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Abstract

An unknotting tunnel in a 3-manifold with boundary is a properly embedded arc, the complement of
an open neighborhood of which is a handlebody. A geodesic with endpoints on the cusp boundary of
a hyperbolic 3-manifold and perpendicular to the cusp boundary is called a vertical geodesic. Given a
vertical geodesic α in a hyperbolic 3-manifold M, we find sufficient conditions for it to be an unknotting
tunnel. In particular, if α corresponds to a 4-bracelet, 5-bracelet or 6-bracelet in the universal cover and
has short enough length, it must be an unknotting tunnel. Furthermore, we consider a vertical geodesic α
that satisfies the elder sibling property, which means that in the universal cover, every horoball except the
one centered at∞ is connected to a larger horoball by a lift of α. Such an α with length less than ln(2) is
then shown to be an unknotting tunnel.

2010 Mathematics subject classification: primary 57M50.
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1. Introduction

An unknotting tunnel α in a manifold M with boundary is an arc properly embedded
in the manifold such that M − N(α) is a handlebody. Given a knot or link K in S 3,
an arc α that intersects K in its endpoints is said to be an unknotting tunnel if it is an
unknotting tunnel when restricted to the exterior of K.

The tunnel number of a manifold is the least number of properly embedded
arcs such that the complement of an open regular neighborhood of the arcs is a
handlebody. Every compact orientable manifold with boundary has a finite tunnel
number associated with it, but here, we will be dealing with manifolds of tunnel
number one.

We consider finite volume orientable hyperbolic manifolds with one or two cusps.
Examples include hyperbolic knot or link complements. If M is such a manifold,
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then by [10], the hyperbolic structure is unique, and there exists a projection map
p : H3→ M that generates the hyperbolic structure. Cusps then lift to collections of
horoballs in hyperbolic 3-space, and geodesics with both ends going out the cusps lift
to collections of geodesics connecting horoballs. Such geodesics are called vertical
geodesics and are candidates for being unknotting tunnels when the interiors of disjoint
cups are removed.

In [1], it was proved that for two-cusped hyperbolic 3-manifolds, all unknotting
tunnels are vertical geodesics, and further, if the length of such a geodesic is defined
as the length outside a maximal cusp or set of maximal cusps with disjoint interiors,
then the length of a geodesic corresponding to an unknotting tunnel is less than ln (4).

For one-cusped manifolds, it is not generally known that an unknotting tunnel must
be isotopic to a geodesic. However, in [2], it was shown to be true for hyperbolic
2-bridge knots. In [6], it was proved that an unknotting tunnel in a one-cusped
hyperbolic manifold coming from ‘generic’ surgery on a 2-cusped manifold is isotopic
to a geodesic. Moreover, in [7], it was proved that unknotting tunnels in one-cusped
hyperbolic 3-manifolds can be arbitrarily long, unlike the case for 2-cusped manifolds.
Explicit knot complements in S 3 with arbitrarily long unknotting tunnes were given
in [6].

Given a vertical geodesic α in the manifold, we find sufficient conditions for it to
be an unknotting tunnel. In particular, in the universal cover H3, define an n-bracelet
to be a cycle of n horoballs covering the cusps, connected by lifts of α. We show that
if α has length less than ln (

√
2) and possesses a 4-bracelet, it must be an unknotting

tunnel. If α has length less than 0.16175, and possesses a 5-bracelet, then it must be an
unknotting tunnel. If α has length zero, meaning it corresponds to a point of tangency
of the maximal cusp or cusps, it is an unknotting tunnel whenever there is a bracelet
of six or fewer horoballs.

We then make use of the elder sibling property to obtain additional sufficient
conditions for a geodesic in a knot complement to be an unknotting tunnel. The
elder sibling property for balls in hyperbolic space was introduced by Freedman and
McMullen in [8], where it was used to create a criterion for tameness of 3-manifolds.
A 3-manifold is tame if it is homeomorphic to the interior of a compact manifold with
boundary. In 1974 [9], Marden first raised the question of whether every complete
hyperbolic 3-manifold with finitely generated fundamental group is topologically
tame, and this question became known as the tameness conjecture. Marden proved
that geometrically finite hyperbolic 3-manifolds are topologically tame. Freedman
and McMullen developed the concept of elder sibling to make further inroads on the
problem, proving with a Morse theory argument that the elder sibling property for a
hyperbolic 3-manifold with finitely generated fundamental group implies tameness.

The tameness conjecture was eventually proved in full generality in 2004 by
Agol [3], and by Calegari and Gabai [4]. A number of results follow from tameness,
including the Ahlfors conjecture, posed in the early 1960s, which states that the limit
set of a finitely generated Kleinian group is either the whole sphere, or of measure
zero [5].
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Freedman and McMullen define the elder sibling property to hold for a collection of
open balls in H3 if there exists a ball B1 in the set such that any ball in the collection is
joined to B1 by a finite chain of overlapping balls moving monotonically closer to B1.

