S is regular and each of
its elements has a unique inverse, then S is called inverse. If S is inverse, then its set of
idempotents E(S) forms a semilattice.

A nonempty subset I ⊆ S is said to be a right ideal of S if IS ⊆ I. Left ideals are
defined dually, and an ideal of S is a subset that it is both a right ideal and a left ideal.
A right ideal I of S is said to be generated by X ⊆ I if I = XS1 . A right ideal I is said to
finitely generated if it can be generated by a finite set, and I is said to be principal if it
can be generated by a one-element set.

A right congruence on S is an equivalence relation ρ on S such that (a, b) ∈ ρ implies
(ac, bc) ∈ ρ for all a, b, c ∈ S; left congruences are defined analogously. The importance
of one-sided congruences for monoids is that they determine monogenic (single-
generated) actions; one-sided ideals are not sufficient for this.

Green’s relations L, R, H, D, and J are standard tools for describing the ideal
structure of a semigroup. Green’s preorder ≤L on S is given by

a ≤L b ⇔ S1a ⊆ S1b,

and this leads to the L-relation: aL b if and only if a ≤L b and b ≤L a. In other words,
a, b ∈ S are L-related if and only if they generate the same principal left ideal. The
preorders ≤R and ≤J are defined analogously and yield the equivalences R and J,
respectively. Next, we have H = R ∩L, and finally D = R ○L(= L ○R = L ∨R). It is
clear from the definitions that Green’s relations are equivalences on S . Moreover, the
preorder ≤L is right compatible and hence L is a right congruence, and similarly R is
a left congruence on S . It is easy to see that the following inclusions between Green’s
relations hold:

H ⊆ L, H ⊆ R, L ⊆D, R ⊆D, D ⊆ J.
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Following the standard convention, we will denote the L/R/H/D/J-class of a ∈ S by
La/Ra/Ha/Da/Ja .

It can be easily shown that every right/left/two-sided ideal is a union of R/L/J-
classes. A semigroup with no proper right/left ideals is called right/left simple. A
semigroup is called simple if it has no proper ideals. Clearly, if S is right or left simple,
then it is simple.

A right/left/two-sided ideal I of S is said to be minimal if there is no right/left/two-
sided ideal of S properly contained in I. It turns out that, considered as semigroups,
minimal right/left ideals are right/left simple [3, Theorem 2.4], and minimal ideals are
simple [3, Theorem 1.1]. The semigroup S contains at most one minimal ideal, but S
may possess multiple minimal right/left ideals. If S has a minimal right/left ideal, then
the minimal ideal exists and is equal to the union of all the minimal right/left ideals
[3, Theorem 2.1].

A completely simple semigroup is a simple semigroup that possesses both minimal
right ideals and minimal left ideals. A semigroup has both minimal right ideals and
minimal left ideals if and only if it has a completely simple minimal ideal [3, Theorem
3.2]. In particular, every finite semigroup has a completely simple minimal ideal.

Suppose that S is a semigroup with a completely simple minimal ideal K . Then the
minimal right ideals of K are also the minimal right ideals of S; let us denote them by
R i (i ∈ I). Similarly, let L j ( j ∈ J) be the minimal left ideals of K (and hence of S). The
intersections H i j = R i ∩ L j are H-classes of S and are isomorphic groups. For h ∈ H i j
and s ∈ S , we have hs ∈ R i and sh ∈ L j , due to the minimality of R i and L j . In other
words, S acts on the right on each R i and on the left on each L j . In fact, H i js = H i l
for some l ∈ J; i.e., S acts on the set of H-classes inside an R-class. When S = K , the
above facts may be easily seen from the classic structure theorem outlined below.

Let T be a semigroup, let I and J be two index sets, and let P = (p j, i) be a J × I
matrix with entries from T . The Rees matrix semigroup S =M[T ; I, J; P] is the set
I × T × J with multiplication

(i , u, j)(k, v , m) = (i , up j,kv , m).

The Rees–Suschkewitsch theorem [9, Theorem 3.3.1] states that a semigroup S is
completely simple if and only if it is isomorphic to some M[G; I, J; P] where G is
a group. Furthermore, in this situation, P can be chosen to be in normal form, i.e.,
to satisfy p1, i = p j,1 = 1G for all i ∈ I and j ∈ J; here, 1 ∈ I ∩ J should be viewed as an
arbitrary fixed element of both I and J .

Semigroup actions are representations of semigroups by transformations of sets.
More precisely, a right action of a semigroup S on a set A is a map A× S → A, (a, s) ↦
as, such that (as)t = a(st) for all a ∈ A and s, t ∈ S. If S is a monoid and a1 = a for all
a ∈ A, then we have a monoid action. In either case, we say that A is a right S-act. If A
is a right S-act, there is a natural associated monoid action of S1 on A; we will make
use of this association without further comment throughout.

Let A be a right S-act. A subset B of A is called a subact of A if bs ∈ B for all b ∈ B and
s ∈ S; that is, B = BS1 . A subset U of an A is a generating set for A if A = US1; A is said
to be finitely generated if it has a finite generating set and monogenic if it has a one-
element generating set. An equivalence relation ρ on A is a congruence if (a, b) ∈ ρ
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implies (as, bs) ∈ ρ for all s ∈ S. For X ⊆ A× A, the congruence generated by X is the
smallest congruence on A containing X; we denote this congruence by ⟨X⟩.
Lemma 2.1 [10, Lemma I.4.37] Let S be a semigroup, let A be a right S-act, and let X
be a subset of A× A. For any a, b ∈ A, we have (a, b) ∈ ⟨X⟩ if and only if either a = b or
there exists a sequence

a = x1s1 , y1s1 = x2s2 , . . . , ynsn = b,

where (x i , y i) ∈ X or (y i , x i) ∈ X , and s i ∈ S1 , for all i ∈ {1, . . . , n}.

A sequence of the form given in Lemma 2.1 is referred to as an X-sequence of length
n from a to b; if a = b, we say that there is an X-sequence of length 0 from a to b.

Every semigroup S is a right S-act via right multiplication. The subacts of this right
S-act are precisely the right ideals of S , and its congruences are the right congruences
on S . Left/right dualizing the preceding discussion, we arrive at the notion of left
semigroup acts and their basic properties.

3 Pseudo-finiteness: introduction

Previously, the notion of pseudo-finiteness has only been considered for semigroups.
However, we will see that it is both natural and useful to define this notion for S-acts
as well.

3.1 Fundamental definitions

Let S be a semigroup, and let A be a right S-act. Consider a set X ⊆ A× A such that
ωA = ⟨X⟩, where ωA denotes the universal relation on A. For any a, b ∈ A, let dX(a, b)
denote the smallest n ∈ N0 such that there is an X-sequence of length n from a to b. It
is easy to see that dX ∶ A× A → N

0 is a metric.

Definition 3.1 Let S be a semigroup, and let A be a right S-act.
• If ωA = ⟨X⟩, we call the diameter of the metric space (A, dX) the X-diameter of A

and denote it by D(X , A); in other words,

D(X , A) = sup{dX(a, b) ∶ a, b ∈ A}.

• If ωA is finitely generated, we define the diameter of A to be

D(A) = min{D(X , A) ∶ ωA = ⟨X⟩, ∣X∣ < ∞}.

• We say that A is pseudo-finite if it has finite diameter.

Note that if X and Y are two finite generating sets for ωA, then D(X , A) is finite
if and only if D(Y , A) is finite; the proof of this fact is essentially the same as that of
[5, Lemma 2.5].

Definition 3.2 Let S be a semigroup.
• If ωS = ⟨X⟩, the right X-diameter of S , denoted by Dr(X , S), is the X-diameter of S

considered as a right S-act.
• If ωS is finitely generated, the right diameter of S , denoted by Dr(S), is the diameter

of S considered as a right S-act.
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• We say that S is right pseudo-finite if it has finite right diameter (or, equivalently, S
is pseudo-finite as a right S-act).

We dually define the notions of left X-diameter of S and left diameter of S , denoted
by D l(X , S) and D l(S), respectively, and the notion of S being left pseudo-finite. In
a subsequent paper, we will explore the notion of diameter in more detail, but it is
convenient to have this terminology to draw upon here.

3.2 Finiteness conditions

It is clear that being right pseudo-finite is a semigroup finiteness condition, in the
sense that every finite semigroup is right pseudo-finite. In fact, for some classes of
semigroups, right pseudo-finiteness is equivalent to being finite. Most notably, this is
the case for groups, as noted in [5], referring back to [16]. In fact, a more general result
is stated at the end of Section 4 of [16], which we prove here for completeness.

A semigroup S is said to be weakly left cancellative if for any a, b ∈ S the set
{s ∈ S1 ∶ a = bs} is finite. Weakly right cancellative semigroups are defined dually. The
class of weakly left cancellative semigroups includes all left cancellative semigroups (a
semigroup S is left cancellative if ab = ac implies b = c for all a, b, c ∈ S) and hence all
groups.

Proposition 3.3 [16, Section 4] A weakly left cancellative semigroup S is right pseudo-
finite if and only if it is finite.

Proof We have already remarked that being right pseudo-finite is a finiteness
condition, so we only need to prove the direct implication. Let ∅ ≠ X ⊆ S be a finite
generating set for ωS , and let Dr(X , S) = n. For c, d ∈ S , denote the set {s ∈ S1 ∶ c = ds}
by [c ∶ d]. Each [c ∶ d] is finite by assumption. Fix b ∈ S . We define sets U i ⊆ S1

recursively as follows:

U1 = ⋃
x∈X

[b ∶ x], U i = ⋃
x , y∈X

⋃
u∈U i−1

[yu ∶ x] (i ≥ 2).

Since X is finite, by an easy induction argument, we have that each U i is finite. Let
U = ⋃n

i=1 U i , and let V denote the finite set XU . We claim that S = V . Indeed, let
a ∈ S . Then there exists an X-sequence

b = x1s1 , y1s1 = x2s2 , . . . , yk sk = a,

where k ≤ n. We have that s1 ∈ [b ∶ x1] ⊆ U1 , and hence s2 ∈ [y1s1 ∶ x2] ⊆ U2 . Continu-
ing in this way, we deduce that sk ∈ Uk ⊆ U , and hence a = yk sk ∈ V , as required. ∎

The next result, following similar lines, is framed in terms of the so-called Green’s
∗-equivalences. The equivalence relation L∗ on a semigroup S , introduced in [11],
is defined by the rule that (a, b) ∈ L∗ if and only if a, b are L-related in some
oversemigroup T . We say that S is L∗-simple if it has a single L∗-class; R∗-simple
semigroups are defined analogously.

