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Abstract
In this paper, we provide a detailed analytical treatment of the behavioral macroeconomic model by De
Grauwe and Ji (2020 Structural reforms, animal spirits, and monetary policies. European Economic Review
124, 103395). Although the model’s dynamics is governed by a high-dimensional nonlinear law of motion,
we are able to derive necessary and sufficient conditions for the local asymptotic stability of its fundamen-
tal steady state. Specifically, we find that under the authors’ baseline parameter setting, the fundamental
steady state is locally asymptotically stable, implying that the dynamics of booms and busts only arise when
exogenous shocks hit the system. However, we also identify conditions under which boom-bust dynamics
emerge temporarily endogenously from within the model. By doing so, we may contribute to a deeper
understanding of how booms and busts can arise in such a framework – insights that central banks can use
to design more effective monetary policies.
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1. Introduction
In this paper, we provide a detailed analytical treatment of the behavioral macroeconomic model
proposed by De Grauwe and Ji (2020). Unlike traditional DSGE models, De Grauwe and Ji (2020)
assume that individuals face cognitive limitations that prevent them from fully comprehending
the complexity of the economy. As a result, they rely on simple heuristics to guide their behavior,
offering a more realistic representation of economic agents compared to models that assume per-
fect rationality. However, this does not imply that agents are irrational. On the contrary, they
continuously evaluate the performance of these heuristics and adopt those that perform bet-
ter. Since agents can employ different heuristics, heterogeneity emerges among them, and their
interactions gives rise to endogenous business cycles – a characteristic absent in standard DSGE
models. In traditional DSGE models, by contrast, business cycles are driven by exogenous shocks
combined with the slow adjustment of wages and prices.

More specifically, in De Grauwe and Ji (2020), agents can choose between two expectation rules
to forecast output and inflation. They endogenously update their choices based on past forecast-
ing errors, demonstrating a willingness to learn from their mistakes. Since this approach explains
the observed dynamics in output and inflation, it enhances our understanding of how booms
and busts in economic activity may arise. In particular, De Grauwe and Ji (2020) show that the
dynamics of their behavioral model is driven by correlations in beliefs, which, in turn, generate
waves of optimism and pessimism. Similar versions of this powerful framework have been stud-
ied, for instance, in De Grauwe (2011), De Grauwe (2012), De Grauwe and Ji (2019a, b) and De
Grauwe and Ji (2022). Other works considering heterogeneous expectations in a New Keynesian
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2 N. Schmitt

framework include Branch andMcGough (2009, 2010), Branch and Evans (2011),Massaro (2013),
Anufriev et al. (2013), Hommes and Lustenhouwer (2019), and Assenza et al. (2021). For a sur-
vey see, for instance, Hommes (2021), Branch and McGough (2018), or Franke and Westerhoff
(2017).

Due to the endogenous switching between heterogeneous heuristics, De Grauwe’s framework
becomes highly nonlinear, making it difficult to derive analytical insights. For this reason, numer-
ical methods have primarily been used to analyze its dynamics. However, De Grauwe and Ji (2020)
provide the first analytical characterization of this framework. Unfortunately, they focus only on a
special case – one that does not correspond to the parameter setting used to illustrate the model’s
dynamics. One important goal of this contribution is to provide a detailed analytical treatment of
the full model. We find that the dynamics of De Grauwe and Ji (2020)’s model is driven by an 11-
dimensional nonlinear law of motion. Nonetheless, we are able to characterize the fundamental
steady state and derive conditions under which it is locally asymptotically stable. Surprisingly, for
the parameter setting they consider, we find that the fundamental steady state is locally asymp-
totically stable. This implies that, in the absence of exogenous shocks, the model’s dynamics can
be characterized by fixed-point dynamics. As will become clear, booms and busts emerge due to
exogenous shocks and the way these shocks are endogenously amplified by the model’s nonlinear
features.

Fortunately, we also identify conditions under which boom-bust dynamics emerge endoge-
nously, at least temporarily. By identifying conditions that trigger endogenous business cycles,
we may contribute to a deeper understanding of how booms and busts can arise from within the
model – insights that central banks can use to design more effective monetary policies. Our results
suggest that active monetary policy is crucial when the steady state becomes unstable. If, in such
a situation, the model generates boom-bust dynamics and the central bank does not respond with
sufficient strength, these boom-bust dynamics will further amplify and may explode. However,
when the deterministic system is locally stable, the central bank may not need to implement an
active monetary policy to ensure convergence toward equilibrium.

Of course, we are not the first to analytically investigate a New Keynesian framework
with heterogeneous expectations and boundedly rational agents. For instance, Hommes and
Lustenhouwer (2019) consider a very similar setup. However, they also analyze only a special case.
In their setup, agents switch between the same two heuristics based on past forecasting errors,
resulting in identical expectation-formation behavior. As a result, the core structure of the model
is the same, and with some adjustments, one model can be transformed into the other, and vice
versa. Therefore, my analysis may also help generalize their analytical results. While the results
depend on the specific model setup and cannot be directly transferred, my analysis may serve as a
roadmap for analytically studying such behavioral New Keynesian models.

