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Abstract

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow
q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal
subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to
characterise the finite MS-groups.

2010 Mathematics subject classification: primary 20D10; secondary 20D15, 20D20.

Keywords and phrases: finite group, soluble PST-group, T0-group, MS-group, BT-group.

1. Introduction

In the following, G always denotes a finite group. Recall that subgroups H and K of G
are said to permute if HK is a subgroup of G and that a subgroup H of G is said to be
permutable in G if H permutes with all subgroups of G.

Various generalisations of permutability have been defined and studied and, in
particular, we mention the S-semipermutability. A subgroup H is said to be S-
semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes
q not dividing |H|. This subgroup embedding property has been extensively studied
recently (see for instance [1, 4, 7, 9]). Most of these papers concern situations where
many subgroups (for instance all maximal subgroups of the Sylow subgroups) have the
stated property. Thus we say that a group G is an MS-group if the maximal subgroups
of all the Sylow subgroups of G are S-semipermutable in G.

The main aim of this paper is to characterise the MS-groups.

2. Preliminary results

In this section, we collect the definitions and results which are needed to prove our
main theorems.
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We shall adhere to the notation used in [2]: this book will be the main reference for
terminology and results on permutability.

A subgroup H is permutable in a group G if and only if H permutes with every
p-subgroup of G for every prime p (see for instance [2, Theorem 1.2.2]). A less
restrictive subgroup embedding property is the S-permutability introduced by Kegel
[5] and defined in the following way.

Definition 2.1. A subgroup H of G is said to be S-permutable in G if H permutes with
every Sylow p-subgroup of G for every prime p.

Note that we are not considering all p-subgroups, but just the maximal ones, that is,
the Sylow p-subgroups.

In recent years there has been widespread interest in the transitivity of normality,
permutability and S-permutability.

Definition 2.2.

(1) A group G is a T-group if normality is a transitive relation in G, that is, if every
subnormal subgroup of G is normal in G.

(2) A group G is a PT-group if permutability is a transitive relation in G, that is, if
H is permutable in K and K is permutable in G, then H is permutable in G.

(3) A group G is a PST-group if S-permutability is a transitive relation in G, that is,
if H is S-permutable in K and K is S-permutable in G, then H is S-permutable
in G.

If H is S-permutable in G, it is known that H must be subnormal in G [2, Theorem
1.2.14(3)]. Therefore, a group G is a PST-group (respectively, a PT-group) if and only
if every subnormal subgroup is S-permutable (respectively, permutable) in G.

Note that T implies PT and PT implies PST. On the other hand, PT does not
imply T (non-Dedekind modular p-groups) and PST does not imply PT (nonmodular
p-groups).

A less restrictive class of groups is the class of T0-groups which has been studied
in [3, 6, 8].

Definition 2.3. A group G is called a T0-group if the Frattini factor group G/Φ(G) is
a T-group.

The group in Example 4.2 below is a soluble T0-group which is not a PST-group.
Soluble T0-groups are closely related to PST-groups, as the following result shows.

Theorem 2.4 [6, Theorems 5 and 7 and Corollary 3]. Let G be a soluble T0-group with
nilpotent residual L = γ∞(G). Then:

(1) G is supersoluble;
(2) L is a nilpotent Hall subgroup of G;
(3) if L is abelian, then G is a PST-group.
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Here the nilpotent residual γ∞(G) of a group G is the smallest normal subgroup
N of G such that G/N is nilpotent, that is, the limit of the lower central series of G
defined by γ1(G) = G, γi+1(G) = [γi(G),G] for i ≥ 1.

It is known that S-semipermutability is not transitive. Hence it is natural to consider
the following class of groups.

Definition 2.5. A group G is called a BT-group if S-semipermutability is a transitive
relation in G, that is, if H is S-semipermutable in K and K is S-semipermutable in G,
then H is S-semipermutable in G.

This class was introduced and characterised by Wang et al. in [9]. Further
contributions were presented in [1].

Theorem 2.6 [9, Theorem 3.1]. Let G be a group. The following statements are
equivalent:

(1) G is a soluble BT-group;
(2) every subgroup of G is S-semipermutable;
(3) G is a soluble PST-group and if p and q are distinct prime divisors of the order of

G not dividing the order of the nilpotent residual of G, then [Gp,Gq] = 1, where
Gp ∈ Sylp(G) and Gq ∈ Sylq(G).