Proposition 3.4 An L∗-simple semigroup S is right pseudo-finite if and only if it is
finite.
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Proof Again, we just prove the direct implication. Since S is L∗-simple, by [13,
Theorem 1], there exists an oversemigroup T such that S is contained in a single L-
class of T . (One can take T to be the dual of the full transformation monoid on S1 , in
which maps are composed from right to left.)

Now, let n = Dr(S), and let X ⊆ S be a finite generating set for ωS such that
Dr(X , S) = n. For each pair x , y ∈ X , since x and y are L-related in T, we can choose
α(x , y) ∈ T such that x = α(x , y)y. Fix b ∈ S . The set

U = {α(x1 , y1) . . . α(xk , yk)b ∶ x i , y i ∈ X , k ≤ n} ⊆ T

is finite since it consists of products of a finite number of elements of length at most
n + 1. We claim that S ⊆ U . Indeed, for any a ∈ S, there exists an X-sequence

a = x1s1 , y1s1 = x2s2 , . . . , yk sk = b,

where k ≤ n. Letting α i = α(x i , y i), we have that

a = x1s1 = α1 y1s1 = α1x2s2 = α1α2 y2s2 = ⋅⋅⋅ = α1 . . . αk yk sk = α1 . . . αk b ∈ U ,

as required. ∎

Remark 3.5 There is an intriguing connection between Propositions 3.1 and 3.2. On
the one hand, there are considerable similarities in the structure of the proofs, even
though they deal with fairly different sets of assumptions. On the other hand, if the
single L-class of T in the proof of Proposition 3.4 happens to be the L-class of the
identity, then this implies that S is left cancellative, thus recovering a special case of
Proposition 3.3.

3.3 Diagonal acts

Given a semigroup S , one can define a right action of S on the set S × S by (a, b)c =
(ac, bc) for all a, b, c ∈ S . With this action, S × S is called the diagonal right S-act.
The diagonal left S-act is defined dually. Diagonal acts first appear, implicitly, in the
work of Bulman-Fleming and McDowell [1]. They were formally defined and studied
by Robertson et al. in [14], and the same authors then made use of this notion in
relation to wreath products [15]. The importance of diagonal acts for the theory of
right pseudo-finite semigroups is encapsulated in the following result.

Proposition 3.6 For a nontrivial semigroup S , the diagonal right S-act is finitely
generated if and only if S has right diameter 1. In particular, if the diagonal right S-act is
finitely generated, then S is right pseudo-finite.

Proof Suppose first that the diagonal right S-act is generated by a finite set U . This
means that, for any a, b ∈ S, there exist (u, v) ∈ U and s ∈ S1 such that (a, b) = (u, v)s.
But then, a = us, vs = b is a U-sequence of length 1, and hence Dr(S) = 1. Conversely,
if Dr(S) = 1, let X be a generating set for ωS such that Dr(X , S) = 1. Setting

U = {(x , y) ∶ (x , y) ∈ X or (y, x) ∈ X},

it follows readily that S × S = US1. ∎
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Gallagher [6, 7] systematically studied finitely generated diagonal acts, a class that
turns out to be quite rich and rather curious. As a source of examples, we summarize
his findings regarding certain monoids of transformations and binary relations.

Theorem 3.7 [7, Table 1] Let X be an infinite set.
(1) The monoid BX , consisting of all binary relations on X , has cyclic diagonal right act

and cyclic diagonal left act.
(2) The full transformation monoid TX has cyclic diagonal right act and cyclic diagonal

left act.
(3) The partial transformation monoid PX has cyclic diagonal right act and cyclic

diagonal left act.
(4) The monoid FX , consisting of all transformations on X whose kernel classes are

finite, has cyclic diagonal right act, but its diagonal left act is not finitely generated.

3.4 Basic properties

We begin this subsection by remarking that, given an S-act A, any finite generating
set for ωA is contained in one of the forms X × X for some finite set X ⊆ A. We shall
often abuse terminology by saying that ωA is generated by X, by which we mean that
ωA is generated by X × X. Similarly, we shall speak of the X-diameter of A, meaning
the (X × X)-diameter.

We now establish some basic results concerning pseudo-finiteness of acts and
semigroups.

Lemma 3.8 Let S be a semigroup. Every pseudo-finite right S-act is finitely generated.
In particular, if S is right pseudo-finite, then it is finitely generated as a right ideal.

Proof Let A be a pseudo-finite right S-act. If A is trivial, then it is certainly finitely
generated, so suppose that A has at least two elements. There exists X ⊆ A such that
A has finite X-diameter. Let a ∈ A, and pick any b ∈ A, b ≠ a. Then there exists an X-
sequence of positive length connecting a to b, so that a = xs for some x ∈ X and s ∈ S1 .
Thus, A is generated by X . ∎
Lemma 3.9 Let S be a semigroup. Let A be a finitely generated right S-act, and let B be
a subact of A. If B is pseudo-finite, then so is A.

Proof We have that A = US1 for some finite set U ⊆ A. Suppose that ωB = ⟨X⟩ for
some finite set X ⊆ B. Since B is pseudo-finite, the X-diameter D(X , B) is finite. For
any a ∈ A, there exist some u ∈ U and s ∈ S1 such that a = us. Then xs ∈ B for any
x ∈ X . It follows that ωA = ⟨Y⟩, where Y = X ∪ U , and that D(Y , A) ≤ D(X , B) + 2.
Thus, D(A) ≤ D(Y , A) is finite, and hence A is pseudo-finite. ∎
Lemma 3.10 Let S be a semigroup. Let A be an S-act, and let B be a homomorphic
image of A. If A is pseudo-finite, then so is B.

Proof Let ωA = ⟨X⟩ for some finite set X ⊆ A. Since A is pseudo-finite, the X-
diameter D(X , A) is finite. Let θ ∶ A → B be a surjective homomorphism, and let
Y = Xθ . Applying θ to any X-sequence yields a Y-sequence of the same length. It
follows that ωB = ⟨Y⟩ and that D(Y , B) ≤ D(X , A). Thus, D(B) ≤ D(Y , B) is finite,
and hence B is pseudo-finite. ∎
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Lemma 3.11 Suppose that S is a subsemigroup of T, and let A be a T-act. If A is pseudo-
finite as an S-act, then it is also pseudo-finite as a T-act.
Proof For any X ⊆ A× A, every X-sequence where A is regarded as an S-act is also
an X-sequence with A regarded as a T-act. ∎

Turning to right pseudo-finiteness of semigroups, a similar argument to that of
Lemma 3.10 proves the following lemma.
Lemma 3.12 [5, Proposition 4.1] Let S be a semigroup, and let T be a homomorphic
image of S . If S is right pseudo-finite, then so is T .
Lemma 3.13 If S is right pseudo-finite semigroup, then so is S1 .
Proof The S1-act S1 contains S as a subact. This subact is pseudo-finite by Lemma
3.11, and hence S1 is right pseudo-finite by Lemma 3.9. ∎

The converse of the previous lemma is not true. For instance, let S be any semigroup
with zero that is not finitely generated as a right ideal (such as the infinite semilattice
S with zero in which st = 0 for any s ≠ t). Then S is not right pseudo-finite by Lemma
3.8. However, S1 is right pseudo-finite by [5, Corollary 2.15], since it is a monoid with
zero.

4 Pseudo-finiteness and ideals

We saw in Section 3.2 that for certain classes of semigroups, notably groups, right
pseudo-finiteness is equivalent to finiteness. On the other hand, as noted before, any
monoid S with a zero is right pseudo-finite. We have already remarked that having a
zero is the same as having a trivial minimal ideal. It is relatively easy to see that the
assumption that S be a monoid can be weakened to S being finitely generated as a
right ideal, and the assumption of the existence of a zero can be replaced with a finite
minimal ideal (see also [5, Corollary 8.2 and Remark 8.9]).

The foregoing discussions point to the following natural question: under what
conditions, and in what ways, the presence of a minimal ideal implies right pseudo-
finiteness of the semigroup. This will be one of the guiding questions throughout this
paper. The following easy general result, which relates right pseudo-finiteness of a
monoid with pseudo-finiteness of its right ideals and acts, will prove invaluable in
these considerations.
Proposition 4.1 The following are equivalent for a monoid S:
(1) S is right pseudo-finite.
(2) S has a right ideal that is pseudo-finite as a right S-act.
(3) Every principal right ideal of S is pseudo-finite as a right S-act.
(4) Every finitely generated right ideal of S is pseudo-finite as a right S-act.
(5) Every monogenic right S-act is pseudo-finite.
(6) Every finitely generated right S-act is pseudo-finite.
Proof The implications (6)⇒(4)⇒(2) and (6)⇒(5)⇒(3)⇒(2) are straightforward,
and an application of Lemma 3.9 yields (2)⇒(1).

(1)⇒(6). Let A be a finitely generated S-act. We claim that the diameter D(A) of A
is at most 2Dr(S) + 1, which is finite since S is right pseudo-finite. Let X ⊆ S be a finite
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generating set for ωS such that Dr(X , S) = Dr(S). Now, let U be a finite generating
set for A and put V = U X1 . Let a, b ∈ A. Then a = us and b = vt for some u, v ∈ U and
s, t ∈ S . By assumption, we have an X-sequence

s = x1s1 , y1s1 = x2s2 , . . . , yk sk = 1,

where k ≤ Dr(S). Hence, we have a V-sequence

a = (ux1)s1 , (uy1)s1 = (ux2)s2 , . . . , (uyk)sk = u

from a to u. Similarly, there exists a V-sequence from b to v of length at most Dr(S).
Since u, v ∈ V , we conclude that a and b can be connected by a V-sequence of length
at most 2Dr(S) + 1, as required. ∎

Combining Lemma 3.11 and Proposition 4.1, we have the following corollary.

Corollary 4.2 Let S be a monoid, and let I be a right ideal of S . If I is right pseudo-finite
(as a semigroup), then S is right pseudo-finite.

Consider a right ideal I of a monoid S . If I has an identity, then it is a retract of S .
Indeed, letting 1I denote the identity of I, define a map θ ∶ S → I by sθ = 1Is. For any
s, t ∈ S , we have

(st)θ = 1I(st) = (1Is)t = ((1Is)1I)t = (1Is)(1I t) = (sθ)(tθ),

so θ is a homomorphism. Clearly, θ∣I is the identity map on I, so θ is a retraction, as
required. (In fact, the converse also holds: if I is a retract of S via a retraction θ ∶ S → I,
then I has identity 1S θ .) From this observation and Lemma 3.12, along with Corollary
4.2, we deduce the following corollary.