The remainder of this paper is organized as follows. We will briefly review the model by De
Grauwe and Ji (2020) in Section 2. In Section 3, we will derive the dynamical system of their
deterministic model and provide an analytical characterization of the fundamental steady state
and its local asymptotic stability. In Section 4, we show the model’s stochastic dynamics and use
our analytical results to explain the functioning of their model. Section 5 concludes our paper.

2. The behavioral model
In this section, we recap the behavioral model by De Grauwe and Ji (2020), which describes the
interplay between an aggregate demand equation, an aggregate supply equation, and a Taylor rule.
To be more precise, yt represents the output gap at time t, while πt and rt denote the rate of
inflation and the nominal interest rate, respectively. Aggregate demand is specified as

yt = a1Ẽtyt+1 + (1− a1)yt−1 + a2(rt − Ẽtπt+1)+ νt , (1)
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where 0< a1 < 1, a2 < 0 and Ẽt is a heterogeneous expectations operator. Aggregate supply is
assumed to be of the New Keynesian Phillips curve type, defined by

πt = b1Ẽtπt+1 + (1− b1)πt−1 + b2yt + ηt , (2)

where 0< b1 < 1 and b2 > 0. Note that both equations contain a lagged dependent variable, cap-
turing the fact that there is some inertia when consumers and producers optimize their decisions.
Moreover, demand and supply shocks are described by the two error terms νt and ηt , respectively,
which are assumed to be normally distributed with mean zero and a constant standard deviation,
i.e., νt ∼N (0, σν) and ηt ∼N (0, ση).

The central bank adjusts the nominal interest rate according to the following Taylor rule

rt = d3[πT + d1(πt − πT)+ d2yt]+ (1− d3)rt−1 + ut , (3)

where d1, d2 ≥ 0, 0< d3 < 1 and πT is the inflation target. Accordingly, the central bank raises
rt when the inflation rate observed exceeds the inflation target or when the output gap increases;
parameters d1 and d2 measure the intensity at which it does inflation targeting and output stabi-
lization, respectively. Parameter d3 measures how strongly the central bank smooths the interest
rate. Finally, interest rate shocks are captured by ut ∼N (0, σu).

Since cognitive limitations prevent agents from forming rational expectations, De Grauwe
and Ji (2020) assume that agents rely on simple heuristics to forecast the future. In particular,
agents can choose between two types of forecasting rules to predict the future output gap. When
agents follow the fundamental expectation rule, they use the steady-state value of the output gap
(which is normalized at 0) as forecast, while they rely on the previously observed output gap
when they choose the naive predictor. De Grauwe and Ji (2020) formalize the two forecasting
rules by

Ẽft yt+1 = y∗ = 0 (4)

and
Ẽet yt+1 = yt−1, (5)

whose weighted average yield the market forecast, i.e.,

Ẽtyt+1 = αf ,tẼ
f
t yt+1 + αe,tẼet yt+1 = αe,tyt−1, (6)

where αf ,t and αe,t represent the market shares of agents using the fundamental and the naive
heuristic, respectively. It is the case that

αf ,t + αe,t = 1. (7)

Agents switch between the two expectation rules with respect to a certain criterion of success.
This is assumed to be the forecast performance (utility), determined by the negative (infinite) sum
of past squared forecasting errors, i.e.,

Uj,t = −
∞∑
k=1

ωk(yt−k − Ẽjt−k−1yt−k)2, j= f , e,

where Uf ,t and Ue,t define the utilities of using the fundamental and naive rule at time t, respec-
tively, and ωk = (1− ρ)ρk represents geometrically declining weights. Since they add up to unity,
a mathematical reformulation is given by

Uj,t = ρUj,t−1 − ρ(1− ρ)(yt−1 − Ẽjt−2yt−1)2, j= f , e, (8)

where 0< ρ < 1 can be interpreted as a memory parameter.1 Accordingly, utility measures
depend more strongly on past forecasting errors if ρ increases.
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Following Brock and Hommes (1997, 1998), these utilities are evaluated by applying the multi-
nomial discrete choice model by Manski and McFadden (1981). Thus, the market shares of the
fundamental and naive forecasting rule evolve according to

αj,t = exp(γUj,t)
exp(γUf ,t)+ exp(γUe,t)

, j= f , e, (9)

where γ ≥ 0 is the intensity of choice. Accordingly, the greater the past forecast performance of
a forecasting rule, the more agents will follow it. Note that γ can also be interpreted as agents’
willingness to learn from past performance. For γ = 0, this willingness is zero, and both market
shares will equal 1/2. For γ = ∞, all agents are willing to switch to the forecasting rule with the
greater utility, i.e., its market share is given by one.

