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Abstract. RAVE is a spectroscopic survey of the Milky Way which collected more than 500,000
stellar spectra of nearby stars in the Galaxy. The RAVE consortium analysed these spectra to
obtain radial velocities, stellar parameters and chemical abundances. These data, together with
spatial and kinematic information like positions, proper motions, and distance estimations, make
the RAVE database a rich source for galactic archaeology. I present recent investigations on the
chemo-kinematic relations and chemical gradients in the Milky Way disk using RAVE data and
compare our results with the Besançon models. I also present the code SPACE, an evolution
of the RAVE chemical pipeline, which integrates the measurements of stellar parameters and
chemical abundances in one single process.
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1. The RAVE survey
The RAdial Velocity Experiment (RAVE) is a large spectroscopic survey which ob-

served stars of the Milky Way (Steinmetz et al. 2006) in the magnitude interval 9< I <12
in the southern celestial hemisphere. After ten years of observations, the survey ended in
April 2013, collecting 574,630 spectra of 483,330 stars. The spectra were obtained with
the 1.2 meter UK Schmidt Telescope of the Australian Astronomical Observatory. The
150 optical fibres of the 6dF spectrograph allowed us to collect up to 130 spectra in one
hour of exposure time. With a resolution of R∼7500, the spectra centered on the near
infrared Ca ii triplet region (8410-8795Å) yield precise radial velocity (RV) measure-
ments (σRV ∼2 km s−1 at S/N>40). Beside, RAVE provides stellar parameters such as
effective temperature, gravity, and metallicity (Zwitter et al. 2008, Siebert et al. 2011,
Kordopatis et al. in preparation), and chemical abundances for the elements Mg, Al, Si,
Ti, Fe, and Ni (Boeche et al. 2011, Kordopatis et al. in preparation). Proper motions of
the RAVE stars come from a variety of catalogues, such as Tycho2 (Høg et al., 2000),
PPM-Extended catalogues PPMX and PPMXL (Röser et al., 2008, 2010) and the sec-
ond and third U.S. Naval Observatory CCD Astrograph Catalog UCAC2 and UCAC3
(Zacharias et al., 2004). Distances have been estimated with different methods (Breddels
et al. 2010, Zwitter et al. 2010, Burnett et al. 2011, Binney et al. in preparation). The
kinematic information, combined with the distances and the chemical abundances, en-
ables us to locate the RAVE stars in the six dimensional phase-space and the chemical
space, making the RAVE database a rich mine for Galactic archaeology studies.
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Figure 1. Spatial distribution of the RAVE sample (left) and the mock sample (right) on the
meridional plane. For the mock sample the gray plus symbols, the black points and the gray
open squares indicate the thin disc, the thick disc, and the halo stars, respectively.

RAVE is complementary to the Sloan Extension for Galactic Understanding and Explo-
ration survey (SEGUE, Yanny et al. 2009). In fact, the two surveys observe in opposite
hemispheres, at different magnitude ranges (SEGUE covers 14 < g < 20), and at different
resolution (R∼2000 for SEGUE). Because of the difference in magnitude, the SEGUE
dwarf stars cover a volume similar to the one probed by the RAVE giant stars, making
the comparison of the two samples crucial for the robustness of the results obtained with
the two surveys.