Corollary 4.3 Let S be a monoid, and let I be a right ideal of S that has an identity.
Then S is right pseudo-finite if and only if I is right pseudo-finite.

Going in the converse direction, we may wonder in what situations right pseudo-
finiteness of a semigroup implies the existence of minimal ideals, or even minimal
ideals of a certain kind. This is certainly the case in all instances where right pseudo-
finiteness implies finiteness, as discussed in Section 3.2, since we noted earlier that a
finite semigroup must possess a completely simple minimal ideal. Furthermore, if S
is right pseudo-finite with exactly one minimal left ideal L and exactly one minimal
right ideal R, then by [3, Theorem 4.2] we have that L = R is the minimal ideal of S
and is also a group. It follows from Corollary 4.3 and Proposition 3.3 that this group
must be finite.

Returning to various natural semigroups with cyclic diagonal acts encountered in
Theorem 3.7, we remark that the monoids BX , PX , and TX each have a completely
simple minimal ideal. Indeed, the former two both contain a zero element, and the
minimal ideal of TX is a right zero semigroup, consisting of all the constant maps on
X (this minimal ideal is infinite since X is infinite). The monoid FX turns out to be
bisimple, meaning that it has a single D-class, and hence regular (since any bisimple
monoid is regular). (The proof that FX is bisimple is essentially the same as the proof
that the similarly defined monoidM(X) is bisimple [see [4, Section 8.6]]. We note that
M(X) = FX when X is countable.) The monoidFX is not completely simple; indeed, it
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can be easily deduced from the Rees–Suschkewitsch representation, given in Section 2,
that a monoid is completely simple if and only if it is a group, and FX is certainly not
a group. Thus, there exist right pseudo-finite (regular) monoids with minimal ideals
that are not completely simple.

Given any infinite set X , the Baer–Levi semigroup

BLX = {α ∈ TX ∶ α is injective, ∣X/Xα∣ = ∣X∣}
is a right simple, right cancellative semigroup without idempotents (so certainly not
completely simple) [4, Theorem 8.2], and is right pseudo-finite [12, Remark 7.3]. It
can be easily shown that BLX is the minimal ideal of the monoid InjX of all injective
mappings on X . Thus, by Corollary 4.2, we have the following proposition.

Proposition 4.4 For any infinite set X , the monoid InjX is right pseudo-finite.

Remark 4.5 Let X be an infinite set. The monoid InjX is R∗-simple since it coincides
with the R-class of the identity of TX . It follows from the dual of Proposition 3.4 that
no infinite subsemigroup of InjX is left pseudo-finite.

From the preceding discussion, a potentially intricate landscape begins to emerge,
relating the property of pseudo-finiteness with the existence and/or nature of minimal
ideals. The aim of this paper is to provide an in-depth exploration of this landscape.

5 Completely simple minimal ideals

For the remainder of the paper, we focus on monoids, since if S is right pseudo-
finite/has a minimal ideal, then the same properties are true of S1. In this section,
we discuss the relationship between the property of being right pseudo-finite and
the existence of a completely simple minimal ideal. We first establish a result that
characterizes right pseudo-finiteness in the presence of a completely simple minimal
ideal. We then discover various classes of semigroup for which being right pseudo-
finite implies the existence of such an ideal.

The following result provides two necessary and sufficient conditions for a monoid
with a completely simple minimal ideal to be right pseudo-finite. The first is new,
whereas the second was indicated in [5, Remark 8.9] where it was noted that the results
of that section, which concerned the universal left congruence being finitely generated,
could be modified to the (left) pseudo-finite case. In fact, the modifications in this
instance are significant, and we give a direct argument below.

The statement features the action of a semigroup on the H-classes in a minimal
right ideal; this was introduced in Section 2.

Theorem 5.1 Let S be a monoid with a completely simple minimal ideal K . Then the
following three statements are equivalent.
(1) S is right pseudo-finite.
(2) S satisfies the following two conditions:

(a) There exists a (completely simple) left ideal K0 of K such that K0 is the union of
finitely many L-classes and K 1

0 is right pseudo-finite.
(b) For any R-class R of K , the right S-act R/H is pseudo-finite.

(3) S satisfies the following two conditions:
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(a) There exists a left ideal K0 of K such that K0 is the union of finitely many L-
classes and any maximal subgroup G = He of K0 has finite (F ∪ V)-diameter,
where F ⊆ G is finite and

V = { f g ∶ f , g ∈ E(K0), f R e L g} ⊆ G .

(b) For any R-class R of K , the right S-act R/H is pseudo-finite.

Proof (1)⇒(2). We first prove that (2a) holds. Let X ⊆ S be a finite generating set
for ωS , and let n = D(X , S). Fix an idempotent e ∈ K . We may assume that e ∈ X . Let
V = {ex ∶ x ∈ X} ⊆ Re , and let

K0 = ⋃
v∈V

Lv .

Let

Y = {1, ex ∶ x ∈ X} ∪ (E(K0) ∩ Re) ⊆ (K0 ∩ Re)1 .

Clearly, Y is finite. We claim that the Y-diameter of K 1
0 is no more than 2n + 3. Indeed,

let a, b ∈ K0 . Let f be the idempotent in the H-class of ea, and let g be the idempotent
in the H-class of eb. Then f , g ∈ E(K0) ∩ Re ⊆ Y . Now, there exists an X-sequence

a = x1s1 , y1s1 = x2s2 , . . . , yk sk = f

in S , where k ≤ n. Therefore, we have a Y-sequence

a = 1a, ea = ea f = (ex1)(s1 f ), (e y1)(s1 f ) = (ex2)(s2 f ), . . . , (e yk)(sk) f = e f 2 = f

in K0 that has length k + 1. Similarly, there exists a Y-sequence of length at most n + 1
from b to g . Since f , g ∈ Y , we conclude that there exists a Y-sequence of length at
most 2n + 3 from a to b, as required.

For (2b), let R be any R-class of K . Then R is a pseudo-finite as a right S-act by
Proposition 4.1, and hence the quotient R/H is pseudo-finite by Lemma 3.10.

(2)⇒(3). Condition (3b) is identical to (2b), so we just need to prove that (3a) holds.
Let K0 be as given in (2a). In particular, K0 is the union of finitely many L-classes.
Consider a maximal subgroup G = He of K0 . Let T = K 1

0 . Since T is right pseudo-
finite, there exists a finite set Y ⊆ T such that ωT = ⟨Y⟩ and the Y-diameter of T is
finite, say n. Let F = {e , e ye ∶ y ∈ Y}, and let X = V ∪ F where V is as given in the
statement. Clearly, F is finite, but V may be infinite. We claim that ωG = ⟨X⟩ and that
X-diameter of G is no greater than 3n. Indeed, let u, v ∈ G . Then there exists a Y-
sequence

u = x1 t1 , y1 t1 = x2 t2 ,⋯, yk tk = v(5.1)

in T , where k ≤ n. Let x′i = ex i e , y′i = e y i e , t′i = et i e , let e i , f i , g i be the idempotents
in the H-classes of ex i , e y i , t i e , respectively, and let a i = e i g i and b i = f i g i . The
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elements are arranged in the following egg-box pattern.

e , x′i , y′i
t′i , a i , b i

⋅⋅⋅ ex i , e i e y i , f i ⋅⋅⋅

⋮
t i e , g i
⋮

Note that x′i , y′i ∈ F and a i , b i ∈ V . We claim that we have a sequence

u = x′1a1 t′1 , y′1b1 t′1 = x′2a2 t′2 ,⋯, y′k bk t′k = v .(5.2)

To see this, observe that

x′i a i t′i = (ex i e)(e i g i)(et i e) = (ex i)(ee i)(g i e)(t i e) = (ex i)e i g i(t i e) = (ex i)(t i e).

Similarly, we have y′i a i t′i = (e y i)(t i e). Thus, multiplying the sequence (5.1) both on
the left and right by e yields the sequence (5.2). Now, for each i ∈ {1, . . . , k}, there
exists an X-sequence

x′i a i t′i = x′i(a i t′i), e(a i t′i) = a i t′i , b i t′i = e(b i t′i), y′i(b i t′i) = y′i b i t′i ,

which has length 3. We conclude that there exists an X-sequence of length no greater
than 3n from u to v , as required.

(3)⇒(1). Fix e ∈ K0, and let R = Re . By Proposition 4.1, it suffices to prove that R
is pseudo-finite as a right S-act. Let G = He . By (3a), G has finite (F ∪ V)-diameter,
say n, where F and V are as given in the statement. By (3b), the quotient A = R/H =
{[a]H ∶ a ∈ R} is pseudo-finite. Let ωA = ⟨Y⟩ for some finite set Y ⊆ A, and let m
be the Y-diameter of A. For each y ∈ Y , choose xy ∈ R such that y = [xy]H , and let
X = {xy ∶ y ∈ Y}. We claim that ωR is generated by the finite set

Z = F ∪ (E(K0) ∩ R) ∪ X ,

and that the Z-diameter of R is no greater than 2n(m + 1) + m.
We first claim that for any u, v ∈ R such that uH v , there exists a Z-sequence of

length no greater than 2n from u to v . Indeed, let u and v be as given above. If u = v,
then we are done, so assume that u ≠ v . Let h be the idempotent in Hu = Hv . We have
that ue , ve ∈ G , so there exists an (F ∪ V)-sequence

ue = u1s1 , v1s1 = u2s2 , . . . , vk sk = ve ,

where k ≤ n. Since eh = h and uh = u, vh = v , multiplying the above sequence on the
right by h, we obtain an (F ∪ V)-sequence

u = u1s1h, v1s1h = u2s2h, . . . , vk sk h = v .

If u i , v i ∈ F for all i ∈ {1, . . . , k}, then we have an F-sequence from u to v , and we
are done. So suppose otherwise, and consider (w , z) ∈ {(u i , v i), (v i , u i)} such that
w ∈ V . Then w = f g where f , g ∈ E(K0) and f R e L g . Since e , f ∈ E(K0) ∩ R, we
have a Z-sequence

ws i h = f (gs i h), e(gs i h) = es i h.
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If z ∈ V , then, by the same argument, there exists a Z-sequence of length 1 from zs i h
to es i h. Otherwise, if z ∈ F , then clearly we have a Z-sequence of length 1 from zs i h to
es i h. It follows that there is a Z-sequence of length 2 from ws i h to zs i h. We conclude
that there is a Z-sequence of length no greater than 2n from u to v , establishing the
claim.