De Grauwe and Ji (2020) assume that agents can also choose between two simple heuris-
tics when they forecast future inflation. Similarly, they can either use a fundamental or a naive
forecasting rule. When relying on the fundamental rule, agents believe in the inflation target
announced by the central bank, and use it as their forecast. Agents who do not trust the infla-
tion target rely on the naive predictor, and use the last observed value of inflation. This can be
expressed formally by

Ẽftπt+1 = πT (10)

and
Ẽetπt+1 = πt−1, (11)

whose weighted average again yields the market forecast, i.e.,

Ẽtπt+1 = βf ,tẼ
f
tπt+1 + βe,tẼetπt+1 = βf ,tπ

T + βe,tπt−1, (12)

where
βf ,t + βe,t = 1. (13)

The market shares of agents who trust the inflation target and those who do not are updated
according to the same mechanism as in the case of output forecasting. We therefore have that

βj,t = exp(γAj,t)
exp(γAf ,t)+ exp(γAe,t)

, j= f , e, (14)

where
Aj,t = ρAj,t−1 − ρ(1− ρ)(πt−1 − Ẽjt−2πt−1)2, j= f , e, (15)

defining the forecast performances realized by the fundamental and naive rule, respectively. Thus,
if relying on the announced inflation target yields the better forecast, the market share of agents
using it will increase. However, if it turns out not to be very accurate, more and more agents will
switch to the naive rule to forecast inflation.

3. Analytical results
In this section, we analyze the underlying deterministic framework of the model by De Grauwe
and Ji (2020), and characterize the fundamental steady state. In doing so, we also derive analytical
conditions for its local asymptotic stability. While De Grauwe and Ji (2020) characterize only a
special case of their model analytically, we provide an analysis of the full model. As we will see,
analytical insights are not precluded, although the model dynamics is due to a high-dimensional
nonlinear law of motion. Moreover, our analysis will reveal a number of surprising results with
respect to the functioning of the model by De Grauwe and Ji (2020).
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3.1 Dynamical system
To derive the dynamical system of the deterministic model, we first drop all random variables, i.e.,
we set σν = ση = σu = 0. Moreover, we follow De Grauwe and Ji (2019b) and normalize the model
by expressing inflation rates and interest rates as deviations from the inflation target πT . Thus, we
introduce π̂t = πt − πT , r̂t = rt − πT and Ẽtπ̂t+1 = Ẽtπt+1 − πT . Equations (1)–(3) then become

yt = a1Ẽtyt+1 + (1− a1)yt−1 + a2(r̂t − Ẽtπ̂t+1), (16)

π̂t = b1Ẽtπ̂t+1 + (1− b1)π̂t−1 + b2yt , (17)

and
r̂t = c1π̂t + c2yt + c3r̂t−1, (18)

where c1 = d1d3, c2 = d2d3, and c3 = 1− d3. Furthermore, we get

Ẽft π̂t+1 = 0 (19)

and
Ẽet π̂t+1 = πt−1 − πT , (20)

yielding

Ẽtπ̂t+1 = βe,tπ̂t−1 (21)

and
Aj,t = ρAj,t−1 − ρ(1− ρ)(π̂t−1 − Ẽjt−2π̂t−1), j= f , e. (22)

Taking into account also equations (6), (8), (9), and (14), and by introducing the auxiliary variables
zt = yt−1, xt = zt−1, pt = π̂t−1, and qt = pt−1, we are able to summarize the model by De Grauwe
and Ji (2020) by the following 11-D nonlinear discrete dynamical system

S:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt = a1αe,tyt−1 + (1− a1)yt−1 − a2βe,tπ̂t−1(1− c1b1)+ a2c1(1− b1)π̂t−1 + a2c3r̂t−1
1− a2c2 − a2c1b2

π̂t = b1βe,tπ̂t−1 + (1− b1)π̂t−1 + b2yt
r̂t = c1π̂t + c2yt + c3r̂t−1
Ue,t = ρUe,t−1 − ρ(1− ρ)(yt−1 − xt−1)2

Uf ,t = ρUf ,t−1 − ρ(1− ρ)(yt−1)2

Ae,t = ρAe,t−1 − ρ(1− ρ)(π̂t−1 − qt−1)2

Af ,t = ρAf ,t−1 − ρ(1− ρ)(π̂t−1)2

zt = yt−1
xt = zt−1
pt = π̂t−1
qt = pt−1

,

(23)
where

αe,t = exp(γUe,t)
exp(γUf ,t)+ exp(γUe,t)

and

βe,t = exp(γAe,t)
exp(γAf ,t)+ exp(γAe,t)

.

https://doi.org/10.1017/S1365100525100382 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100525100382


6 N. Schmitt

Accordingly, the model dynamics is driven by the iteration of map S, which describes the state of
the system at time t, defined by yt , π̂t , r̂t , Ue,t , Uf ,t , Ae,t , Af ,t , zt , xt , pt , and qt , as a function of the
state of the system at time t − 1, i.e., yt−1, π̂t−1, r̂t−1, Ue,t−1, Uf ,t−1, Ae,t−1, Af ,t−1, zt−1, xt−1, pt−1,
and qt−1.2

3.2 Steady state and local asymptotic stability
We are now ready to explore the existence of a steady state, which can be done by looking for
a constant solution to the dynamical system S. Proposition 1 states that a steady state exists at
which we have π∗ = πT . Since the central bank aims to keep inflation at its target rate, we call it
the fundamental steady state.