We apply a version of the elder sibling property to collections of horoballs and
beams connecting the horoballs corresponding to a cusped hyperbolic 3-manifold and
geodesic pair, and show that if the ball-and-beam pattern satisfies the elder sibling
property and has length less than ln 2, the geodesic must be an unknotting tunnel.

Note that we are only considering orientable manifolds throughout, so any mention
of manifolds should be taken to mean orientable manifolds, even when this is not
specified.

2. Ball-and-beam patterns

To prove the following results, we make use of the ball-and-beam pattern associated
with a given manifold and vertical geodesic pair (M, α), as discussed in [1]. A vertical
geodesic is a geodesic α in a cusped hyperbolic 3-manifold M that is perpendicular
to the cusp or cusps at each of its ends. When the manifold is lifted to the upper-
half-space model of H3 so that one end of a lift of the geodesic touches the horoball
centered at∞, the lift is a vertical ray.

The ball-and-beam pattern associated with (M, α) is the subset of H3 given by
p−1(C ∪ N(α)), where C is a cusp or the union of disjoint cusps. The beams are given
by the preimage of N(α). We only consider a beam connected to a ball if its endpoint
is at the center of the ball (which in the case of a horoball is the point of tangency of
the ball with ∂H3). It is possible that a beam may intersect a ball that is not one of
the two balls at which it has its endpoints, but we consider these intersections to be
ghost intersections, and they do not count as true intersections when we consider the
connectedness of a ball-and-beam pattern. One can always shrink back the cusp or
cusps so that the only intersections of beams with balls occurs when the balls are at
the endpoints of the beams.

However, it is also convenient to be able to expand the balls. A maximal cusp of a
manifold is a cusp that has been expanded until it first touches itself on the boundary.
A maximal cusp then lifts to a set of horoballs in H3, some of them tangent to each
other, with disjoint interiors. In the case of multiple cusps, a maximal cusp collection
is any choice of expanded cusps such that none overlap in their interiors, either with
themselves or each other, and none can be expanded while preserving this fact. We
define the length of a vertical geodesic to be the length in H3 of that part of the geodesic
that lies between the two points on the geodesic where it intersects the boundary of the
maximal cusp or cusps (again excluding ghost intersections).

To distinguish between horoballs in a horoball pattern, we refer to a particular
horoball as Ha, where a is the point in the xy-plane at which the horoball is tangent.
The horoball centered at∞ will be denoted H∞. Most of the horoball patterns depicted
in this paper correspond to maximal cusps.

It will also be useful to consider n-bracelets and n-disks in ball-and-beam
patterns. An n-bracelet is a sequence of n horoballs cyclically connected by beams.
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F 1. Here, α is a vertical geodesic of length zero, the lifts of which appear as dots corresponding
to points of tangency of the horoballs. The nine horoballs form a 9-bracelet. The shaded region forms a

9-disk.

F 2. A blocked n-disk. A beam now intersects the obvious disk from Figure 1.

We assume n ≥ 3. We say that a ball-and-beam pattern contains an n-disk if there is a
disk D in H3 that intersects the ball-and-beam pattern of (M, α) in ∂D such that ∂D is
a nontrivial curve in an n-bracelet. See Figure 1 for an example of how an n-bracelet
might look. We say the n-bracelet is blocked if it does not correspond to an n-disk, that
is, there is no nontrivial curve in the n-bracelet that bounds a disk with interior in the
complement of the balls and beams (Figure 2).

In fact, a result from [1] renders these n-bracelets extremely useful for us.

L 2.1 [1, Corollary 4.2]. If M is a one-cusped hyperbolic 3-manifold and α a
vertical geodesic within it or if M is a 2-cusped hyperbolic 3-manifold and α is a
vertical geodesic that has ends at both cusps, and if the ball-and-beam pattern for
(M, α) contains an n-disk, then α must be an unknotting tunnel for M.

In the following section, we use n-disks and ball-and-beam patterns to provide
sufficient conditions for a given vertical geodesic to be an unknotting tunnel. But
first, we need a few geometric lemmas.

L 2.2. Let H1 and H2 be horoballs of Euclidean radii r1 and r2 centered at points
x1 and x2 on the xy-plane, respectively, and let γ be the geodesic that runs from x1

to x2. Let b be the Euclidean radius of the semicircular arc formed by γ, and let
the segment of γ that runs between H1 and H2 have length g (see Figure 3). Then
g = ln (b2/(r1r2)).
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g

x1 x2

H2

b

H1
r1

r2

F 3. The situation described in Lemma 2.2.

P. The hyperbolic length of the geodesic arc connecting H1 and H2 is

ln
( csc α − cot β
csc α − cot α

)
= ln
( (1 − cos β)(sin α)
(1 − cos α)(sin β)

)
,

where α and β are the angles shown in Figure 3. Calculating the point of intersection
of H1 and the semicircular arc of radius b, we can show that cos α = (b2 − r2

1)/(b2 +

r2
1) and sin α = (2br1)/(b2 + r2

1). Similarly, cos β = (b2 − r2
2)/(b2 + r2

2) and sin α =

(2br2)/(b2 + r2
2). Substituting these values for sin α, cos α, sin β, and cos β into the

above formula for g and simplifying yields that g = ln (b2/(r1r2)). �

L 2.3. For two horoballs H1 and H2 of radius r1 and r2 centered at points x1 and
x2, respectively, on the xy-plane and connected by a geodesic arc segment of length
g, the distance d(x1, x2) between their points of tangency with the xy-plane is equal to
2
√

r1r2eg.