Now let a, b ∈ R. Then [a]H , [b]H ∈ A, so there exists a Y-sequence

[a]H = y1 t1 , z1 t1 = y2 t2 , . . . , z l t l = [b]H ,

where y i , z i ∈ Y , t i ∈ S1 and l ≤ m. Letting x i = xy i and x′i = xz i , we deduce that

aH x1 t1 , x′1 t1 H x2 t2 , . . . , x′l t l H b.

Note that x i , x′i ∈ X . By the above claim, for each pair (u, v) in

{(a, x1 t1), (x′i t i , x i+1 t i+1), (x′l t l , b) ∶ 1 ≤ i ≤ l − 1},

there exists a Z-sequence of length no greater than 2n from u to v . By interleaving
these sequences with single steps from x i t i to x i t′i , we obtain a Z-sequence of length
no greater than 2n(m + 1) + m from a to b. This completes the proof. ∎

Corollary 5.2 Let S be a right pseudo-finite monoid with a completely simple minimal
ideal K . If K has finitely many R-classes, then its maximal subgroups are finite.

Proof By Theorem 5.1, there exists a left ideal K0 of K such that K0 is the union of
finitely many L-classes and any maximal subgroup G = He of K0 has finite (F ∪ V )-
diameter, where F ⊆ G is finite and

V = { f g ∶ f , g ∈ E(K0), f R e L g}.

Since every maximal subgroup of K is isomorphic to G , it suffices to prove that G is
finite. Since K0 is completely simple (and hence regular), Green’s relation R on K0
is the restriction of Green’s relation R on K [9, Proposition 2.4.2]. Therefore, since
K has finitely many R-classes, so does K0 . Since K0 has finitely many L-classes, we
conclude that K0 is the union of finitely many maximal subgroups. Thus, E(K0) is
finite. It follows that V is finite. Since F is finite, we have that F ∪ V is finite, and hence
G is right pseudo-finite. Then G is finite by Proposition 3.3. ∎

Remark 5.3 If a monoid S has a completely simple minimal ideal K whose maximal
subgroups are finite, then S clearly satisfies condition (3a) of Theorem 5.1 (where K0
can be taken to be any L-class of K), so S is right pseudo-finite if and only if for any
R-class R of K the right S-act R/H is pseudo-finite.

Remark 5.4 It is possible for a right pseudo-finite monoid to have a completely
simple minimal ideal that has finitely many R-classes and infinitely many L-classes.
Indeed, as discussed in Section 3, the full transformation monoid TX on an infinite set
X is right pseudo-finite and has a minimal ideal that is an infinite right zero semigroup,
which has a single R-class and infinitely many L-classes.

Specializing Theorem 5.1 to completely simple semigroups with 1 adjoined, we
obtain the following corollary.
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Corollary 5.5 Let K be a completely simple semigroup, and let S = K 1 . Then S is right
pseudo-finite if and only if:
(1) K has finitely many L-classes; and
(2) any maximal subgroup G = He of K has finite (F ∪ V)-diameter, where F ⊆ G is

finite and V = { f g ∶ f , g ∈ E(K), f R e L g}.

Proof Notice that the action of a completely simple semigroup K on R/H, where
R is an R-class, satisfies the following property: if [x]H , [y]H ∈ R/H, then for any
s ∈ K we have [x]Hs = [y]Hs. It follows that every equivalence relation on the S-
act R/H is a congruence, or, in other words, the congruence generated by a set is
the smallest equivalence relation containing that set. Hence, the full congruence is
finitely generated only if R/H is finite. The rest of the proof is a direct application of
Theorem 5.1. ∎

Remark 5.6 As discussed in Section 2, every completely simple semigroup can be
represented as a Rees matrix semigroup K =M[G; I, J; P], where G is a group and
P is normal, meaning that p1, i = p j,1 = 1G for all i ∈ I, j ∈ J , where 1 ∈ I ∩ J . In this
representation, assuming without loss of generality that e = (1, 1G , 1), the set { f g ∶
f , g ∈ E(K), f R e L g} corresponds to the set of entries {p j, i ∶ i ∈ I, j ∈ J} (see the
proof of [9, Theorem 3.2.3]). If this set of entries comprises the whole of G , and if J is
finite, Corollary 5.5 implies that S = K 1 is right pseudo-finite. Specializing further, if
we take an infinite group G, take I such that ∣I∣ = ∣G∣, set J = {1, 2}, and populate the
second row of P with all the elements of G , we obtain a right pseudo-finite semigroup
with a completely simple ideal that has infinite maximal subgroups.

In what follows, we consider some conditions on right pseudo-finite monoids that
imply the existence of a completely simple minimal ideal.

Proposition 5.3 of [5] provides necessary and sufficient conditions for an inverse
monoid to be right pseudo-finite. An immediate consequence is the following.

Proposition 5.7 An inverse monoid is right pseudo-finite if and only if it has a minimal
ideal that is a finite group.

A semigroup is said to be completely regular if it is a union of groups. The class
of completely regular semigroups includes completely simple semigroups, Clifford
semigroups, and bands. By [5, Corollary 8.3], we have the following proposition.

Proposition 5.8 Every right pseudo-finite completely regular monoid has a completely
simple minimal ideal.

A regular semigroup is said to be orthodox if its idempotents form a subsemigroup.
We note that all inverse semigroups are orthodox, but the converse is not true;
moreover, orthodox semigroups need not be completely regular, and vice versa.

The proof of Theorem 5.10 makes use of some techniques from classical semigroup
theory. We explain them as we come across them, with the exception of the following
construction of a semilattice of subsemigroups, which we will also need in Section 6.

Definition 5.9 A semigroup S is a semilattice Y of subsemigroups Sα , α ∈ Y , if (i) Sα ∩
Sβ = ∅ for all α ≠ β ∈ Y ; (ii) S = ⋃α∈Y Sα ; and (iii) Sα Sβ ⊆ Sαβ for all α, β ∈ Y .
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Notice that if S is a semilattice Y of subsemigroups, then Y is a homomorphic image
of S . Thus, if S is right pseudo-finite, then by Lemma 3.12 so is Y , and hence Y is forced
to have a zero by [5, Proposition 5.3]. It is worth remarking that a completely regular
semigroup is a semilattice of completely simple semigroups, which together with the
foregoing remark yields Proposition 5.8. For orthodox semigroups, we must work a
little harder.

Theorem 5.10 Let S be an orthodox monoid. Then the following are equivalent:
(1) S is right pseudo-finite.
(2) S has a completely simple minimal ideal K whose (maximal) subgroups are finite,

and the right S-act R/H is pseudo-finite for any R-class R of K .

Proof (1)⇒(2). Denoting by B the band of idempotents E(S) of S, we have that B
is a semilattice Y of rectangular bands Bα , α ∈ Y [9, Theorem 4.4.1]. Moreover, S/γ is
an inverse monoid, where γ is the least inverse congruence on S . It follows from [9,
equation (6.2.5)] that E(S/γ) ≅ Y . Now, S/γ is right pseudo-finite by Lemma 3.12, and
hence, by [5, Proposition 5.3], the semilattice Y has a least element 0. It follows that
the rectangular band B0 is the minimal ideal of B. Fix an idempotent e in B0 . We claim
that theL-class Le of S is a minimal left ideal. Clearly, it suffices to prove that Le is a left
ideal. So, let a ∈ Le and s ∈ S . Then a = ae and hence sa = sae . Let f be an idempotent
such that saL f . Then it follows that f = f e . Consequently, by the minimality of B0 ,
we have f ∈ B0 . From f = f e and the fact that B0 is a rectangular band, we obtain
f L e . It follows by transitivity that sa ∈ Le , as required. A dual argument proves that
the R-class Re is a minimal right ideal of S . Since S has both a minimal left ideal and
a minimal right ideal, it has a completely simple minimal ideal, say K .

To prove that the maximal subgroups of K are finite, we consider the map

φe ∶ S → S , a ↦ eae .

Since K is completely simple and the minimal ideal of S , it is clear that the image
of φe is He . Let a, b ∈ S . Since S is regular, there exist idempotents g , h ∈ E(S) such
that eaL g and hR be . But then, g , h ∈ B0 . Since B0 is a rectangular band, we have
geh = gh. Consequently, we have

(ab)φe = e(ab)e = (ea)(be) = (eag)(hbe) = (ea)(gh)(be)
= (ea)(geh)(be) = (eag)e(hbe) = (ea)e(be) = (eae)(ebe)
= (aφe)(bφe),

so that φe is a homomorphism. Thus, He is right pseudo-finite by Lemma 3.12, and
hence He is finite by Proposition 3.3.

By Theorem 5.1, the right S-act R/H is pseudo-finite for any R-class R of K .
(2)⇒(1). This follows from Remark 5.3. ∎

Example 5.11 In the case of orthodox monoids, we cannot make inferences about
finiteness of the minimal ideal, or of its constituent R- or L-classes. Indeed, let S
be any infinite right pseudo-finite orthodox monoid, e.g., an infinite group with a
zero adjoined. Let T be the extension by constants of S (see [8, p. 155]). Then T =
S ∪ I, where I = {cu ∶ u ∈ S} is a right zero semigroup (i.e. cu cv = cv ), and scu = cu ,
cus = cus . The semigroup T can be viewed concretely as follows: for s ∈ S, let ρs ∶
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S0 → S0 be the right translation by s, and let γs ∶ S0 → S be the constant mapping
with value s. Then T is isomorphic to the subsemigroup {ρs , γs ∶ s ∈ S} of TS0 . It
is clear that T is orthodox and that I is a (completely simple) minimal ideal with
infinitely many (trivial) L-classes. Since the action of S on I is pseudo-finite, it follows
from Proposition 4.1 that T is right pseudo-finite. Of course, we can extend S by
left constants, by embedding it into the subsemigroup {λs , γs ∶ s ∈ S} of the dual
transformation monoid T∗S0 , where λs is the left translation by S. Finally, we may
extend S by the rectangular band of left and right constants, by embedding into the
subsemigroup {(λs , ρs), (γs , γt) ∶ s, t ∈ S} of the direct product T∗S0 × TS0 ; this last
monoid is orthodox with infinitely many R- and L-classes in the minimal ideal, and
is both left and right pseudo-finite.

We now turn our attention to the class of J-trivial monoids. In what follows, a local
zero of an element a in a semigroup S is any idempotent e ∈ E(S) such that ae = ea = e .

Lemma 5.12 Let S be a J-trivial monoid, and let a ∈ S . An idempotent e ∈ E(S) is a
local zero of a if and only if e ≤J a.