2. Radial chemical gradients of the Galaxy with RAVE: a comparison
with the Besançon model

We measured the chemical gradients of the Milky Way along its radius by using a sam-
ple of 19,962 RAVE dwarf stars (Boeche et al., submitted) selected to have spectra with
S/N>40, effective temperature 5250< Teff(K) < 7000, gravity log g >3.8 dex and error
in distance smaller than 30%. The stars are also classified as normal stars by Matijevic̆
et al. (2012) and have little or no continuum defects in their spectra. Since the RAVE
dwarf stars cover a small Galacticentric distance range (∼0.6 kpc, see Fig. 1, left panel) a
chemical gradient measured by using the actual positions of the stars will be necessarily
poorly constrained. Thus, we extended the measurements to the Galactic radius range
R∼4.5–9.5 kpc by using the guiding radius Rg . To obtain Rg , the Galactic orbits of the
stars have been integrated in the potential model n.2 by Dehnen & Binney (1998). From
the rotation curve and the integrated orbits we computed the guiding radius, Rg , and
extract other orbital parameters such as apocentre, pericenter and maximum distance
from the Galactic plane reached by the star (Zmax).
In order to avoid observational bias and compare the real Galaxy with models, we cre-
ated a RAVE equivalent mock sample by using the stellar population synthesis code
GALAXIA (Sharma et al., 2011), which uses analytical density profiles based on the
Besançon model (Robin et al., 2003). The mock sample reproduces the RAVE selec-
tion function in I magnitude and the target distribution on the sky. The same cuts in
S/N, Teff, log g applied to the RAVE sample have been applied to the mock sample,
which contains 26,198 entries (see Fig. 1, right panel). We measured the gradients of iron
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Figure 2. Distribution of the stars in the (Rg ,[Fe/H]) plane (left panels) and [Fe/H] distributions
(right panels) of the three subsamples at different Zmax for the RAVE sample (top) and the
mock sample (bottom). Symbols are as in Fig. 1. The [Fe/H] distributions of the mock sample
are traced with a dashed black line, a dashed gray line and a solid grey line for the thin disc,
thick disc and halo stars, respectively. The overall distributions are represented by a black thin
line.

abundance [Fe/H] of these two samples at three different Zmax values by dividing them
in three subsamples: stars with 0.0 < Zmax (kpc)� 0.4, 0.4 < Zmax (kpc)� 0.8, and
Zmax (kpc)> 0.8. The results are illustrated in Fig. 2 for the RAVE sample and the mock
sample.
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The RAVE sample exhibits a negative gradient of d[Fe/H]/dRg = −0.064 ± 0.002
dex kpc−1 for Zmax < 0.4 kpc, and becomes flat at Zmax > 0.8 kpc. This result is in
agreement with other previous works (Cheng et al. 2012, Pasquali & Perinotto 1993).
Conversely, the mock sample shows positive gradients at any Zmax. These unrealistic
gradients have several causes: i) the mock sample has an excess of thick disc stars (see
the [Fe/H] distributions in Fig. 2, bottom plot, right panels), ii) their mean metallicity
appears too low with respect the RAVE sample, and iii) because of the larger asymmetric
drift and the lower metallicity of the thick disc stars with respect to the thin disc stars,
such stars are shifted toward lower Rg and lower [Fe/H] (Fig. 2, bottom plot, left panels).
The superposition of thin and thick disc stars mimics a positive gradient, the value of
which depends on the ratio of thin/thick disc stars in the sample. Besides, the thin disc
stars of the mock sample have the unrealistic gradient d[Fe/H]/dRg = 0.00 dex kpc−1

although the gradient in the actual Galactocentric distance, R, (assigned by the Besançon
model) is d[Fe/H]/dR = −0.07 dex kpc−1 . This difference is due to the absence of a
correlation between the kinematics and the metallicity. In fact, in the real Galaxy, stars
with high eccentricity are more likely to be metal poorer, whereas in the Besançon model
the metallicities of the stars are assigned considering their Galactocentric distances but
regardless of their eccentricities (i.e. kinematics). The discrepancies between the RAVE
sample and the mock sample can therefore be reduced by i) decreasing the density,
ii) decreasing the vertical velocity, iii) increasing the metallicity of the thick disc in
the Besançon model, and iv) assigning metallicities to the stars as a function of their
kinematics, so that stars in high eccentricity orbits are on average metal poorer.