P. The distance between the two horoballs is twice the Euclidean radius b of the
geodesic arc that runs from H1 to H2. By the lemma above, g = ln (b2/r1r2), and so
d(x1, x2) = 2b = 2

√
r1r2eg. �

L 2.4. Let x1 and x2 be two points on the equator of a horosphere. Let α be the
angle formed at the North Pole N of the horosphere, between the arcs from N to x1 and
x2. Then the distance on the horosphere between x1 and x2 is given by

√
2 − 2 cos α.

P. The distance between N and a point on the equator on any horosphere is exactly
1. The resultant triangle with vertices x1, x2 and N is a Euclidean isosceles triangle
with two edges of length 1 and the angle between them α. Hence, the law of cosines
yields the result. �

L 2.5. Given a bracelet consisting of balls with fixed centers and radii, the
shortest possible beam that blocks it must either have length zero, or both of the
blocking balls must be tangent to at least three of the bracelet balls.

P. Apply an isometry to center one of the blocking balls at∞ so that the blocking
beam becomes vertical. It clearly must be tangent to one of the bracelet balls or we
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could expand it to shorten the beam. The other blocking ball is centered in the plane.
If it does not touch three of the bracelet balls, we can expand it, shrinking the length
of the beam until the ball either touches three of the bracelet balls, or it touches the
blocking ball at H∞, meaning the beam has length zero. So, assuming the beam does
not have length zero, it must be that this blocking ball touches three of the bracelet
balls. Now, placing this ball so it is centered at ∞ and repeating the argument implies
that the other blocking ball must also touch three bracelet balls. �

We now use these lemmas to provide conditions that ensure that a bracelet of
length four, five or six in a ball-and-beam pattern for a manifold of one or two cusps
corresponds to an n-disk. Note that we need not consider the case where a ball-and-
beam pattern contains a 3-disk. By [1, Lemma 5.1], given a noncompact, orientable
hyperbolic 3-manifold M and vertical geodesic α, the ball-and-beam pattern for (M, α)
cannot contain a 3-disk.

P 2.6. Let M be a hyperbolic 3-manifold of one or two cusps and let α be
a vertical geodesic of length less than ln (

√
2). If M has two cusps, we require that α

runs from one cusp to another. Then, if the ball-and-beam pattern of (M, α) contains
a 4-bracelet, α must be an unknotting tunnel.

P. Suppose we have a hyperbolic manifold of one or two cusps with vertical
geodesic α such that the hyperbolic length of α in H3 is g. We will show that for
small g, the wrist hole of a 4-bracelet becomes ‘too small’ to be blocked by other balls
and beams.

Fix a particular choice of a 4-bracelet by fixing the centers and radii of the
corresponding four horoballs, such that the lengths of the connecting geodesics are
all identical, and equal to g. If any choice of a pair of horoball centers and radii
and their corresponding beam could possibly block this bracelet, we take the minimal
length blocking beam and corresponding pair of horoballs. Note that if g = 0, there is
no blocking beam of length zero possible. Hence we may assume that the length of
the blocking beam is greater than zero. Since there are only four balls in the bracelet,
Lemma 2.5 implies there is a bracelet ball that is tangent to both of the blocking balls.

We apply an isometry taking that bracelet ball to H∞, which we take to have
Euclidean height one. For convenience, we label the two horoballs in the 4-bracelet
connected to H∞ as Ha and Hb, and the ball in between them Hc. Note that since Ha

and Hb are both connected to H∞ by a segment of α with length g, they are the same
distance from H∞ and thus have the same Euclidean height. Let the two blocking balls
be labelled He and H f . Since both are tangent to H∞, they both have diameter one.

Hence, to obtain the shortest possible blocking beam, we want them to have the
shortest possible Euclidean distance between their centers on the xy-plane. However,
this occurs when both are tangent to Ha and Hb, and the centers of Ha and Hb are
as far apart as possible. This happens when c is in line with a and b, as in Figure 4.
However, then we can apply an isometry that takes the geodesic line on the xy-plane
through the centers of the bracelet balls and∞ to the circle of radius

√
2 in the complex
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a

e

f

bc

F 4. A view from above of a blocked 4-disk.

plane so that the four centers of the bracelet balls occur at ±1/2 ± i/2. Then the two
blocking balls must be centered at ∞ and 0. Begin with the four bracelet balls having
radius 1/2. Then they touch each other and the length of the beam connecting them
sequentially is zero. The shortest beam that could block the 4-disk with boundary in
the bracelet corresponds to the blocking balls H∞, with boundary the horizontal plane
at height one, and H0, which is the horoball centered at the origin, tangent to all four
balls in the bracelet, and hence of radius 1/4. Note that the vertical beam connecting
H∞ and H0 then has length ln 2. To have an actual case of a beam blocking a disk, it
must be that the beams in the bracelet have the same length as the blocking beam. So
we will shrink back the size of the horoballs in the bracelet and expand the size of the
blocking balls until the two beam lengths match.