Proof The forward implication is clear. For the converse, we have that e = sat for
some s, t ∈ S . Then e = e2 = esat. Thus, e R es, so e = es since R ⊆ J and S is J-trivial.
Then e = eat, so e R ea and hence e = ea. A dual argument proves that e = ae . ∎
Theorem 5.13 Let S be a J-trivial monoid in which every element has a local zero. Then
S is right pseudo-finite if and only if it has a zero.

Proof The reverse implication follows immediately from Corollary 4.2. For the
direct implication, let Dr(S) = n, and let X ⊆ S be a finite generating set for ωS such
that Dr(X , S) = n. For each u ∈ S , choose a local zero u∗ of u. Consider a ∈ S . There
exists an X-sequence

1 = x1s1 , y1s1 = x2s2 , . . . , yk sk = a,

where k ≤ n. Then x1 , s1 ∈ J1 , so x1 = s1 = 1 since S is J-trivial. Let e1 = y∗1 . Then
e1 ≤J y1 = y1s1 . Thus, if k = 1, then e1 ≤J a. Suppose that k > 1. For each i ∈ {1, . . . ,
k − 1}, let e i+1 = (y∗i+1e i)∗ . Let i ∈ {1, . . . , k − 1} and assume that e i ≤J y i s i . Then

s i+1 ≥J x i+1s i+1 = y i s i ≥J e i ,

so s i+1e i = e i . Then

y i+1s i+1 ≥J y∗i+1 y i+1s i+1e i = y∗i+1e i ≥J (y∗i+1e i)∗ = e i+1 .

Hence, by finite induction, we have that ek ≤J a. Now, the element ek depends only
on the elements y1 , . . . , yk ∈ X . Since X is finite and k ≤ n, it follows that there exists
a finite set V = {v1 , . . . , vm} ⊆ E(S) with the following property: for any a ∈ S, there
exists i ∈ {1, . . . , m} such that v i ≤J a. Setting z = v1 . . . vm , we have that z ≤J v i for
each i ∈ {1, . . . , m}, and hence z ≤J a for all a ∈ S . Thus, z is a zero of S . ∎

A semigroup S is said to be periodic if every monogenic subsemigroup of S is finite
(equivalently, for every a ∈ S, there exist q, r ∈ N such that aq+r = aq).

Corollary 5.14 A periodic J-trivial monoid S is right pseudo-finite if and only if it has
a zero.
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Proof Let a ∈ S be arbitrary. Since S is periodic, there exist q, r ∈ N such that aq+r =
aq . Then aq J aq+1 , so aq = aq+1 as S is J-trivial. It follows that aq is a local zero of a.
The result now follows from Theorem 5.13. ∎

In the remainder of this section, we consider a wide class of monoids that includes
all commutative monoids, namely right reversible monoids.

Definition 5.15 A monoid S is right reversible if for any a, b ∈ S there exist u, v ∈ S
such that ua = vb.

In addition to commutative monoids, the class of right reversible monoids contains
all inverse monoids, monoids in which the L-classes form a chain, monoids with a left
zero, and left orders in groups.

Before we proceed, we provide the following curious result, giving a sufficient con-
dition for right reversibility in terms of a generating set for the full right congruence.

Proposition 5.16 Let T be a right reversible submonoid of a monoid S . If ωS has a
generating set X ⊆ T , then S is right reversible.

Proof Let a, b ∈ S . Then there exists an X-sequence

a = x1s1 , y1s1 = x2s2 , . . . , yk sk = b,

where k ∈ N. We prove by induction on k that there exist u, v ∈ T such that ua =
vb. Suppose first that k = 1. Since x1 , y1 ∈ T and T is right reversible, there exist u,
v ∈ T such that ux1 = v y1 . Then ua = vb. Now, let k > 1 and assume that there exist
w , z ∈ T such that wa = z(xk sk). Since zxk , yk ∈ T and T is right reversible, there exist
u, v ∈ T such that uzxk = v yk and hence (uw)a = vb. ∎

If ωS is generated by a single pair of the form (1, s), the assumptions of Proposition
5.16 are satisfied with T the submonoid generated by s, and hence S is right reversible.

We now make a couple of technical definitions.

Definition 5.17 Let S be a monoid. We say that a subset V ⊆ S is an absorbing set for
S if for any a ∈ S there exist u, v ∈ V such that ua = v . We say that S is finitely absorbed
if it has a finite absorbing set.

Definition 5.18 We say that a monoid S has special right radius 2 if there exists a finite
set X ⊆ S such that for any a ∈ S we have an X-sequence

a = x1s1 , y1s1 = x2s2 , y2s2 = 1,

where x1 is right invertible.

It is clear that any monoid with special right radius 2 is right pseudo-finite. We
remark that monoids with right diameter 1 and monoids with zero have special right
radius 2.

We will later see how pseudo-finiteness interacts with right reversibility and the
property of being finitely absorbed. First, we show that the latter condition itself
implies that the monoid is right pseudo-finite (indeed, it satisfies the stronger property
of having special right radius 2).
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Definition 5.19 A monoid S is weakly right reversible if for any infinite sequence

Sa1 , Sa2 , . . .

of principal left ideals of S , there exist i , j ∈ N with i < j such that Sa i ∩ Saj ≠ ∅.

Proposition 5.20 The following are equivalent for a monoid S:
(1) S is finitely absorbed.
(2) S has a completely simple minimal ideal with finite R-classes.
(3) S is weakly right reversible and has special right radius 2.

Proof (1)⇒(2). Let V be a finite absorbing set of S . Observe that, for u, v ∈ V , if
ua = v, then v ≤L a. Since the set V is finite, we deduce that S has minimal left ideals;
the union of these minimal left ideals is the minimal ideal of S , say K . Choose w ∈ S
such that Lw is a minimal left ideal of S . Now, we have that w Lw i for all i ∈ N. Since
V is absorbing, for each i ∈ N, there exists (u i , v i) ∈ V such that u iw i = v i . But since
V is finite, we must have (u i , v i) = (u i+ j , v i+ j) for some i , j ≥ 1. Letting u = u i = u i+ j
and v = v i = v i+ j , we have that

vw j = uw iw j = uw i+ j = v .

Since v ≤L w , by the choice of w, we have that w L v , so that w = tv for some t ∈ S. It
follows that w = tvw j = w j+1 , so w is periodic and hence K contains an idempotent.
Thus, K is completely simple. For any a ∈ K , there exist u, v ∈ V such that ua = v ,
so (wu)a = wv . It follows that every element of K is L-related to some wv , where
(u, v) ∈ V for some u ∈ S . Hence, K has finitely many L-classes. Now, consider a
maximal subgroup G = He of K . For any g ∈ G , there exist u, v ∈ V such that ug = v .
Now, eue , eve ∈ G and so g = (eue)−1eve . Thus, G = {(eue)−1eve ∶ u, v ∈ V}. Since
V is finite, we conclude that G is finite. It follows that the R-classes of K are finite.

(2)⇒(3). Certainly, S is weakly right reversible. Let Re be an R-class in the
completely simple minimal ideal, and let X denote the finite set {1} ∪ Re . For any
a, b ∈ S , we have an X-sequence

a = 1a, ea = (ea)1, (1)1 = 1.

Thus, S has special right radius 2.
(3)⇒(1). By assumption, S has special right radius 2, so let X ⊆ S be a finite set

witnessing this property. Consider an arbitrary a ∈ S. Then there is an X-sequence

a = x1s1 , y1s1 = x2s2 , y2s2 = 1,(5.3)

where x1 is right invertible, say with x1 t = 1. Furthermore, clearly, y2 is right
invertible, with right inverse s2. Considering the sequence of principal right ideals
Sx2 y2 , Sx2 y2

2 , . . . and using the fact that S is weakly right reversible, there exist u, v ∈ S
and m, n ∈ N such that

ux2 ym+n
2 = vx2 ym

2 .

Similarly, having chosen v, there exist p, q ∈ S and i , j ∈ N such that

pv y1x i+ j
1 = qv y1x i

1 .
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Then

(pv y1x j−1
1 )a = pv y1x j

1 s1 = pv y1x i+ j
1 t i s1 = qv y1x i

1 t i s1 = qv y1s1 = qvx2s2

= qvx2 ym
2 sm+1

2 = qux2 ym+n
2 sm+1

2 = qux2 yn−1
2 .

Hence, the set of all elements pv y1x j−1
1 , qux2 yn−1

2 , as a runs through S, is an
absorbing set for S. In fact, this set can be chosen to be finite, by noticing that
the choices of individual factors u, v, p, and q and exponents j and n, featuring in
the above elements, which we have made along the way, depend only on the sequence
(x1 , y1 , x2 , y2) appearing in (5.3). There are only finitely many such sequences because
X is finite. Therefore, S is finitely absorbed, as required. ∎

The following result provides several equivalent characterizations for a monoid to
be both right pseudo-finite and right reversible.

Theorem 5.21 The following are equivalent for a monoid S:
(1) S is right pseudo-finite and right reversible.
(2) S is finitely absorbed and right reversible.
(3) S has a minimal ideal of the form L × G where L is a left zero semigroup and G is a

finite group.
(4) S is right pseudo-finite and has a single minimal left ideal.

Proof (1)⇒(2). Suppose that ωS is generated by a finite set X ⊆ S , and let n =
D(X , S). Let S be the set of sequences of elements of X of even length no greater
than 2n. Consider a sequence

(x1 , y1 , x2 , y2 ,⋯, xk , yk)

in S. Since S is right reversible, there exist u1 , v1 ,⋯, uk , vk ∈ S such that

u1x1 = v1 y1 , u2v1x2 = v2 y2 ,⋯, ukvk−1xk = vk yk .

Let

V = {uk⋯u2u1 , vk ∶ (x1 , y1 ,⋯, xk , yk) ∈ S};

notice that V is finite. We claim that V is an absorbing set of S. Indeed, let a ∈ S . Then
there exists an X-sequence

a = x1s1 , y1s1 = x2s2 ,⋯, yk sk = 1,

where k ≤ n. Let the elements u1 , v1 ,⋯, uk , vk be chosen as above. Then

u1a = u1x1s1 = v1 y1s1 .

Suppose for induction that

u i⋯u2u1a = v i y i s i .

Then

u i+1u i⋯u2u1a = u i+1v i y i s i = u i+1v i x i+1s i+1 = v i+1 y i+1s i+1 ,
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so that in a finite number of steps

uk⋯u2u1a = vk yk sk = vk ,

as required.
(2)⇒(3). By Proposition 5.20, S has a completely simple minimal ideal K with finite

R-classes. Let w ∈ K be arbitrary. By right reversibility, for any p ∈ K, there exist x , y ∈
S such that x p = yw . But then, pL x p = yw Lw . Thus, K = Lw . We conclude that K ≅
L × G where L is a left zero semigroup and G is a finite group.