Proposition 1. The model’s dynamical system (23) gives rise to the fundamental steady state s∗ =
(y∗, π̂∗, r̂∗,U∗

e ,U∗
f ,A

∗
e ,A∗

f , z
∗, x∗, p∗, q∗)= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)= 0, implying that π∗ = πT.

Proof. When imposing the fact that expectations are realized at the steady state, i.e., Ẽy∗ = y∗
and Ẽπ∗ = π∗, it follows from (16) and (17) that a steady state must satisfy

y∗ = a1y∗ + (1− a1)y∗ + a2(r̂∗ − π̂∗)
and

π̂∗ = b1π̂∗ + (1− b1)π̂∗ + b2y∗,
yielding r̂∗ = π̂∗ and y∗ = 0, respectively. Then, the Taylor rule

r̂∗ = c1π̂∗ + c2y∗ + c3r̂∗

can be solved for π̂∗ = r̂∗ = 0, implying that π∗ = πT . It follows that p∗ = q∗ = 0, z∗ = x∗ = 0,
U∗
e =A∗

e = 0, U∗
f = −ρy∗2 = 0, and A∗

f = −ρπ̂∗2 = 0. A steady-state solution is therefore given
by s∗ = (y∗, π̂∗, r̂∗,U∗

e ,U∗
f ,A

∗
e ,A∗

f , z
∗, x∗, p∗, q∗)= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)= 0.

Note that π∗ = πT implies that the steady state coincides with expectations of the fundamen-
tal rule. However, the naive heuristic also generates perfect forecasts at the steady state. Thus,
both predictors yield the same forecast, and the difference in forecasting performance is zero.
Consequently, half of the agents rely on the fundamental heuristic and the other half on the
naive heuristic to forecast inflation, i.e., β∗

f = β∗
e = 0.5. The same is true for the two output fore-

casting rules. Since y∗ = 0, both the fundamental and the naive expectation rule yield a perfect
forecast, resulting again in the same forecasting performance, and therefore in a uniform distri-
bution among agents, i.e., α∗

f = α∗
e = 0.5. However, the dynamical system (23) may also give rise

to further nonfundamental steady states at which Ẽy∗ �= y∗ and Ẽπ∗ �= π∗.3
A key contribution of our paper is to provide a (complete) local stability analysis of the funda-

mental steady state for the model by De Grauwe and Ji (2020). The results are summarized by the
following proposition.

Proposition 2. The fundamental steady state s∗ = 0 is locally asymptotically stable if and only if

c1 >
a1b1(1− c3)+ 2a2(b2(1− c3)− b1c2)

4a2b2
and

1− (− 2+ a1)(− 2+ b1)(− 4+ a1 + b1 + a2b2 + 2a2c2 − a2b1c2 − 2c3)c3
8(− 1+ a2(b2c1 + c2))2

>
(− 2+ a1)2(− 2+ b1)2c23
(4− 4a2(b2c1 + c2))2

− (− 2+ a1)(− 2+ b1)− 2(− 4+ a1 + b1 + a2b2)c3
−4+ 4a2(b2c1 + c2)

are simultaneously satisfied.
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Proof. We take the dynamic variables in the same order as they appear in (23), and find that the
Jacobian matrix, computed at the fundamental steady state, has the following block structure

J(s∗)=

⎡
⎢⎢⎣

H1 0(3,4) 0(3,4)
0(4,3) ρI4 0(4,4)
H2 0(4,4) H3

⎤
⎥⎥⎦ , (24)

where matrix H1 is given by

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2+ a1
−2+ 2a2(b2c1 + c2)

a2 + a2(− 2+ b1)c1
−2+ 2a2(b2c1 + c2)

− a2c3
−1+ a2(b2c1 + c2)

(− 2+ a1)b2
−2+ 2a2(b2c1 + c2)

−2+ b1 + a2b2 − a2(− 2+ b1)c2
−2+ 2a2(b2c1 + c2)

− a2b2c3
−1+ a2(b2c1 + c2)

(− 2+ a1)(b2c1 + c2)
−2+ 2a2(b2c1 + c2)

(− 2+ b1 + a2b2)c1 + a2c2
−2+ 2a2(b2c1 + c2)

− c3
−1+ a2(b2c1 + c2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

0(m,n) denotes the null (m, n) matrix, pI4 is the 4-D identity matrix multiplied by the memory
parameter, i.e.,

ρI4 =

⎡
⎢⎢⎢⎢⎢⎣

ρ 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ

⎤
⎥⎥⎥⎥⎥⎦ ,

and

H2 =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0
0 0 0
0 1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦ H3 =

⎡
⎢⎢⎢⎢⎢⎣
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ .

Since J(s∗) is a lower triangular block matrix, the eigenvalues can be determined by com-
puting the eigenvalues of blocks H3, ρI4, and H1 separately. It immediately follows that four
eigenvalues are equal to 0, and four are given by ρ. Due to 0< ρ < 1, they are smaller than
one in absolute value. The remaining three eigenvalues, say λ1, λ2, and λ3, are the ones
of block H1, from which we get the characteristic polynomial PH1 (λ)= λ3 + κ1λ2 + κ2λ + κ3,
where κ1 = −−4+a1+b1+a2b2+2a2c2−a2b1c2−2c3−2+2a2(b2c1+c2) , κ2 = −((−2+a1)(−2+b1))+2(−4+a1+b1+a2b2)c3

−4+4a2(b2c1+c2) and κ3 =
(−2+a1)(−2+b1)c3
−4+4a2(b2c1+c2) . A set of necessary and sufficient conditions to have all roots of a cubic polynomial
inside the unit circle is given by (see Gardini et al. (2021)):

(i) 1+ κ1 + κ2 + κ3 > 0
(ii) 1− κ1 + κ2 − κ3 > 0
(iii) 1− κ2 + κ1κ3 − κ2

3 > 0
(iv) |κ3| < 1

Since we have 0< a1, b1 < 1, a2 < 0, b2, c1(= d1d3), c2(= d2d3)> 0 and 0< c3(= 1− d3)< 1,
the denominator of κ3 is in absolute terms always greater than 4, while its numerator is always
smaller than 4. Condition (iv) therefore always holds, and we consider only the three remaining
conditions. From condition (ii), however, we obtain −16− 16c3 − a1b1 − a1b1c3 + 4a1 + 4b1 +
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4a1c3 + 4b1c3 + 2a2b2(1+ c3)+ 2a2c2(4− b1)+ 4a2b2c1 < 0, which, given the model’s parame-
ter restrictions, is always fulfilled. This can be easily seen as a2 < 0,−16− 16c3 − a1b1 − a1b1c3 <

−16 and 4a1 + 4b1 + 4a1c3 + 4b1c3 < 16. Thus, the fundamental steady state s∗ = 0 is locally
asymptotically stable if (i) and (iii) hold simultaneously, i.e., if and only if

c1 >
a1b1(1− c3)+ 2a2(b2(1− c3)− b1c2)

4a2b2
(25)

and

1− (− 2+ a1)(− 2+ b1)(− 4+ a1 + b1 + a2b2 + 2a2c2 − a2b1c2 − 2c3)c3
8(− 1+ a2(b2c1 + c2))2

>
(− 2+ a1)2(− 2+ b1)2c23
(4− 4a2(b2c1 + c2))2

− (− 2+ a1)(− 2+ b1)− 2(− 4+ a1 + b1 + a2b2)c3
−4+ 4a2(b2c1 + c2)

.
(26)

As shown above, the local stability analysis is performed by determining the eigenvalues of the
Jacobian matrix, evaluated at the fundamental steady state. A sufficient condition for the local
stability of a fixed point is that all eigenvalues are inside the unit circle in the complex plane, i.e.,
smaller than one inmodulus. Due to the particular structure of (24), eight out of the 11 eigenvalues
can be determined immediately. Among these eight eigenvalues, four are equal to zero, while the
remaining four are given by 0< ρ < 1. If stability conditions (25) and (26) are simultaneously
satisfied, the remaining three eigenvalues also lie inside the unit circle, and the fundamental steady
state is locally asymptotically stable. However, as soon as one of the two conditions is violated, at
least one eigenvalue crosses the unit circle, and the steady state becomes unstable. If inequality
(26) is violated, while (25) is satisfied, we have one real eigenvalue inside the unit circle and a pair
of complex eigenvalues that is larger than one in absolute value (see Gardini et al. (2021)). In such
a situation, model dynamics may explode cyclically.4 When (25) gets violated and (26) holds, we
have one real eigenvalue that becomes larger than +1, while the other two (complex or real) lie
inside the unit circle. In this case, model dynamics may explode monotonically.5 Now suppose the
central bank faces a situation in which at least one of these conditions gets violated. Then, it can try
to re-establish the stability of the steady state by adjusting the parameters of its monetary policy
rule. As demonstrated in the next section, achieving steady-state stability depends on dampening
self-fulfilling waves of optimism and pessimism that drive the economy away from equilibrium.

4. Model dynamics
Before we illustrate our analytical results and the dynamical behavior of the deterministic model,
we begin this section by visualizing the stochastic dynamics of the model. In doing so, we rely on
the same parameter setting as in De Grauwe and Ji (2020). Note, however, that we have adjusted
parameter ρ (see Footnote 1). The parameters are a1 = 0.5, a2 = −0.2, b1 = 0.5, b2 = 0.05, d1 =
1.5, d2 = 0.5, and d3 = 0.5, implying that c1 = d1d3 = 0.75, c2 = d2d3 = 0.25, and c3 = 1− d3 =
0.5, γ = 2, and ρ = 0.65.6 Moreover, the standard deviations of the three shocks are equal to 0.5.

