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ON THE MONOTONE NATURE OF BOUNDARY VALUE 
FUNCTIONS FOR «th-ORDER DIFFERENTIAL 

EQUATIONS 
BY 

A. C. PETERSONC) 

1. Introduction. We are concerned with the nth (n>3) order linear differential 
equation 

(i) y(n)+nfpn-,c-i(x)yik) = o 
fc = 0 

where the coefficients are continuous on (—00, 00). Our main result is to give con­
ditions under which the two-point boundary value function rtj(t) (see Definition 
2) are strictly increasing continuously differentiable functions of t. Levin [1] states 
without proof a similar theorem concerning just the monotone nature of the 
r^t) but assumes that the coefficients in (1) satisfy the standard differentiability 
conditions when one works with the formal adjoint of (1). Bogar [2] looks at the 
same problem for an «th-order quasi-differential equation where he makes no 
assumption concerning the differentiability of the coefficients in the quasi differen­
tial equation that he considers. Bogar gives conditions under which the r^t) are 
strictly increasing and continuous. The different approach of the author to this 
problem also enables the author to establish the continuous differentiability of the 
r{j(t) and to express the derivatives r/y(f) in terms of the principal solutions Uj(x9 t), 
j=09 1,...,«— 1 (see Definition 4). 

2. Definitions and main result. Before we define the two-point boundary value 
functions ri5{t\ we give the following definition. 

DEFINITION 1. A solution y of (1) is said to have an (/,y)-pair of zeros, \<i, 
j<n, on [t9 b] provided there are numbers a, j8 such that t<a<p<b and y has a 
zero of order at least / at a and at least j at p. 

DEFINITION 2. Let R = {r>t: there is a nontrivial solution of (1) having an 
(i,y')-pair, \<U j^n, i+j=n, of zeros on [t, r]}. If R^(/>, set rij(t) = inf R. If 
R=<f>, set rij(t) = co. 

REMARK 1. If R^</>, then ru(t) = min R. 
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REMARK 2. If t < a < p < r{j{t) < oo, then there is a unique solution of (1) satisfying 

/*Xa) = Ap, yf*(P) = Bq 

p = 09...,/— 1, q=0,.. ., j — 1, where the Ap and Bq are constants. 
For the convenience of the statement of Theorem 1 we define rn0(t) = rQn(t) = oo. 

In light of the above remark one could think of r0n(t) = rn0(t) = co just meaning that 
all initial value problems of (1) have unique solutions. 

In the following definition we use notation introduced by Dolan [3], and used by 
Barrett [4] and the author [5]. 

DEFINITION 3. Let Z={z>t: there is a nontrivial solution of (1) having a zero of 
order at least i at t and a zero of order at least j at z, 1 <i,j<n, i+j=n}. If Z # ^ , 
set Zij{t) = mîZ. If Z=(f>, set zij(t) = oo. 

REMARK 3. If Z # ^ , then zij(t)=minZ. 

DEFINITION 4. A fundamental set {uj(x, t);j=0, 1 , . . . , « - 1 } of solutions of (1) 
is defined by the initial conditions at x=t9 

uiri-1\t,t) = sij, f,y = o,...,H-i. 

In the following lemma we use the notation 

W[ui0(x, t),...9 uik(x, t)] = det (u%Xx, 0) 

q = 0,...,k; p = 0,...,k. 

LEMMA 1. If 0 < i0 < i± < • • • < ik < n — 1, then in a right hand deleted neighborhood 
of x = t 

s g n ^ [ W i 0 , . . . , W i J = ( - l ) ^ + 1>/2 

Proof. We prove this theorem by mathematical induction. The case k = 0 is 
trivial. By considering the Taylor's formula with remainder for uio(x, t),.. .,uik(x, t) 
at x = t it is not difficult to see that 

sgn W[ui0,.. .,uik] = sgn ^ [ ( x - O n " i o _ 1
5 • • -, ( x - 0 n " i / c _ 1 ] 

for x > t but sufficiently close to t. It follows that it suffices to show that 

sgn H ^ - ' o - 1 , . . . , x71-1*-1] = (-l)*<* + i>/2 

for x>0 but sufficiently small. But for x>0, vp(x) — xn~ip~1, p = 0,..., k are k +1 
linearly independent solutions of an Euler equation of order k+1 and hence 
Wlx11'**-1,..., xn~ffc_1] is of one sign for x>0. Letting x=l we see that it 
suffices to show that sgn/(«) = (—l)fc(fc+1)/2 where 

I l . . . 1 I 
72-fo-l . . . w-/fc-l 

I ( j ! - i 0 - l )( /!- i0-2). . .(n-iQ-k) . . . (n-ik-1).. ,(n-ik-k) 
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Now replace n by the real variable r, then by using elementary properties of deter­
minants one can show tha t / ' ( r )=0 . Therefore/(T) is a constant. To find the sign 
of this constant let r=a, where a=ik +1. By expanding along the last column of 

/ (a) we obtain 

/(<*) = ( - ! )* 

= {-VfA 

a-i0-l 

( f l - / 0 - l ) . . .(a-i0-k) 

...[ô-fc-(*-l)] 

a - / f c _ ! - l 

(a-ik.1)...(a-ik-1-k) 

6 - 4 - 1 - 1 

[ è - J ^ - l ] . . . 