(3)⇒(4). For any e ∈ L, the set {e} × G ≅ G is a finite right ideal of S . Therefore, by
Proposition 4.1, S is right pseudo-finite. It is obvious that L × G is a minimal left ideal.

(4)⇒(1). Let L be the minimal left ideal of S . Then L is the minimal ideal of S . Let
a, b ∈ S . Picking any u ∈ L, we have that ua, ub ∈ L. Since uaLub, there exists v ∈ L
such that vua = ub. Thus, S is right reversible. ∎

Corollary 5.22 Let M be a commutative monoid. Then M is right pseudo-finite if and
only if it has a minimal ideal that is a finite group.

Proposition 5.7 is also an immediate corollary of Theorem 5.21.

6 Minimal ideals

In this section, we show that if either of the partial orders ≤L or ≤J is left compatible
with multiplication in a right pseudo-finite monoid S, then S must have a minimal
ideal. Each of these two results is derived as a corollary of more technical necessary
and sufficient conditions for a right pseudo-finite monoid to have a minimal left ideal
or a minimal two-sided ideal. For clarity, in what follows, the relation ≤L or ≤J always
denotes the relation ≤L or ≤J in the parent semigroup. The relation ≤L is always right
compatible with multiplication, but need not be left compatible; the relation ≤J need
not be either.

Theorem 6.1 Let S be a right pseudo-finite monoid. The following are equivalent:
(1) S has a minimal left ideal.
(2) S has a left ideal I such that ≤L ∩ (I × I) is left compatible with multiplication in S.
(3) For each a ∈ S, there exists k = ka ∈ S such that for any u, v ∈ S ,

u ≤L v implies that auk ≤L avk.

(4) ωS has a finite generating set X ⊆ S , and for each x ∈ X, there exists k = kx ∈ S such
that for any u, v ∈ S ,

u ≤L v implies that xuk ≤L xvk.

Proof (1)⇒(2) Choosing a minimal left ideal Sk of S, it is immediate from the
minimality of Sk that for any a ∈ S and u, v ∈ S, we have auk Luk L k L vk L avk,
whence (2) trivially holds.

(2)⇒(3) Let I be a left ideal satisfying the conditions of (2). Let k ∈ I and a ∈ S.
For any u, v ∈ S with u ≤L v, we have that uk ≤L vk, since ≤L is right compatible, and
clearly uk, vk ∈ I. By assumption, auk ≤L avk. Thus, (3) holds with ka = k for all a ∈ S .

(3)⇒(4) This is immediate.
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(4)⇒(1) Suppose that (4) holds. Let N = D(X , S). It is convenient to assume that
1 ∈ X (we can take k1 = 1). Let a ∈ S . There exists an X-sequence

a = x1 t1 , y1 t1 = x2 t2 , . . . , yn−1 tn−1 = xn tn , yn tn = 1,

where n ≤ N . Let s ∈ S . Then we have

as = x1s1 , y1s1 = x2s2 , . . . , yn−1sn−1 = xnsn , ynsn = s,

where s i = t i s for 1 ≤ i ≤ n. Certainly, s ≤L sn , so that xnskxn ≤L xnsn kxn . Suppose for
finite induction that, for some 1 < j ≤ n, we have

x jx j+1 . . . xnskxn . . . kx j+1 kx j ≤L x js j kxn . . . kx j+1 kx j .

Then, since x js j = y j−1s j−1 , we have

x jx j+1 . . . xnskxn . . . kx j+1 kx j ≤L s j−1kxn . . . kx j+1 kx j .

It follows that

x j−1x jx j+1 . . . xnskxn . . . kx j+1 kx j kx j−1 ≤L x j−1s j−1kxn . . . kx j+1 kx j kx j−1 .

By finite induction, we have

x1x2 . . . xnskxn . . . kx2 kx1 ≤L x1s1kxn . . . kx2 kx1 = askxn . . . kx2 kx1 .(6.1)

Hence, there is a finite set V ⊆ S × S with the following property: for any a ∈ S, there
exists (u, v) ∈ V such that

usv ≤L asv

for all s ∈ S . Enumerate the elements of V as (p1 , q1), . . . , (pm , qm), and let q =
q1 . . . qm . Let k ∈ {1, . . . , m} be such that pk q is minimal under ≤L among {p jq ∶ 1 ≤
j ≤ m}. We claim that L = Spk q is a minimal left ideal of S . Clearly, L is a left ideal,
so it suffices to prove that L is the L-class of pk q. So, let t be any element of S and
consider tpk q. There exists (p i , q i) ∈ V such that for any s ∈ S we have

p i sq i ≤L (tpk)sq i .

Taking s = q1 . . . q i−1 , we have

p i q1 . . . q i−1q i ≤L (tpk)q1 . . . q i−1q i .

Then, since ≤L is right compatible, multiplying on the right by q i+1 . . . qm , we obtain

p i q ≤L tpk q.

Then p i q ≤L pk q. Since pk q is minimal under ≤L among {p jq ∶ 1 ≤ j ≤ m}, we have
that p i qL pk q. It follows that tpk qL pk q. This completes the proof. ∎

Theorem 6.1 applies to any monoids such that uS ⊆ Su for any u ∈ S.

Corollary 6.2 Let S be a right pseudo-finite monoid. If ≤L is left compatible with
multiplication, then S has a minimal ideal that is the union of finitely many minimal
left ideals.

https://doi.org/10.4153/S0008414X2200061X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2200061X


On minimal ideals in pseudo-finite semigroups 2029

Proof Let X be as given in the statement of Theorem 6.1. Since ≤L is left compatible
by assumption, in (4) of the statement of Theorem 6.1, we can set kx = 1 for all x ∈ S .
Let

Q = {x1 . . . xn ∶ x i ∈ X , n ≤ N}.

Clearly, Q is finite. From equation (6.1) in the proof of Theorem 6.1 with s = 1, we
see that, for any a ∈ S, there exists some x = x1 . . . xn ∈ Q such that x ≤L a. It follows
that S has finitely many minimal left ideals (the union of which is the minimal ideal
of S). ∎

Corollary 6.2 yields another proof that a commutative pseudo-finite monoid must
have a minimal (left) ideal.

We now consider the existence of a minimal ideal in a right pseudo-finite monoid.

Theorem 6.3 Let S be a right pseudo-finite monoid. The following are equivalent:
(1) S has a minimal ideal.
(2) S has an ideal I such that ≤J ∩ (I × I) is left compatible with multiplication in I.
(3) For each a ∈ S, there exists k = ka ∈ S such that for any u, v ∈ S ,

u ≤J v implies that auk ≤J avk.

(4) ωS has a finite generating set X ⊆ S , and for each x ∈ X, there exists k = kx ∈ S such
that, for any u, v ∈ S ,

u ≤J v implies that xuk ≤J xvk.

Proof Suppose that (1) holds. The argument that (2) holds is as in Theorem 6.1.
Furthermore, letting k be any element of the minimal ideal of S , it is clear that (3)
holds with ka = k for all a ∈ S . Clearly, (3) implies (4).

To see that (2) implies (4), let I be the ideal witnessing (2). Let X be a finite
generating set of ωS . Replacing X with {1, w} ∪wX if necessary, where w ∈ I, we
can assume that X = {1} ∪ Y , where Y ⊆ I. It is clear that we can put k1 = 1. Now,
let y ∈ Y and fix k ∈ I. Let u, v ∈ S with u ≤J v, so that u = pvq for some p, q ∈ S.
Certainly, uk = pvqk and uk, vqk ∈ I with uk ≤J vqk. By assumption, yuk ≤J yvqk.
Furthermore, qk ≤J k and qk, k ∈ I, so that again by the compatibility assumption,
yvqk ≤J yvk. By transitivity of ≤J, we have yuk ≤J yvk and so (4) holds.

Suppose now that (4) holds. By essentially the same argument as the one in the
proof of (4)⇒(1) of Theorem 6.1, with s = 1 and ≤J instead of ≤L, we obtain a finite set
V ⊆ S with the following property: for any a ∈ S, there exists v ∈ V such that v ≤J a.
Enumerating the elements of V as q1 , . . . , qm and letting q = q1 . . . qm , it follows that
q ≤J a for all a ∈ S . Thus, Jq is the minimal ideal of S . ∎
Corollary 6.4 Let S be a right pseudo-finite monoid. If ≤J is left compatible with
multiplication, then S has a minimal ideal.

To see how Corollary 6.4 may be applied, let S be a semilattice Y of semigroups
Sα where the Sα are simple. It is easy to see that the Sα are the J-classes of S, and
that a ≤J b if and only if a ∈ Sα , b ∈ Sβ , and α ≤ β. (Here, we are using the natural
order in a semilattice given by x ≤ y if and only if x = x y = yx.) Since the order in the
semilattice is compatible, it is immediate that ≤J is compatible in S. This yields another
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proof that right pseudo-finite completely regular semigroups (including bands) must
have minimal ideals.

7 A Rees matrix semigroup extension

In this section, we introduce a construction, in the form of a specific ideal extension of
a Rees matrix semigroup, which is then used to exhibit a series of examples illustrating
our findings from the previous sections, and to explore their limitations. We first
introduce the construction in its most general form, and then give a special instance
of it that will be particularly useful in constructing various examples without minimal
ideals in the next section.

Construction 7.1 Let S and T be semigroups. Let I be a left S-act, and let J be a right S-
act. Let P = (p j, i) be a J × I matrix with entries from T such that p js , i = p j,s i for all i ∈
I, j ∈ J, and s ∈ S . Let M = S1 ∪M[T ; I, J; P]. Define a multiplication on M , extending
those on S1 and M[T ; I, J; P], as follows:

s(i , t, j) = (si , t, j) and (i , t, j)s = (i , t, js)

for all i ∈ I, j ∈ J , s ∈ S1, and t ∈ T . One can check by an exhaustive case analysis that
this multiplication is associative, and hence M is a monoid with identity 1. Here is a
sample case, in which the assumption p js , i = p j,s i is used:

((i , t, j)s)(k, u, l) = (i , t, js)(k, u, l) = (i , tp js ,ku, l) = (i , tp j,sku, l) = (i , t, j)(sk, u, l)

= (i , t, j)(s(k, u, l)).

We denote the monoid M by E(S , T ; I, J; P). We permit S to be empty in this
construction, in which case E(S , T ; I, J; P) is simply M[T ; I, J; P]1.