4.1 Stochastic dynamics
For reasons of illustration, we follow De Grauwe and Ji (2020) and first introduce an index of
market sentiments, reflecting how optimistic or pessimistic agents’ forecasts are. These animal
spirits are defined by

St =
{

αe,t − αf ,t = αe,t − (1− αe,t)= 2αe,t − 1 if yt−1 > 0
−αe,t + αf ,t = −αe,t + (1− αe,t)= −2αe,t + 1 if yt−1 < 0

,
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Figure 1. Stochastic dynamics. The panels on the left-hand side show movements of the output gap and animal spirits for
a sample of 200 periods, while their frequency distributions are presented on the right-hand for the full 10, 000 periods.
The parameters are a1 = 0.5, a2 = −0.2, b1 = 0.5, b2 = 0.05, d1 = 1.5, d2 = 0.5, and d3 = 0.5, implying c1 = d1d3 = 0.75, c2 =
d2d3 = 0.25 and c3 = 1− d3 = 0.5, γ = 2, ρ = 0.65, and σν = ση = σu = 0.5.

where St ∈ [− 1, 1]. Let us assume the last period’s output gap is positive (negative). If this is the
case, we have that agents who rely on the naive predictor forecast a positive (negative) output gap,
while those using the fundamental heuristic make a pessimistic (optimistic) forecast. The market
sentiment can be captured by subtracting the fraction of pessimists from the fraction of optimists,
i.e., αe,t − αf ,t if yt−1 > 0 and αf ,t − αe,t if yt−1 < 0. Of course, index St becomes positive (negative)
if the fraction of optimists (pessimists) exceeds the fraction of pessimists (optimists), and is equal
to 0 if αe,t = αf ,t = 0.5.

In Figure 1, we depict a representative simulation run based on 10, 000 observations. The pan-
els on the left-hand side show movements of the output gap and animal spirits for a sample
of 200 periods, respectively. Since the model by De Grauwe and Ji (2020) was calibrated such
that time units can be considered to be quarters, 200 periods correspond to a time span of about
50 years. As can be seen, the output gap shows a strong cyclical movement in the time domain.
These movements of output are triggered by the waves of optimism and pessimism depicted in
the lower left-hand side panel. If optimists dominate, we observe a positive output gap, while the
output is below its equilibrium when pessimists dominate. Between observations 160 and 180,
we even observe a situation where all agents extrapolate a positive output gap, i.e., St becomes
equal to +1. Obviously, the output gap shows extreme positive movements during this period.
The high correlation between these two variables can be explained by the self-fulfilling nature
of expectations. When a wave of optimism (pessimism) is set in motion, aggregate demand
increases (decreases), and those who made a optimistic (pessimistic) forecast benefit as their
forecasting rule performs better. As a result, more andmore agents switch to being optimists (pes-
simists) by which, in turn, aggregate demand is stimulated (dampened) and a boom (bust) may be
created.
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The right-hand panels show the output gap and animal spirits in the frequency domain for the
full 10, 000 periods. In the upper panel, we compare the frequency distribution of the output gap
to the one of a normal distribution with identical mean and standard deviation, represented by
the black line. As can be seen, the output gap is not normally distributed. De Grauwe and Ji (2020)
find a higher concentration around the mean, thinner shoulders, andmore probability mass in the
tails. This non-normality can be explained by the lower panel.While the distribution of the animal
spirits shows a high concentration around 0, we also observe a concentration of observations at
the extreme values of +1 and −1. As extreme optimism (pessimism) creates extreme positive
(negative) movements, the distribution of the output gap reveals fat tails.

4.2 Deterministic dynamics
As demonstrated above, the model proposed by De Grauwe and Ji (2020) is able to replicate sev-
eral key empirical statistical properties, and the simulated data closely resembles the dynamics
observed in the real world. However, themodel’s dynamics depends strongly on exogenous shocks
affecting the economy. Specifically, three different shocks, each with a standard deviation of 0.5,
hit the system in every period. Given the amplitude of the dynamics, these shocks are relatively
large.

Now, we set σν = σν = σu = 0 and illustrate the dynamics in the time domain in Figure 2. From
top to bottom, the panels show the evolution of the output gap, the inflation rate, and the interest
rate for 50 periods, respectively. At t = 0, the dynamics is hit by a single exogenous demand shock
of 0.5. As can be seen, all three state variables quickly converge towards their equilibrium. The
reason for this is provided by our analytical results. For the given parameter setting, the character-
istic polynomial PH1 (λ) is given by λ3 − 1.93144λ2 + 1.2435λ − 0.265957, from which we obtain
λ1 = 0.55 and λ2,3 = 0.69± 0.08i. Since |λ1,2,3| < 1, the fundamental steady state is locally stable.
Moreover, we have two eigenvalues that are complex, which is why the adjustment towards the
steady state is cyclical. If no further shock hits the dynamics, the economy remains at its steady
state.

Now, suppose a series of random shocks hits the dynamics, initiating a wave of optimism or
pessimism. Once such a wave is set in motion, the nonlinear features of the model kick in and
amplify these shocks. Since the shocks are i.i.d, it is the model’s nonlinear forces due to which
we find non-normality in the distribution of the output gap. In this way, the model transforms
normally distributed shocks – without any boom-bust characteristics – into dynamics of booms
and busts. However, without any of these exogenous shocks, the dynamics can be characterized
by fixed-point dynamics.