Suppose the radii of the balls in the bracelet are a. Let g1 be the length of the
beam in the bracelet, a function of a. Let g2 be the length of the beam connecting
the corresponding H∞ and H0. Then the horizontal plane that bounds H∞ is at
height 2a. Let r be the radius of the horoball H0. The center of H0 is a distance
1/
√

2 from the center of each of the balls in the bracelet. Considering one of them,
it must then be the case that (1/

√
2)2 + (a − r)2 = (a + r)2. Thus, r = 1/(8a), and

g2 = ln (2a/2r) = ln (8a2).
Lemma 2.2 implies that g1 = ln((1/2)2/a2). Setting g1 = g2, we obtain a = 1/(2 4

√
2),

and hence g1 = g2 = ln (
√

2).
Hence, for a 4-bracelet to be blocked, g must be at least ln (

√
2). So if g < ln (

√
2)

and if the ball-and-beam pattern for (M, α) contains a 4-bracelet, then the 4-bracelet
bounds a disk, and so α must be an unknotting tunnel. �

P 2.7. Let M be a one-cusped hyperbolic 3-manifold and let α be a vertical
geodesic of length less than ln (2 cos (3π/10)) ≈ 0.16175. Then, if the ball-and-beam
pattern associated with (M, α) contains a 4-bracelet or a 5-bracelet, α must be an
unknotting tunnel.

https://doi.org/10.1017/S1446788713000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000116


8 C. Adams and K. Knudson [8]

f

a b

e

d c

F 5. A view from above of a blocked 5-bracelet showing the beams corresponding to α.

P. If the ball-and-beam pattern for (M, α) contains a 4-bracelet, then the fact that
α is an unknotting tunnel follows from Proposition 2.6. All that remains to show is
that for sufficiently small vertical geodesic length g, it is impossible for a 5-bracelet to
be blocked.

We will show that among all 5-bracelets corresponding to a given length g, the
5-bracelet where the two blocking balls are tangent to all five of the bracelet balls
yields the minimal length for a blocking beam. Choose any particular conformation
for the 5-bracelet, fixing the centers and radii of the bracelet balls. Let He and H f be
the blocking balls corresponding to a blocking beam of least possible length for that
conformation. Lemma 2.5 states that if the beam has length greater than zero, He and
H f are each tangent to three of the bracelet balls, and therefore they are tangent to a
shared bracelet ball. Again,we apply an isometry to all the balls that takes this bracelet
ball to H∞ at height one. The other horoballs of the resulting 5-bracelet are labelled
Ha, Hb, Hc and Hd as in Figure 5. As before, Ha and Hb are both a hyperbolic distance
g from H∞, and so have the same radius. We have that He and H f have diameter one,
since they are tangent to H∞. The case that will minimize the length of the geodesic
from He to H f is when He and H f are as close together as possible, hence when both
are tangent to each of Ha and Hb and Ha and Hb are as far apart as possible. This
occurs when c and d are in line with a and b.

Since He and H f are both tangent to Ha, we can apply an isometry that takes Ha to
H∞. By the same argument, the images of He and H f must be tangent to the image of
Hd. Doing the same for Hb implies that in fact He and H f must be tangent to all five
of the horoballs in the bracelet.

Applying an isometry that takes He to H∞, and H f to H0, we see that the centers of
the bracelet horoballs must form the vertices of a regular pentagon with center at the
origin. Choosing the length of the edges of the regular pentagon to be one, the vertices
of the pentagon are all a distance 1/(2 cos (3π/10)) from the origin.
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F 6. The (−2, 3, 7) pretzel knot.

Suppose the radii of the balls in the bracelet are all a. Let g1 be the length of
the beam in the bracelet, which by Lemma 2.2 is given by g1 = ln ((1/2)2/a2). Let
r be the radius of the horoball H0 and let g2 be the length of the beam connecting
the corresponding H∞ and H0. Since the horizontal plane that bounds H∞ is at
height 2a, g2 = ln (2a/2r). The center of H0 is a distance 1/(2 cos (3π/10)) from the
center of each of the balls in the bracelet. Considering one of them, it must then be the
case that (1/(2 cos (3π/10)))2 + (a − r)2 = (a + r)2. Thus, r = 1/(16a cos2 (3π/10)),
and g2 = ln (16a2 cos2 (3π/10)).

Setting g1 = g2, we obtain a = 1/(2
√

2
√

cos (3π/10)), and hence g1 = g2 =

ln (2 cos (3π/10)).
Thus, if g < ln (2 cos (3π/10)), a 5-bracelet cannot be blocked, and so in this case,

the presence of a 5-bracelet implies that the ball-and-beam pattern of the manifold and
geodesic pair (M, α) contains an n-disk and hence α is an unknotting tunnel. �

Although it may seem that perhaps relatively few vertical geodesics have length
g < 0.16175 . . . , note that in fact, in every one-cusped manifold there is a vertical
geodesic of length zero. The maximal cusp is obtained by expanding the cusp until
it first becomes tangent to itself, and the arc that passes perpendicularly through this
point of tangency with endpoints perpendicular to the two cusps is a vertical geodesic
of length zero. Moreover, 5-bracelets do arise in ball-and-beam patterns for orientable
manifolds, as in this example of the (−2, 3, 7)-pretzel knot (see Figure 6), which has
a horoball pattern as appears in Figure 7 where we take the vertical geodesic of length
zero corresponding to tangency points of the horoballs.