The group presented in Example 4.1 below is an MS-group which is not a soluble
BT-group. Furthermore, Example 4.2 shows that the classes of T0-groups and
MS-groups are not closed under taking subgroups.

The first remarkable fact concerning the structure of an MS-group can be found
in [7]. It is proved there that every MS-group is supersoluble.

Theorem 2.7 [7, Corollary 9]. Let G be an MS-group. Then G is supersoluble.

More recently, the second and fourth authors proved the following theorem.

Theorem 2.8 [4, Theorems A, B and C]. Let G be an MS-group with nilpotent residual
L = γ∞(G). Then:

(1) if N is a normal subgroup of G, then G/N is an MS-group;
(2) L is a nilpotent Hall subgroup of G;
(3) G is a soluble T0-group.

It is well known that the nilpotent residual of a supersoluble group is nilpotent.
Hence the nilpotency of L in Theorem 2.8 is a consequence of Theorem 2.7.

Throughout this paper we will use the following notation. Let G be a group whose
nilpotent residual L = γ∞(G) is a Hall subgroup of G. Let π = π(L) and let θ = π′, the
complement of π in the set of all prime numbers. Let θN denote the set of all primes
p in θ such that if P is a Sylow p-subgroup of G, then P has at least two maximal
subgroups. Further, let θC denote the set of all primes q in θ such that if Q is a Sylow
q-subgroup of G, then Q has only one maximal subgroup, or equivalently, Q is cyclic.
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3. The main results

Our first main result is a characterisation theorem.

Theorem 3.1. Let G be a group with nilpotent residual L = γ∞(G). Then G is an MS-
group if and only if G satisfies the following properties.

(1) G is a T0-group.
(2) L is a nilpotent Hall subgroup of G.
(3) If p ∈ π and P ∈ Sylp(G), then a maximal subgroup of P is normal in G.
(4) Let p and q be distinct primes with p ∈ θN and q ∈ θ. If P ∈ Sylp(G) and

Q ∈ Sylq(G), then [P,Q] = 1.
(5) Let p and q be distinct primes with p ∈ θC and q ∈ θ. If P ∈ Sylp(G) and

Q ∈ Sylq(G) and M is the maximal subgroup of P, then QM = MQ is a nilpotent
subgroup of G.

Proof. Let G be an MS-group. By Theorems 2.7 and 2.8, G is a supersoluble T0-
group whose nilpotent residual L is a nilpotent Hall subgroup of G. Thus properties (1)
and (2) hold.

Let π = π(L) and let p ∈ π. Further, let P be a Sylow p-subgroup of G and let M be
a maximal subgroup of P. Then M ≤ P E L and M is normal in L and subnormal in G.
Let q ∈ θ = π′ and note that MQ is a subgroup of G for a given Sylow q-subgroup Q
of G. Moreover M is a Sylow p-subgroup of MQ and so M is a normal subgroup of
MQ. Consequently M is normalised by P and each Sylow q-subgroup Q of G, so M is
a normal subgroup of G and property (3) holds.

Let X be a Hall θ-subgroup of G and note that G = L o X, the semidirect product of
L by X, and X is nilpotent. Let t be a prime from θN and r be a prime from θ. Also
let T ∈ Sylt(G) and R ∈ Sylr(G). Let M1 and M2 be two distinct maximal subgroups
of T = 〈M1, M2〉. Since G is an MS-group, M1R = RM1 and M2R = RM2. Applying
[2, Theorem 1.2.2], we have RT = TR. Observe that TR is a θ-subgroup of G and so
TR is nilpotent since TR is a subgroup of some conjugate of X. Therefore, [T,R] = 1
and property (4) holds.

Let p and q be distinct primes with p ∈ θC and q ∈ θ. Further, let P ∈ Sylp(G)
and Q ∈ Sylq(G). If M is the maximal subgroup of P, then QM = MQ is a nilpotent
θ-subgroup of G. Thus property (5) holds.

Let G be a group satisfying properties (1)–(5). We are to show that G is an MS-
group. By properties (1) and (2), G is a soluble T0-group, and by Theorem 2.4, G is
thus supersoluble.

Let p ∈ π = π(L), let P be a Sylow p-subgroup of G, and let M be a maximal
subgroup of P. Then M is a normal subgroup of G by property (3) and clearly P
is a normal subgroup of G. This means that M permutes with every Sylow subgroup
of G and P permutes with every maximal subgroup of any Sylow subgroup of G.