Remark 7.2 The above construction is closely related to another matrix construction,
introduced by Byleen [2]. Specifically, the monoid E(S , T ; I, J; P) can be found as
a subsemigroup inside some Byleen’s monoid C (U ; β, α; P)1 , where U, α, β are as
outlined below. First, let U = S ∪ T and define a multiplication on U, extending those
on S and T, by st = ts = s, for all s ∈ S, t ∈ T . Then U is a semigroup with subsemigroup
T and ideal S. The left (resp. right) action of S on I (resp. J) can be extended to
a left (resp. right) action β (resp. α) of U on I (resp. J) by setting ti = i, jt = j for
all i ∈ I, j ∈ J, and t ∈ T . It is then straightforward to check that all the conditions
are satisfied for forming the Byleen semigroup C (U ; β, α; P), as specified in [2]. Its
elements are I+J∗ ∪ I∗U J∗ ∪ I∗J+ [2, Lemma 1.1]. The monoid E(S , T ; I, J; P) embeds
into C (U ; β, α; P)1 via 1 ↦ 1, s ↦ s (s ∈ S), (i , t, j) ↦ it j (i ∈ I, j ∈ J, t ∈ T). This
observation can be used to avoid checking associativity above.

It turns out that the construction yields a plethora of pseudo-finite monoids. The
following result gives a sufficient condition for this to be the case. It is interesting to
compare it with Theorem 5.1, Corollary 5.5, and [5, Theorem 6.5], which all deal with
extensions of Rees matrix semigroups.

Theorem 7.3 Let M = E(S , T ; I, J; P). Suppose that the following conditions hold:
(1) T = T 1 X for some finite set X ⊆ T.
(2) There exists a finite subset J0 ⊆ J such that T = {p j, i ∶ j ∈ J0 , i ∈ I}.
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(3) There exists j0 ∈ J0 such that p j0 , i ∈ X for all i ∈ I.
(4) J is pseudo-finite as a right S-act.
Then M is right pseudo-finite.

Proof Without loss of generality, we may assume that ωJ is generated by J0 (other-
wise, given a finite generating set J1 ⊆ J of ωJ , let J′0 = J0 ∪ J1; then J′0 can replace J0
in conditions (2) and (3) of the statement of the result). Let d denote the J0-diameter
D(J0 , J), which is finite since J is pseudo-finite.

Fix i0 ∈ I. We prove that the right ideal K = {i0} × XT 1 × J of M is pseudo-finite as
a right M-act, from which it follows that M is right pseudo-finite by Lemma 3.9. Let
U = X ∪ X2 ∪ X3 , and let

H = {(i0 , u, j) ∶ u ∈ U , j ∈ J0}.

Since U and J0 are finite, so is H. We shall show that ωK is generated by H and that
D(H, K) ≤ d + 2. Let m = (i0 , xs, j), n = (i0 , yt, k) ∈ K , where x , y ∈ X and s, t ∈ T 1 .
We first claim that there exists some u ∈ U with an H-sequence of length no greater
than 1 from m to (i0 , u, j). If s ∈ X ∪ {1}, then m ∈ H, so we can just set u = xs.
Otherwise, by (1), we have s = s′z for some s′ ∈ T and z ∈ X . By (2), there exist j′ ∈ J0
and i ∈ I such that s′ = p j′ , i . We have an H-sequence

m = (i0 , x , j′)(i , z, j), (i0 , x , j0)(i , z, j) = (i0 , x p j0 , i z, j).

Since p j0 , i ∈ X by (3), setting u = x p j0 , i z establishes the claim. Similarly, there exists
some v ∈ U with an H-sequence of length no greater than 1 from n to (i0 , v , k). Now,
there exists a J0-sequence

j = j1s1 , k1s1 = j2s2 , . . . , k l s l = k,

where l ≤ d . Thus, we have an H-sequence

(i0 , u, j) = (i0 , u, j1)s1 , (i0 , v , k1)s1 = (i0 , v , j2)s2 , (i0 , v , k2)s2 = (i0 , v , j3)s3 ,
. . . , (i0 , v , k l)s l = (i0 , v , k).

We conclude that there exists an H-sequence of length no greater than d + 2 from m
to n, as required. ∎

Remark 7.4 The final example invoked in Example 5.11 can be explicitly realized as
E(S , T ; I, J; P), where T is trivial, the index sets are I = {is ∶ s ∈ S} and J = { js ∶ s ∈
S}, and the actions are given by tis = its , js t = jst(s, t ∈ S). The right pseudo-finiteness
follows from Theorem 7.3, and left pseudo-finiteness follows by duality.

Remark 7.5 In Theorem 5.21, we have seen that if a right pseudo-finite monoid
S has a unique minimal left ideal, then this has to be completely simple. We can
use our construction to show that there exists a right pseudo-finite monoid with
precisely two minimal left ideals, but the minimal ideal of which is not completely
simple. Indeed, take S to be empty, and let T be any left simple semigroup that is not
completely simple. For the index sets, take I = {it ∶ t ∈ T} and J = {1, 2}, and pick
the entries of P to ensure that one row is constant and the other contains all elements
of T . The semigroup E(S , T ; I, J; P) =M[T ; I, J; P]1 has a minimal two-sided ideal
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M[T ; I, J; P], which is a disjoint union of two minimal left ideals I × T × { j} ( j = 1, 2)
and is not completely simple.

Construction 7.6 Let S be a semigroup such that S = YS1 = S1Y for some finite set
Y ⊆ S (that is, S is finitely generated both as a right ideal and a left ideal). Let I = {is ∶
s ∈ S} ∪ {0}, and define right and left actions of S on I as follows:

is t = ist , tis = its , 0t = t0 = 0 (s, t ∈ S).

Fix x ∈ Y , and let P = (p i , j) be the I × I matrix with entries given by p0, i = p i ,0 = x for
all i ∈ I and p is , i t = st for all s, t ∈ S . It is easy to see that p i s , j = p i ,s j for all i , j ∈ I and
s ∈ S . We denote the monoid E(S , S; I, I; P) by E(S , x). In the case that S is a monoid,
we abbreviate E(S , 1S) to E(S).

Corollary 7.7 For any S and x as in Construction 7.6, the monoid E(S , x) is both right
and left pseudo-finite.

Proof Let M = E(S , x). We prove that M is right pseudo-finite; the proof of left
pseudo-finiteness is dual.

Let T = {x} ∪ S2 . Clearly, T is an ideal of S . Notice that the entries of P are precisely
the elements of T . Recalling Construction 7.1, let K = E(S , T ; I, I; P). It is easy to see
that K is an ideal of M . Therefore, by Corollary 4.2, it suffices to prove that K is right
pseudo-finite. We show that K satisfies the conditions of Theorem 7.3. Let X = {x} ∪
Y 2 ∪ Y 3 ⊆ T where Y is as given in Construction 7.6. Clearly, X is finite since Y is
finite. Using the fact that S = S1Y , we have that

S = Y ∪ SY = Y ∪ S1Y 2 = Y ∪ Y 2 ∪ SY 2 .

It follows that S2 ⊆ Y 2 ∪ Y 3 ∪ S2Y 2 ⊆ T 1 X . Thus, T = {x} ∪ S2 ⊆ T 1 X , and hence T =
T 1 X . Thus, condition (1) holds.

Now, consider t ∈ T . Then t = x or t ∈ S2 . In the former case, we have t = p0, i
for any i ∈ I. In the latter case, since S = YS1, it follows that t = ys for some s ∈ S ,
and hence t = p iy , is . Thus, condition (2) holds with J0 = {iy ∶ y ∈ X} ∪ {0}. Clearly,
(3) holds with j0 = 0. Finally, observe that the S-act I is finitely generated by J0 and
contains the trivial subact {0}, which is certainly pseudo-finite, so I is pseudo-finite
by Lemma 3.9. Hence, by Theorem 7.3, M is right pseudo-finite. ∎

8 No minimal ideal

In this section, we discuss pseudo-finite semigroups without minimal ideals. We have
already seen that it is possible for a right pseudo-finite semigroup to have a minimal
ideal that is not completely simple: the Baer–Levi semigroup BLX and the monoid
FX both have this property, as discussed in Section 4, as does the monoid constructed
in Remark 7.5.

Our first example of a pseudo-finite monoid with no minimal ideal will be another
transformation monoid.
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Example 8.1 Let X be an infinite set, let {X i ∶ i ∈ N} be a partition of X where ∣X i ∣ =
∣X∣ for each i ∈ N, and define

UX = {α ∈ TX ∶ X i α ⊆ ⋃
j≥i

X j for each i ∈ N}.

It can be easily shown that UX is a submonoid of TX . We claim that both the diagonal
right act and diagonal left act ofUX are cyclic, so thatUX is both right and left pseudo-
finite, but that UX has no minimal ideal.

We first prove that the diagonal right act of UX is cyclic. For each i ≥ N, let
{X iα , X iβ} be a partition of X i into two sets with cardinality ∣X∣, and let

α i ∶ X i → X iα , β i ∶ X i → X iβ

be bijections. Put

α = ⋃
i∈N

α i , β = ⋃
i∈N

β i ,

so that α, β ∈ UX . We claim that (α, β) generates the diagonal right act of UX . Indeed,
let (γ, δ) ∈ UX . Define θ ∈ TX by

xθ =
⎧⎪⎪⎨⎪⎪⎩

xα−1
i γ, if x ∈ X iα ,

xβ−1
i δ, if x ∈ X iβ .

It is clear that θ ∈ UX and that (γ, δ) = (α, β)θ , as required.
We now consider the diagonal left act of UX . For each i ∈ I, let

φ i ∶ X i →⋃
j≥i
((X i × X j) ∪ (X j × X i))

be a bijection, and put

φ = ⋃
i∈N

φ i ∶ X → X × X .

It is straightforward to show that φ is a bijection. Set α = φp1 and β = φp2 , where
p1 , p2 are the projections onto the first and second coordinates, respectively. We claim
that (α, β) generates the diagonal left act of UX . Indeed, let (γ, δ) ∈ UX . Define a map

θ ∶ X → X , x ↦ (xγ, xδ)φ−1 .