We conclude by noting that the same type of argument does not work to find a value
for g below which an n-bracelet in the ball-and-beam pattern must correspond to an
n-disk, for n equal to 6 or greater. Consider Figure 8 where we see an arrangement
of horoballs and beams corresponding to a geodesic of length zero, where a 6-bracelet
defined by the hexagon is blocked by the geodesic with endpoints at the center horoball
and the horoball at infinity and thus does not correspond to an n-disk.

However, one can show that in fact, the configuration depicted cannot occur for an
orientable hyperbolic 3-manifold of one or two cusps.
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F 7. A section of the horoball pattern for the (−2, 3,7) pretzel knot produced by [11]. When the
proper length zero vertical geodesic is added to make this a ball-and-beam pattern, the sequence of the
four tangent horoballs running from the top right to the bottom left in this illustration, together with H∞

form an unblocked 5-bracelet that corresponds to a 5-disk.

F 8. A blocked six-bracelet when g = 0.

P 2.8. Let M be a hyperbolic 3-manifold of one or two cusps and let α be a
vertical geodesic of length zero. If there are two distinct cusps, α connects them. Then,
if the ball-and-beam pattern associated with (M, α) contains a bracelet of length four,
five, or six, then α must be an unknotting tunnel.

P. By Propositions 2.6 and 2.7, we need only consider bracelets of length six. We
show that the local situation that must occur for a bracelet of length six to be blocked
when α has length zero cannot occur.

Suppose a bracelet of length six is blocked. Choosing one of the blocking horoballs
to be the horoball at infinity, we obtain a picture as in Figure 8, where each of the
six depicted edges and the vertical edge at the center are all in the same edge class.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

F 9. Possible orientations on the 6-bracelet edges.

Orienting all of these edges consistent with their identifications, we assume the vertical
edge at the center points up out of the xy-plane. Considering the orientations on
the edges in the bracelet, one finds that up to rotation and reflection, there are nine
possibilities, listed in Figure 9.

We normalize so that the diameter of the horoballs depicted is one and call the
hexagon Q. In general, we seek a contradiction by showing that there is an isometry
in the fundamental group that fixes points.

We note several facts. First, any time an edge is identified to another edge of the
same equivalence class but with opposite orientations, the midpoint is fixed by the
identification, yielding a contradiction.

Second, in the case of two cusps, the oriented arrows must always have their tails
in horoballs corresponding to the first cusp and their heads in horoballs corresponding
to the second cusp. Hence, no horoball can contain both heads and tails, and the only
diagram in Figure 9 that can occur is case (3).

Third, in the case of one cusp, there must be an isometry that takes H0 to H∞. This
will send the hexagon Q of six horoballs to another hexagon in the cusp diagram,
however, with the hexagon and its arrow labels flipped, so that the arrow orientations
read counterclockwise as they did before clockwise. At its center is an arrow that
points down. We call this a flipped hexagon.

In the case of a diagram with the tail of an arrow meeting the head of the next arrow,
as occurs for all but case (3), Lemma 2.4 implies that there must be a downward
pointing vertical arrow a Euclidean distance exactly

√
3 in the xy-plane from the
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12 C. Adams and K. Knudson [12]

upward pointing vertical arrow at the center of the original hexagon. This downward
pointing arrow will be at the center of a flipped hexagon, which, because horoballs
cannot overlap in their interiors, will overlap with the original hexagon on exactly one
edge of their boundaries.

For any of the cases of hexagons that have opposite edges with parallel orientations,
which includes all but cases (1) and (6), there must be a corresponding parabolic
translation fixing ∞ that identifies the two edges, and hence slides points a Euclidean
distance

√
3. This translation and its inverse have the effect of gluing additional

unflipped hexagons to either side of the first along each of the opposite edges with
parallel orientations.

We now consider cases. For case (1), all of the edges on the flipped hexagon have
opposite orientation from the edges on the original hexagon, and hence the flipped and
unflipped hexagons cannot share an edge, a contradiction. For case (2), there are three
pairs of opposite edges that are parallel. Hence the original hexagon is surrounded by
unflipped hexagons and there is no room for a flipped hexagon, a contradiction. For
case (3), it cannot correspond to one cusp, for the same reason as case (2). There are
three pairs of opposite edges of parallel orientation, meaning there is no room for the
flipped copy. We will return to the possibility of two cusps for case (3) at the end of
the proof.

In each of the cases (4) and (7), there are two pairs of opposite edges with parallel
orientations. This generates two parabolic isometries f and g. We can choose f and g
so that f (Q) and g(Q) share an edge. However, in both of these cases, that edge of the
images has opposite orientations, a contradiction.