Let p and q be distinct primes from θ and let P ∈ Sylp(G) and Q ∈ Sylq(G). We
consider a maximal subgroup M of P. Note that θ = θN ∪ θC and θN ∩ θC = ∅, the
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empty set. If p ∈ θN , then by property (4), [P,Q] = 1, so that MQ = QM. Hence
assume p ∈ θC . Then, by property (5), MQ = QM.

Therefore, every maximal subgroup of any Sylow subgroup of G is S-semi-
permutable in G and G is an MS-group. �

The second and fourth authors in [4] posed the following two questions.

(1) When is a soluble PST-group an MS-group?
(2) When is a soluble PST-group which is also an MS-group a BT-group?

Using Theorem 3.1 we are able to answer the first question and provide a partial
answer to the second.

Theorem 3.2. Let G be a soluble PST-group. Then G is an MS-group if and only if G
satisfies (4) and (5) of Theorem 3.1.

Proof. Let G be a soluble PST-group with nilpotent residual L = γ∞(G). By
[6, Lemma 5], G/Φ(G) is a T-group and so G is a T0-group. Notice that (1), (2)
and (3) of Theorem 3.1 are satisfied for the group G.

Assume that G is an MS-group. By Theorem 3.1, (4) and (5) are satisfied by G.
Conversely, assume that (4) and (5) of Theorem 3.1 are satisfied by G. By

Theorem 3.1, G is an MS-group.
This completes the proof. �

The group given in Example 4.1 below is a soluble PST-group which is not an
MS-group and the group given in Example 4.2 is an MS-group which is not a soluble
PST-group.

Theorem 3.3. Let G be a soluble PST-group which is also an MS-group. If θC is the
empty set, then G is a BT-group.

Proof. Let G be a soluble PST-group which is also an MS-group. Let L = γ∞(G) be
the nilpotent residual of G. By the Theorem of Agrawal [2, Theorem 2.1.8], L is
an abelian Hall subgroup of G on which G acts by conjugation as a group of power
automorphisms. Recall that θ = π′, where π = π(L). Moreover θ = θN if θC is empty.
Let p and q be distinct primes from θ and let P ∈ Sylp(G) and Q ∈ Sylq(G). Note that
since G is an MS-group, we have that G satisfies properties (4) and (5) of Theorem 3.1.
Then [Gp,Gq] = 1 by property (4) of that theorem. Therefore, G is a BT-group by
Theorem 2.6. This completes the proof of Theorem 3.3.

We remark that if θ contains only one prime, then G is a BT-group by
[9, Corollary 3.4]. �

4. Examples

The following examples appear in [4]. For the sake of completeness, we list them
here.
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Example 4.1. Let G = 〈y, z, x | y3 = z2 = x7 = 1, [y, z] = 1, xy = x2, xz = x−1〉. Then
[〈y〉x, z] , 1 and G is a soluble group which is not a BT-group. However, G is an
MS-group.
Example 4.2. Let G = 〈a, x, y | a2 = x3 = y3 = [x, y]3 = [x, [x, y]] = [y, [x, y]] = 1,
xa = x−1, ya = y−1〉. Then H = 〈x, y〉 is an extraspecial group of order 27 and
exponent 3. Let z = [x, y], so za = z. Then Φ(G) = Φ(H) = 〈z〉 = Z(G) = Z(H). Note
that G/Φ(G) is a T-group so that G is a T0-group. The maximal subgroups of H
are normal in G and it follows that G is an MS-group. Let K = 〈x, z, a〉. Then 〈xz〉
is a maximal subgroup of 〈x, z〉, the Sylow 3-subgroup of K. However, 〈xz〉 does not
permute with 〈a〉 and hence 〈xz〉 is not an S-semipermutable subgroup of K. Therefore,
K is not an MS-subgroup of G. Also note that Φ(K) = 1 and so K is not a T-subgroup of
G and K is not a T0-subgroup of G. Hence the class of soluble T0-groups is not closed
under taking subgroups. Note that G is a soluble group which is not a PST-group.
Example 4.3. Let G = 〈y, z, x | y9 = z2 = x192

= 1, [y, z] = 1, xy = x62, xz = x−1〉. Then
the soluble group G is a PST-group, but G is not an MS-group since [〈y2〉x, z] , 1.
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