Consider any x ∈ X . Then x ∈ X i for some i ∈ N, and hence xγ ∈ X j and xδ ∈ Xk for
some j, k ≥ i . It follows from the definition of φ−1 that xθ ∈ Xm , where m = min( j, k).
Thus, θ ∈ UX . Furthermore, we have that

xγ = (xγ, xδ)p1 = (xγ, xδ)(φ−1φ)p1 = x(θα),

so γ = θα. Similarly, δ = θβ. Thus, (γ, δ) = θ(α, β), as required.
Finally, suppose for a contradiction that UX has a minimal ideal, and let α be

any element of the minimal ideal. Fix x ∈ X1 and let xα ∈ Xk . Choose β ∈ UX such
that Xβ ⊆ ⋃i≥k+1 X i . Now, there exist γ, δ ∈ UX such that α = γβδ. Since (xγ)β ∈
⋃i≥k+1 X i , we have that xα = ((xγ)β)δ ∈ ⋃i≥k+1 X i , contradicting the fact that xα ∈
Xk .
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A wealth of further examples can be obtained by utilizing the constructions from
the previous section, following this easy observation.

Proposition 8.2 For S , T , I, J, and P as in Construction 7.1, the monoid M =
E(S , T ; I, J; P) has a minimal ideal if and only if T has a minimal ideal.

Proof Suppose that M has a minimal ideal, say K . Then K must contain an element
of the form (i , a, j). Let t be any element of T . Then (i , a, j) = m(i , t, j)n for some
m, n ∈ M . It follows that a ∈ T 1 tT 1 , so a ≤J t. Thus, Ja is the minimal ideal of T .

Conversely, suppose that T has a minimal ideal, say L. We claim that the ideal K =
I × L × J is minimal in M . Consider (i1 , u, j1), (i2 , v , j2) ∈ K, where u, v ∈ L, i1 , i2 ∈ I,
j1 , j2 ∈ J. Since v p j2 , i2 v p j2 , i2 v ∈ L, there exist y, z ∈ T 1 such that yv p j2 , i2 v p j2 , i2 vz = u.
Note that yv , vz ∈ T , and

(i1 , u, j1) = (i1 , yv , j2)(i2 , v , j2)(i2 , vz, j1).

It follows that (i1 , u, j1) ≤J (i2 , v , j2), and, by symmetry, (i2 , v , j2) ≤J (i1 , u, j1).
Hence, the ideal K is a J-class as well, and hence it is a minimal ideal, as required. ∎

It now follows that if we plug any T with no minimal ideal into Construction 7.1,
while respecting the conditions of Theorem 7.3, we will obtain a right pseudo-finite
monoid with no minimal ideal. Moreover, if we put S with no minimal ideal into
Construction 7.6, while respecting the conditions stipulated there, we will obtain a
monoid with no minimal ideal that is both right pseudo-finite and left pseudo-finite.
These observations allow us to exhibit examples of pseudo-finite monoids without
minimal ideals satisfying various prescribed properties. This will complement our
findings from Sections 5 and 6 and show their natural limitations.

In Section 5, we discussed a number of subclasses of the class of regular monoids—
inverse, completely regular, and orthodox monoids—and they all turned out to have
(completely simple) minimal ideals when pseudo-finite. One therefore may wonder
whether this can be extended to all regular monoids, or at least all idempotent-
generated regular monoids. To answer these questions in the negative, we will resort
to the variant E(S) from Construction 7.6.

Proposition 8.3 Let S be a monoid. Then the monoid E(S) is regular if and only if S is
regular, and E(S) is idempotent-generated if and only if S is idempotent-generated.

Proof Let M = E(S). The direct parts of the two statements follow from the fact that
S1 is a submonoid of M with an ideal complement.

Now, suppose that S is regular. Clearly, any element of S1 is regular in M , so consider
(i , s, j) ∈M(S; I, I; P). There exists t ∈ S such that s = sts, and hence, recalling that
p j,0 = p0, i = 1S , we have

(i , s, j) = (i , s, j)(0, t, 0)(i , s, j),

completing the proof that S is regular.
Now, suppose that S is idempotent-generated. Then, certainly, S1 is idempotent-

generated. Note that all (i , 1S , 0), (0, 1S , i) (i ∈ I) are idempotents. For any (i , s, j) ∈
M(S; I, I; P), we have that
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(i , s, j) = (i , 1S , 0)(0, 1S , is)(i1S , 1S , 0)(0, 1S , j),

so that (i , s, j) is a product of idempotents. Thus, M is idempotent-generated. ∎

Taking S to be any (idempotent-generated) regular monoid with no minimal ideal,
Corollary 7.7 and Propositions 8.2 and 8.3 together yield the following corollary.

Corollary 8.4 There exist (idempotent-generated) regular monoids that are both right
pseudo-finite and left pseudo-finite but have no minimal ideal.

Given Corollary 5.14, it is natural to ask whether either of the properties of being
periodic or being J-trivial is sufficient on its own to guarantee the existence of a
minimal ideal in a pseudo-finite semigroup. Again, we apply Construction 7.6 to show
that this is not the case.

Proposition 8.5 There exist J-trivial monoids that are both right pseudo-finite and left
pseudo-finite but have no minimal ideal.

Proof Let S be a semigroup such that S = XS1 = S1 X for some finite set X ⊆ S , and
a ∉ S1aS ∪ SaS1 for each a ∈ S . (For example, we can take S to be the free semigroup
on a finite set X .) Fix x ∈ X and let M = E(S , x). By Corollary 7.7, M is both right
pseudo-finite and left pseudo-finite. Clearly, S is J-trivial and has no minimal ideal.
Thus, M has no minimal ideal by Proposition 8.2.

We now show that M is J-trivial. Suppose for a contradiction that M is not J-trivial.
Let T =M[S; I, I; P]. It is clear that the restriction of the J-relation on M to S is the
J-relation on S , which is the equality relation since S is J-trivial, and no elements
of S are J-related to elements of T . Therefore, there must exist two distinct elements
(i , a, j), (k, b, l) ∈ T with (i , a, j)J(k, b, l). Then there exist u, v , u′ , v′ ∈ M such that

u(i , a, j)v = (k, b, l), u′(k, b, l)v′ = (i , a, j).

There are two cases to consider.
(1) u ∈ T or v ∈ T . Assume without loss of generality that u = (q, s, r) ∈ T . Then

(k, b, l) = (q, s, r)(i , a, j)v = (q, spr i a, j)v .

If v ∈ S , then b = spr i a. If v = (q′ , t, r′), then (q, spr i a, j)v = (q, spr i ap jq′ t, r′), and
hence b = spr i ap jq′ t. In either case, we have that b ≤J a, and b ≠ a since a ∉ S1aS ∪
SaS1 .

Notice that S1(k, b, l)S1 ⊆ I × {b} × I. Therefore, since a ≠ b, we must have that
u′ ∈ T or v′ ∈ T . Then, by the same argument as above, we have that a ≤J b. But then,
a J b, contradicting the fact that S is J-trivial.

(2) u, v ∈ S1 . In this case, we have u(i , a, j)v = (ui , a, jv), so ui = k, a = b, and
jv = l . Since (i , a, j) ≠ (k, b, l), it follows that i ≠ k or j ≠ l . Assume without loss
of generality that i ≠ k. Then u ≠ 1. Now, we must have that u′ ∈ S1 , for otherwise,
by the argument in case (1), we would have a ≠ b. Therefore, we have that (i , a, j) =
(u′k, b, l)v′ , whence i = u′k. Since i ≠ k, we conclude that u′ ≠ 1. We cannot have
i = 0 or k = 0, since this would imply that i = k = 0. Thus, there exist s, t ∈ S with s ≠ t
such that i = is and k = it . It follows that s = u′t and t = us. But then, sL t and hence
s J t, contradicting the fact that S is J-trivial. ∎
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Proposition 8.6 For S and x as in Construction 7.6, the monoid M = E(S , x) is periodic
if and only if S is periodic.

Proof Clearly, periodicity is closed under subsemigroups, so S is periodic if M is.
Suppose that S is periodic. Since S is a subsemigroup of M , every monogenic

subsemigroup of M generated by an element of S is contained in S , and is hence finite
since S is periodic. So, consider m = (i , s, j)where i , j ∈ I and s ∈ S . Since S is periodic,
there exist q, r ∈ N such that and (sp ji)q+r = (sp ji)q . Thus, we have

(i , s, j)q+1+r = (i , (sp ji)q+rs, j) = (i , (sp ji)qs, j) = (i , s, j)q+1 .

This completes the proof. ∎

Taking S to be any periodic semigroup with no minimal ideal (such as a semilattice
with no zero), Corollary 7.7 and Propositions 8.2 and 8.6 together yield the following
corollary.

Corollary 8.7 There exist periodic monoids that are both right pseudo-finite and left
pseudo-finite but have no minimal ideal.

We conclude this section by showing that there exist weakly right reversible
monoids that are right pseudo-finite but have no minimal ideal.

Proposition 8.8 Let T be any right reversible monoid with no minimal ideal. Let I be
a set such that ∣I∣ = ∣T ∣, let J = {1, 2}, and let P be a J × I matrix such that p1, i = 1T
for all i ∈ I and every element of T appears in the second row. Then the monoid M =
M[T ; I, J; P]1 is right pseudo-finite, weakly right reversible, and has no minimal ideal.

Proof Recall that M = E(∅, T ; I, J; P). Clearly, the conditions of Theorem 7.3 are
satisfied, so M is right pseudo-finite. Since T has no minimal ideal, M has no minimal
ideal by Proposition 8.2. We now show that M is weakly right reversible. Consider any
infinite sequence

Mu1 , Mu2 , . . .

of principal left ideals of M . Since J is finite, there exists j ∈ J such that there is an
infinite subsequence Muk1 , Muk2 , . . . where the third co-ordinate of each ukp is j. For
each p ∈ N, let ukp = (ip , tp , j). Since T is right reversible, for any p, q ∈ N, there exist
v , w ∈ T such that vtp = wtq . Picking any i ∈ I, we then have that

(i , v , 1)ukp = (i , vtp , j) = (i , wtq , j) = (i , w , 1)ukq ,

so that Mukp ∩ Mukq ≠ ∅. Thus, M is weakly right reversible. ∎

9 Open problems and future research

We conclude this paper with some open problems and possible directions for future
research.

The notion of diameter has been a useful tool in this paper and is deserving of a
more systematic investigation. As indicated in Section 3.1, this will be the topic of a
subsequent paper.
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A natural open problem arising from the work of this paper is to completely
describe the minimal ideals in (right) pseudo-finite semigroups. To put it another
way, which simple semigroups can be the minimal ideal of a pseudo-finite semigroup?
Certainly, not all simple semigroups have this property, e.g., any simple monoid that is
not pseudo-finite, such as the bicyclic monoid or any infinite group, by Corollary 4.3.

As noted in Section 1, in [5], several equivalent characterizations were given for a
monoid S to have a finitely generated universal left congruence, including S satisfying
the homological finiteness property of being type left-FP1. This raises the question
as to whether the property of being pseudo-finite could similarly be described in
homological terms.
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