For cases (5) and (9), there is a single pair of opposite edges with parallel
orientations. This generates a translation f by

√
3, and by applying f and its inverse to

Q, we fill two slots where hexagons could go around Q. There remain four slots where
a flipped hexagon could go, but in all cases, although the orientations of the edges of
the flipped version could match the orientations of the edges of Q and its images that it
would be glued to, the orientations of the rest of the edges of the flipped version would
not respect f in the sense that f would identify two edges with opposite orientations,
a contradiction.

Case (6) has two arrowheads meeting at a horoball with an angle of 120◦. Hence,
by Lemma 2.4, there must be a second vertical upward pointing edge a distance

√
3

from the original central edge of Q. Since these two upward pointing edges must be
identified by a parabolic translation fixing ∞, there must be two opposite edges on Q
with parallel orientations, a contradiction to this case.

To eliminate cases (8) and (3) for two cusps, we will also consider the fact that
each hexagon is the projection of a region in hyperbolic space that can be subdivided
into six vertical ideal regular tetrahedra, the edges of which all pass through points of
tangency of the eight horoballs depicted (including H∞). The single labelled edge class
includes 12 of the edges of these tetrahedra, six around the outside of the hexagon and
six meeting along the central edge, which together subtend an angle of 720◦. Hence
some of these six tetrahedra must be identified with one another, and they can generate
at most three tetrahedral equivalence classes.
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(3)

A1

A3

B3

B1

B2

(8)

A1

B2

B1

B4

B5 A2

I

II

IIII

II

II
B3

F 10. Labelling tetrahedra for cases (8) and (3).

Note that no two tetrahedra can be identified by an identification that sends the
central edge of one to the central edge of another, as then that edge would be a fixed
point set for the isometry, contradicting the fact that all isometries in the fundamental
group must be fixed point free. Define a standard identification to be when tetrahedron
T1 is identified to T2 with an orientation preserving isometry such that the central edge
and outer edge of T1 go to the outer edge and central edge of T2, respectively.

Suppose that there is a nonstandard identification between two tetrahedra T1 and
T2. Then a labelled edge on T1 must go to an unlabelled edge on T2. Since the labelled
edges are opposite pairs, both of the labelled edges on T1 must go to unlabelled edges.
Hence, there are four edges in this equivalence class on each of the two tetrahedra.
Since, after tetrahedral identification, there can be at most six such edges in the
edge class, this implies that there can be only two classes of tetrahedra, one with
all tetrahedra having four edges in the edge class, excluding an opposite pair of edges,
and one with all tetrahedra having two edges in the edge class that are an opposite pair.
Call a representative of each tetrahedral class A and B, respectively. Then all faces of
A have two edges in the equivalence class, whereas no face of B has two edges in the
equivalence class. Hence, there is no way to glue faces of A to faces of B without
adding edges to the edge class, a contradiction to the fact there are at most six edges
in the edge class after identifications. Hence this cannot occur, and all identifications
of tetrahedra must be standard.

If two of the tetrahedra are identified, their outer edges must have the same
orientation, either clockwise or counterclockwise on the hexagon, since the
identification of T1 with T2 must send the outer edge of T1 to the central edge of
T2 and the central edge of T1 to the outer edge of T2.

For case (8), we know that the two opposite edges with parallel orientations are
identified by a parabolic isometry p fixing ∞. Label the tetrahedra as in Figure 10.
Since one outer edge is oriented one way, while the other five are oriented the other,
tetrahedron A1 cannot be identified to any others. Since the parabolic isometry puts
a copy of A1 next to B3, and no other tetrahedron can be identified to A1, the only
tetrahedron that could be identified to B3 is B1, as the standard identification f that
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does so would also send a copy of A1 to p(A1). However, then p−1 f (A1) = A1

and p−1 f is a nontrivial element of the group of isometries with a fixed point,
a contradiction.

So both A1 and B3 must be their own equivalence classes, which implies that the
other four tetrahedra are identified with one another. But if B1 is identified to B2 by the
standard identification g, then g(A1) will be adjacent to B2. If B5 is identified to B2 by
h, then h(B4) is adjacent to B2 and is therefore identified with g(A1), contradicting the
fact that A1 is the only tetrahedron in its equivalence class. So this case cannot occur.

Our last case is (3) when it has two cusps. We label the horoballs either with a I or a
II, depending on the cusp each corresponds to. Note that the horoball at∞ corresponds
to cusp I. Then we label the tetrahedra into an A class and a B class, each of which has
three tetrahedra, depending on the orientation of their outer edge, as in Figure 10.

We consider the three vertical edges v1, v2 and v3 that go from horoballs labelled I
to H∞ and that are on A1, A2 and A3, respectively. Each corresponds to an edge that
goes from cusp I back to cusp I. If A1 is identified to A2, then v1, which we orient up,
must go to v2 by the standard identification, which means it points down. Then A3

cannot be identified to either A1 or A2 since v3 must either point up or down, and the
identifications with each of these tetrahedra would force opposite orientations on v3.
Hence there are at least two equivalence classes of A tetrahedra. The same argument
shows that there are two equivalence classes of B tetrahedra, implying there are at least
four equivalence classes of these six tetrahedra, a contradiction. �

Note that a vertical geodesic α of length zero can have a blocked 6-cycle of exactly
the type described above if we allow the manifold to be nonorientable. See the
manifold m025 from the cusped census of SNAPPEA [11], which consists of exactly
three regular tetrahedra.