3. SPACE: a new code for stellar parameters and chemical
abundances estimations

Large spectroscopic surveys face the challenge to process and analyse large databases
of spectra in a reasonable time. This boosts the effort of developing new methods and au-
tomated tools for spectral analysis, which are also part of the survey’s outcome. SPACE
(which stands for Stellar PArameters and Chemical abundances Estimator) is one of
RAVE’s fruits, since it evolved from the RAVE chemical pipeline (Boeche et al. 2011).
Both codes are based on 1D LTE (one dimensional, Local Thermodynamic Equilibrium)
atmosphere models. The RAVE chemical pipeline derives chemical abundances from a
normalised, radial velocity corrected spectrum, where stellar parameters such as Teff,
log g and a first guess of [M/H] are provided by an external source. SPACE estimates
stellar parameters and chemical abundances with no need of extra information but the
normalized spectra and a first guess of the spectral resolution. SPACE does not rely on
a library of synthetic spectra, nor does it measure equivalent widths (EWs) of isolated
lines. Instead it relies on a list of lines with astrophisically corrected oscillator strengths,
and on a library of Generalised Curves-Of-Growths (GCOGs) of such lines. The GCOG
is a function in the 3-dimensional parameter space (PS, where the variables are Teff,
log g, and abundance [X/H]), which describes the variation of the EW of a line in the
PS. When Teff and log g are fixed, the GCOG reduces to the classical curve-of-growth.
SPACE retrieves the EWs of the lines from the GCOGs of one point in the PS, recon-
structs a spectrum model by assuming a Gaussian/Voigt line profile and varies the stellar
parameters and chemical abundances, searching for the model that matches best the ob-
served spectrum via χ2 minimization. To date, SPACE works in the stellar parameter
ranges of 4000 < Teff(K) < 7000, 0.0 < log g(dex) < 5.0 and −2.5 < Fe/H](dex) < 0.5.
Extensions of the PS are possible. In principle, SPACE can work in any wavelength range
when an appropriate line list and the corresponding library of GCOGs are provided. To
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Figure 3. Stellar parameters derived by SPACE (y-axis) and the ELODIE reference parameter
(x-axis) of ELODIE spectra reduced to spectral resolution R = 5000, S/N∼70 and wavelength
range 5200–6200Å. We consider here only spectra having “good” and “excellent” parameters
estimation flag in the ELODIE library.
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Figure 4. Chemical abundances of the ELODIE spectra reduced to spectral resolution R =
5000, S/N∼70 and wavelength range 5200–6200Å(the same used for Fig. 3).

date, SPACE works in the wavelength ranges 5200–6200Å and 8400–8900Å. Other wave-
length ranges will be included soon. We tested SPACE by using spectra of the ELODIE
spectral library (Prugniel et al., 2007) degraded to a resolution of R = 5000 and R =
20 000, a S/N∼70, and considering only the wavelength interval 5200–6200Å. At resolu-
tion R = 5000 (Fig. 3) SPACE gives satisfactory results with 1σ errors in Teff, log g and
[Fe/H] of ∼120 K (with an offset of +106 K), 0.25 dex and 0.10 dex, respectively. Chem-
ical abundances have uncertainties smaller than 0.1–0.2 dex (depending on the element)
and correctly trace the enhancement of α-elements with respect to iron (Fig. 4). At R =
20 000 the errors do not seem smaller than the ones at R = 5000 (σTe f f

= 172 K, σlog g =
0.33 dex, and σ[F e/H ] = 0.10 dex) because a not yet identified systematic error in Teff
and log g affects the results. Nonetheless, the resulting chemical abundances look unex-
pectedly good, highlighting the gap in α-enhancement between thin and thick disc stars
in [Ca/Fe] and [Ti/Fe]. More work and tests are needed in order to identify the causes
of the systematic errors and to extend the working wavelength range. Once a stable
version of the code exists, SPACE will be released to the scientific community as a tool
for spectral analysis.
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Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
Sharma, S., Bland-Hawthorn, J., Johnston, K. V., & Binney, J. 2011, ApJ, 730, 3
Siebert, A., Williams, M. E. K., Siviero, A., et al. 2011, AJ, 141, 187
Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, AJ, 132, 16451
Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377
Zacharias, N., Urban, S. E., Zacharias, M. I., et al. 2004, AJ, 127, 3043
Zwitter, T., Siebert, A., Munari, U., et al. 2008, AJ, 136, 421
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Discussion

Jinliang Hou: Can your SPACE software be used for spectra with different resolution?

Corrado Boeche: Yes, as shown in preliminary tests, SPACE gives reliable results
between resolution R = 5000 and 20,000. I will test the code at resolution R = 2000 to
see if surveys like SEGUE and LAMOST can profit from it. Higher resolutions may be
possible too and will be tested.

Hans-Günther Ludwig: How do you handle the microturbulence when you calculate
your library of curve-of-growths for SPACE?

Corrado Boeche: The microturbulence is determined by a formula (given in Boeche
et al. 2011) which is function of Teff and log g.

Hans-Walter Ritter: How do your stellar atmospheric parameters compare to the
official RAVE values?

Corrado Boeche: I did not test SPACE on RAVE spectra yet, but I will do it soon.

Giacomo Monari: In Fig. 2, top panels, what is the error in the slopes of the fit?

Corrado Boeche: The errors are reported in the text.
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