Interestingly, the fundamental steady state would also be stable if the central bankwere inactive,
i.e., if d1 = 0 and d2 = 0, implying c1 = 0 and c2 = 0. In this case, the characteristic polynomial of
matrixH1 would be PH1 (λ)= λ3 − 2.005λ2 + 1.315λ − 0.28125, yielding the eigenvalues λ1 = 0.5,
λ2 = 0.69, and λ3 = 0.81. Since all eigenvalues lie inside the unit circle, the system would still con-
verge to the steady state, even if there were no inflation targeting and no output stabilization. This
result differs from the findings of standard DSGE models. Woodford (2003) and Galí (2008), for
instance, show that the inflation parameter d1 must exceed one to ensure stability of the model.
However, other New Keynesian models with heterogeneous expectations and boundedly rational
agents – such as those proposed by Hommes and Lustenhouwer (2019) and Salle et al. (2013)
– also suggest that convergence to the steady state can be ensured even if the Taylor Principle
is not satisfied. Interestingly, Angeletos and Lian (2023) arrive at a similar result. They trans-
late a dynamic game among consumers into the standard representative agents New Keynesian
model and assume that social memory is imperfect. Under this perturbation, they demonstrate
that the equilibrium is unique and given by the fundamental solution, regardless of monetary
policy.
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Figure 2. Deterministic dynamics for the base parameter setting. The panels show, from top to bottom, the evolution of
the output gap, the inflation rate, and the interest rate for 50 periods, respectively. The parameters are a1 = 0.5, a2 = −0.2,
b1 = 0.5, b2 = 0.05, d1 = 1.5, d2 = 0.5, and d3 = 0.5, implying c1 = d1d3 = 0.75, c2 = d2d3 = 0.25 and c3 = 1− d3 = 0.5, γ = 2,
ρ = 0.65, and σν = ση = σu = 0.

This raises the question: why does this result occur in themodel we consider? To answer this, let
us consider the example described above where c1 = 0 and c2 = 0. The fundamental steady state is
locally stable, implying that half of the agents rely on the fundamental predictor and the other half
on the naive predictor, i.e., α∗

f = α∗
e = 0.5. Then, a positive demand shock occurs, causing the out-

put gap to increase. As the output gap moves away from equilibrium, the naive heuristic, making
a positive forecast, becomes more attractive. However, agents update their choice of heuristic with
a time delay of three periods. Thus, at the time of the shock, the fraction of those relying on the
fundamental predictor remains at 50 percent, and their mean-reverting power is strong enough
to push the output gap back towards its equilibrium value. Once agents adjust their choices,
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Figure 3. Deterministic dynamics for a different parameter setting. The panels show, from top to bottom, the evolution
of the output gap, the inflation rate, and the interest rate for 500 periods, respectively. On the left-hand (right-hand)
side, the parameters are a1 = 0.8, a2 = −1, b1 = 0.8, b2 = 2, c1 = 0.2 (c1 = 0.23), c2 = 0.2, c3 = 0.8, γ = 2, ρ = 0.65, and
σν = ση = σu = 0.

the fraction of those making a positive forecast increases. However, by then, the output gap is
already converging toward equilibrium, making the fundamental predictor attractive again. As a
result, the fraction of agents using the naive predictor gradually decreases, while the fraction of
those following the fundamental predictor increases. This process continues – without any central
bank intervention – until equilibrium is reached, with both fractions equal to 0.5. Nonetheless, the
central bank can accelerate this stabilization process by increasing its policy parameters. In doing
so, it can reduce the amplitude of fluctuations – much like in Angeletos and Lian (2023) – and
help the economy return to equilibrium more quickly. However, if the system is regularly hit by
exogenous shocks, the volatility of the adjustment dynamics of the output gap and the inflation
rate may become unacceptably high, forcing the central bank to intervene, even though the system
is dynamically stable.

Next, we illustrate that there are parameter settings within the defined parameter ranges for
which the fundamental steady state is unstable. In Figure 3, we assume the following parame-
ter values: a1 = 0.8, a2 = −1, b1 = 0.8, b2 = 2, c1 = 0.2, c2 = 0.2, c3 = 0.8, γ = 2, ρ = 0.65, and
σν = ση = σu = 0, and display the dynamics in the left-hand panels.7 At t = 0, we assume an
exogenous demand shock of 0.1. The panels show again, from top to bottom, the evolution of
the output gap, the inflation rate, and the interest rate in the time domain (for 500 periods),
respectively. As evident from the figure, the system generates cyclical dynamics. However, these
boom-bust dynamics eventually explode and diverges to infinity. Applying our analytical results
to this parameter setting reveals that the first stability condition is satisfied, while the second one
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is violated. From (26), we obtain, for instance, that parameter c1 must exceed 0.207482 to ensure
stability of the fundamental steady state. Given that c1 = 0.2, the dynamics diverge whenever an
exogenous shock disrupts the system.