3. The elder sibling property

Next, we present the elder sibling property for a ball-and-beam pattern, which
provides additional sufficient conditions for a vertical geodesic to be an unknotting
tunnel.

D 3.1. A ball-and-beam pattern is said to satisfy the elder sibling property
if every horoball Ha in the pattern is connected to H∞ by an alternating sequence of
horoballs and beams such that all of the balls in the chain have Euclidean radius greater
than Ha. Such a chain of balls and beams will be called an elder sibling chain of Ha.

To better understand the properties of an elder sibling ball-and-beam pattern, we
note the following.

L 3.2 [1]. In a ball-and-beam pattern, there are only finitely many Euclidean
sizes of horoballs greater than or equal to a given value.

P. The fundamental domain for the cusp is formed by a parallelogram on the xy-
plane of finite area. But there is no room inside it for infinitely many balls tangent
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to the xy-plane of size greater than or equal to a given value. So there can be only
finitely many horoballs of Euclidean radius greater than or equal to a given value in
the fundamental domain, and hence there are only finitely many sizes of horoballs in
the ball-and-beam pattern larger than a given size. �

Notice that our definition of the elder sibling property is equivalent to stating that
every horoball must be connected to H∞ by a sequence of balls and beams such that
the Euclidean radius of the balls in the sequence is strictly increasing. This follows
since if we start with a ball Ha, it must be connected to a ball of larger radius. That
ball, in turn, is also connected to a ball of larger radius. Continuing in this manner and
noting that Lemma 3.2 shows that there are only finiltely many sizes of balls above
a given radius, we know these chains of horoballs of increasing size must be finite,
ending at H∞.

Also, note that if a ball-and-beam pattern satisfies the elder sibling property, it must
be connected, since the fact that every ball can be joined to H∞ implies that any two
balls can be joined by a path that goes from one ball to H∞ and then from H∞ to the
other ball. This fact will become useful with the help of an observation from [1].

L 3.3 [1]. If a ball-and-beam-pattern is connected, it must contain an n-bracelet.

To formulate the next lemma, we suppose that an n-bracelet is blocked. Define
a pair of blocking balls to be any pair of horoballs in the ball-and-beam pattern
connected by a beam that punctures a disk with boundary a nontrivial curve in the
n-bracelet.

Intuitively, it would seem that in the ball-and-beam pattern for a manifold and
vertical geodesic pair (M, α), in order that an n-bracelet is blocked, the blocking balls
need to be larger than a certain size in order to reach over the balls of the blocked
n-bracelet. In fact, this is the case, and the size of these blocking horoballs will be
related to the length of α and the size of the smallest ball of the blocked bracelet in the
following way.

L 3.4. Let (M, α) be a hyperbolic manifold and vertical geodesic pair, where
M has one or two cusps and if it has two cusps, α connects them. Let α have
length g < ln 2. Then if there exists an n-bracelet in the ball-and-beam pattern and
it is blocked, there is a blocking ball in any blocking ball pair of radius at least
(2 +
√

4 − e2g)/eg times the Euclidean radius of the smallest ball in the n-bracelet.

P. Suppose we have a blocked n-bracelet, with the smallest ball in the bracelet
having Euclidean radius r. The beam connecting any pair of blocking balls must reach
a sufficient vertical height to pass over the n-bracelet. Let He and H f be a pair of
blocking balls for the bracelet. We can assume that they are the same size since if
the first were larger than the second, expanding the second while preserving g only
increases the vertical height attained by the beam. Let D be the Euclidean distance
between their centers and R their radius. Then the line segment between their centers
must intersect one of the line segment projections of the beams from the n-bracelet.
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We can assume that it intersects the projection of one of the beams leaving the smallest
ball in the n-bracelet, since otherwise, the radius of He and H f would need to be even
larger. Let Ha be the smallest ball and Hb the ball connected to it by this beam. We can
further assume that Hb has the same radius r as Ha. Let d be the Euclidean distance
between their centers. By Lemma 2.2, g = ln(d2/4r2) = ln(D2/4R2).

Since balls cannot overlap, note that the centers of He and H f must be a distance
of at least 2

√
Rr from the centers of both Ha and Hb. To minimize R, assume that He

is closer to Ha than to Hb. We can then assume that He and H f are both tangent
to Ha and by the Pythagorean theorem, 4Rr ≤ d2/4 + D2/4 = r2eg + R2eg. Hence,
R2 − 4Rr/eg + r2 ≥ 0. The quadratic formula then yields the result. �

We are now ready to apply the elder sibling property as a criterion for a vertical
geodesic to be an unknotting tunnel.

T 3.5. Let M be a hyperbolic 3-manifold of one or two cusps with a vertical
geodesic α that connects the cusps if there are two. If the ball-and-beam pattern for
(M, α) satisfies the elder sibling property, and α has length less than ln (2), then α is
an unknotting tunnel.

P. The elder sibling property implies that the ball-and-beam pattern for (M, α) is
connected, and thus, by Lemma 3.3 it must contain an n-bracelet. We will show that
the ball-and-beam pattern also contains an n-disk, which is enough to prove that α is
an unknotting tunnel.

Since the ball-and-beam pattern for (M, α) contains an n-bracelet, we can choose an
n-bracelet containing H∞, and let β be the curve in this n-bracelet that passes through
the sequence of n balls cyclically connected by beams in order and connects back to
itself. Let Hmin be the smallest horoball in this n-bracelet. Clearly, β is a nontrivial
curve in the n-bracelet, so if it bounds a disk with interior in the complement of the
ball-and-beam pattern, the ball-and-beam pattern allows an n-disk and hence α is an
unknotting tunnel.

If, on the other hand, β does not bound a disk, it must be the case that the obvious
disk in H3 bounded by β is blocked in at least one place by other balls and beams, as
shown in Figure 2.

Note that β has finite length in H3, and thus is contained in a finite volume of H3, so
there can only be finitely many such places where the disk is blocked. We can number
them 1, 2, . . . , m. At each place where the disk is blocked, we must have β passing
through a blocking disk, bounded by two arcs on horoballs and the beam connecting
them, and an arc in the xy-plane, as shown in Figure 11. We call the beam that connects
the two blocking balls and runs along the boundary of the blocking disk the blocking
beam.

Notice that if the disk corresponding to β is not blocked by a pair of horoballs
connected by a beam, but instead just by a horoball that intersects the disk, we can
deform the disk bounded by β to pass around the blocking ball to eliminate the block.
At the first blockage, we choose the larger of the two horoballs whose connecting beam
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F 11. A view of one place where the n-bracelet bounded by β is blocked. Here β appears in cross
section as a grey dot, the blocking beam as a black dot (assuming here the length of α is zero), and the

blocking balls in grey. The blocking disk is shaded.

H1

F 12. Modifying β to eliminate a block.

is blocking the disk and call it H1. For the bracelet to be blocked, H1 must be at least
(2 +
√

4 − e2g)/eg times the size of the balls that it is reaching over, and hence it must
have Euclidean height of at least (2 +

√
4 − e2g)/eg times the Euclidean height of Hmin.

Since the length of α = g < ln 2, the quantity (2 +
√

4 − e2g)/eg is greater than one, and
so this blocking ball is larger than Hmin. Furthermore, we can get from H1 to H∞ via a
chain of horoballs connected to one another by beams such that the Euclidean height
of each ball in this chain is larger than the Euclidean height of the preceding ball, and
so also larger than the Euclidean height of Hmin.

We will prove that we can obtain an n-bracelet with fewer blockages and smallest
ball no smaller than the size of Hmin. Repeating the process a finite number of times
will then yield the disk that we seek.

We modify β in the following manner. Take the ball H1 and find an elder sibling
chain of balls from it to H∞. We take the segment of β that runs along H∞, choose
a point x on that segment, cut β open along that point and then add in the following
path. It runs from that point x over to the top of the chain on H∞, down the chain to
H1, and while still on H1, around the underside of the beam that blocked our original
n-bracelet, then back up the elder sibling chain from H1 to H∞, then back on H∞ to the
starting point. For an example of how this process might look for a length zero vertical
geodesic, see Figures 12 and 13.

We have created a new n-bracelet that is no longer blocked by our first blockage.
Let the new curve created by modifying β in this way be called β2, and note that β2
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H1

F 13. The disk bounded by the modified curve β2.

is still a nontrivial curve in an n-bracelet. If β2 has more blockages than did β1,
then these additional blocking balls incident to these blocking disks reach over the
new elder sibling chain that β2—but not β—runs along. These blocking horoballs
correspond to new elder sibling chains extending up to H∞, each of whose smallest
ball must be strictly larger than the smallest ball in the part of the bracelet that they are
reaching over. Keep in mind there are only a finite number of sizes of balls bigger than
Hmin. Again, we repeat the process of modifying β2, taking a segment of β2 that runs
along H∞, and running it down the elder sibling chain corresponding to each blockage,
around α, and back up to H∞, to create a new curve, which we call β3.

It can be shown that this process cannot be continued indefinitely. At each
successive modification of β, we involve elder sibling chains whose smallest horoball
is strictly larger than the smallest horoball in the elder sibling chains obtained in the
previous step. Thus, we obtain a sequence of horoballs of increasing size, all of which
are larger than Hmin. Since there can be only finitely many sizes of horoballs larger
than a given size in the cusp diagram, this sequence must be finite. Thus, our process of
modifying β must end within a finite number of steps, and so βt will correspond to an
n-bracelet with fewer blockages. Repeating this process a finite number of times will
produce an unblocked n-disk in the ball-and-beam pattern for (M, α), and it follows
that α is an unknotting tunnel. �
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