However, the central bank can achieve stability of the steady state by increasing the intensity at
which it does inflation targeting. As soon as parameter c1 exceeds its critical value of 0.204782, the
system may converge to its equilibrium. In the right-hand panels of Figure 3, we show how the
dynamics change when the central bank increases its inflation parameter up to c1 = 0.23. The
output gap, the inflation rate and the interest rate now appear to cyclically converge to their
equilibrium values.

What economic mechanism leads to this stabilization? The key is to mitigate the intensity of
self-fulfilling waves of optimism and pessimism that drive the economy away from equilibrium.
When monetary policy responds strongly enough to deviations in inflation and output, it can
counteract expectation-driven fluctuations, thereby reducing excessive belief-switching and, in
turn, mitigating boom-bust cycles. For instance, suppose we observe a strong increase in aggregate
demand. Those who made a positive output forecast will benefit, encouraging more agents to
become optimistic, which further stimulates aggregate demand. If the central bank does not raise
interest rates sufficiently, aggregate demand will continue to rise, potentially leading to a boom.
However, if the central bank responds strongly enough, the increase in aggregate demand will be
dampened, causing fewer agents to become optimists and thus reducing the boom.

5. Conclusions
In this paper, we provide a detailed analytical treatment of the behavioral macroeconomic model
by De Grauwe and Ji (2020). In particular, we provide necessary and sufficient conditions for
the local asymptotic stability of the model’s fundamental steady state. Interestingly, our analytical
results reveal that the parameter setting by De Grauwe and Ji (2020) yields a locally stable funda-
mental steady state, implying that the model’s dynamics is largely driven by exogenous shocks.
However, we also identify conditions under which boom-bust dynamics emerge temporarily
endogenously from within the model. Overall, our findings contribute to a deeper understand-
ing of how booms and busts emerge in such a framework and provide insights into howmonetary
policy can be utilized to stabilize these dynamics.
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Notes
1 See the Appendix for more details. Note that De Grauwe and Ji (2020) define the utility by Ut = − ∑∞

k=0 ωk(yt−k−1 −
Ẽt−k−2yt−k−1)2, yielding Ut = ρUt−1 − (1− ρ)(yt−1 − Ẽt−2yt−1)2.
2 In their analyis, De Grauwe and Ji (2020) introduce the simplifying assumptions that πT = 0, ρ = 0, a1 = 1, and b1 = 1,
yielding a 6-D dynamical system.
3 These steady states cannot be expressed analytically. In footnote 5, we provide a parameter setting for which we find these
nonfundamental steady states numerically.
4 If the modulus of the two complex conjugate eigenvalues is exactly 1, the dynamics remain bounded, and the system does
not explode. Instead, it exhibits cyclical behavior, where the output gap, inflation, and interest rate oscillate around their
fundamental steady-state values.
5 For parameter values outside the defined range of values, model dynamics may even converge to one of the non-
fundamental steady states. For a1 = 0.5, a2 = −0.2, b1 = −0.5, b2 = 0.05, c1 = 1.5, c2 = 0.5, c3 = 0.5, γ = 2, and ρ = 0.5,
for instance, model dynamics either converges to s∗2 = (− 0.65, 1.81, 2.39, 0,−0.21, 0,−1.64,−0.65,−0.65, 1.81, 1.81) or
s∗3 = (0.65,−1.81,−2.39, 0,−0.21, 0,−1.64, 0.65, 0.65,−1.81,−1.81).
6 In De Grauwe and Ji (2020), the memory parameter is set to ρ = 0.5.
7 This parameter setting is chosen for illustrative purposes, but similar results can be obtained with more realistic values.
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Appendix

The utilities of using the fundamental and naive rule at time t are given by

Uj,t = −
∞∑
k=1

(1− ρ)ρk(yt−k − Ẽjt−k−1yt−k)2, j= f , e,

which can easily be rewritten as

= −(1− ρ)ρ(yt−1 − Ẽjt−2yt−1)2 − (1− ρ)ρ2(yt−2 − Ẽjt−3yt−2)2

− (1− ρ)ρ3(yt−3 − Ẽjt−4yt−3)2 − · · ·
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Since we can write that

ρUj,t−1 = −ρ
(
(1− ρ)ρ(yt−2 − Ẽjt−3yt−2)2 + (1− ρ)ρ2(yt−3 − Ẽjt−4yt−3)2 + · · ·

)
,

we obtain
Ut,j − ρUj,t−1 = −(1− ρ)ρ(yt−1 − Ẽjt−2yt−1)2

− (1− ρ)ρ2
(
(yt−2 − Ẽjt−3yt−2)2 − (yt−2 − Ẽjt−3yt−2)2

)
− (1− ρ)ρ3

(
(yt−3 − Ẽjt−4yt−3)2 − (yt−3 − Ẽjt−4yt−3)2

)
− · · ·

Since the last terms cancel out, we get the expression defined in (8), i.e.,

Ut,j = ρUj,t−1 − (1− ρ)ρ(yt−1 − Ẽjt−2yt−1)2, j= f , e.
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