. . . [ * - f * - i - ( * - D ] 

where ^=rim=o (a—im—1)>0 and 6=a— 1. By arguments similar to those above 
the sign of this last determinant is the same as the sign of W[uh,..., uik_1]. Hence, 
by the induction hypothesis, 

sgn/(/i) = sgn/(fl) = (-l)*(-l)K*-ww/2 = («!)Wfc + i)/2 

and the proof is complete. 
The above lemma for the case ip=p, p=0,...,k, was stated without proof 

in [6]. The next lemma follows immediately from [7, Theorem V-3.1]. 

= -uk
l)

+1(x,t)+pk(t)uf(x,t) 

= Pn-i(tH\x, t) 

LEMMA 2. 

duk
l\x, t) 
dt 

8i4l}-i(*,0 
dt 

/=0 , l , . . . , / i ; k=0, . . . , « - 2 . 

We now state our main result. 

THEOREM 1. For those values of t for which 

rn-k,k(t) < min[rn_fc^(0,rft-fc-i,fc+i(OL k = 1 , -. -, w — 1 » 

J"n-jc,fc(0 w « continuously differentiable strictly increasing function oft. In particular 

W[u0,...,uk-29uk] 
( ° " Wf[u0','.[.,ûkl1] (r»-«'«W> ')• 
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Proof. Let w(x9 t)= W[u0(x, t),..., wfc-i(x, t)]9 l<k<n—l. The reader can 
easily verify Theorem 1 for k= 1 with slight modifications of the following proof for 
2<k<n-l. 

Let 
D = {t: zn.fctfc(0 < min [rn_fc + 1>fc_!(0, rn_fc_1>fc + 1(0]}. 

If D = <f>9 there is nothing to prove. Assume D^(f> and set P(t)=zn-ktk(t) for 
/ e i ) . Since co(f$(t)9 0 = 0 is equivalent to the existence of a nontrivial solution 
having f and p(t) as an (ft-A:, A:)-pair of zeros we have that co(P(t)9 0 = 0 for all 
t e D. Let aj9j=09...9k—l9 be constants, not all zero, such that 

k-l 

yi(x) = 2 aM*> 0 

has ?i{n—k9 &)-pair of zeros at t and £(/)• Assume that (d/dx)a)(p(t)9 0 = 0, then 
there are constants bj9j=09.. .9k — 1, not all zero, such that 

i = 0 

has a(n-k9k- l)-pair of zeros at f and j3(0, and yfW*))=0- H>?~ 1}(j3(0)=0 we 
contradict P(t)<rn-k-ltk + 1(t). Therefore y±(x) and j;2(x) are linearly independent. 
But then there is a nontrivial linear combination of y±(x) and y2(x) with a («—&+1, 
A:—l)-pair of zeros at 7 and fi(t) which contradicts /?(0<fn-/c + i,fc-i(0- Hence 
o(j8(0, 0 = 0 and (d/dx)œ(p(t)9 f)#0 for all f in the domain D of j8(f). The principal 
solutions Uj(x9t), 7 = 0 , . . . , « - 1 , depend continuously on f and hence co(;c, 0 
depends continuously on t. Since a>(x, 0 has a simple zero at fi(t) it follows from the 
continuous dependence of w(x9 t) on t that j8 is a continuous function of ? and its 
domain is of the form (—00, a). For more details on these last two statements see 
[2]. By use of the implicit function theorem and Lemma 2 we get that ft(t) is con­
tinuously differentiate and, when we differentiate both sides of <o(fi(t)9 0 = 0 
implicitly with respect to t9 that 

(2) I ^ + j8'(0*n«o, • • -, K*-I]G8(0, 0 = 0 

where Aj9 j= 1, . . . , & is the determinant 

û)(j3(0, 0 = W[u0,..., wfc-i](i3(0. 0 

with its jth row replaced by the row vector 

(-«y-»()8(0, t)+pM-»W), 0, • •., -tti^Wt), 0 

+/>fc-1(04'-1W), 0). 
Note that 

it fc 

(3) 2 ^ = 2 B, 
j = l 1 = 1 
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where 

Bi = [-wz(jS(0,0+A-i(0w0(£(0> *)Wu+. • • 

+ [ -« ! f c - 1 ) (J8(0 ,0+f t -M-m 0]MW 

where MM, 1 <p, q<k, is the cofactor of the (p, q) element in the determinant Ap. 
Also 

Bi = - fa(j8(0,0^i«+ • • • +"(fc-1W)> 0MW] 

+/>i-i(0M8(0, 0M1Z+ ••. +ttgb-1)C3(0, t)Mkl]. 

Now make the important observation that Mpq is also the cofactor of the (/?, q) 
element in the determinant W[u0,..., uk-i](P(t), t). Hence 

Bt = -Cj+^-xCOA, I < I < k, 

where Cz is the determinant aj(P(t)91) with its /th column replaced by the column 
vector 

and Dz is the determinant a)(P(t), t) with its /th column replaced by the column 
vector 

(uo(P(t),t),...,u$-1XKt),t)). 
It is easy to see that 

Bt = 0, / = 0, . . . , / c - l , 
and 

Bk= - W[u0,..., wfc_2, W/cPCO, 0-

It follows from (2) and (3) that 

_/ / , \ _ W[UQ, . . . , t/ fc-2, uk\ /_ / , \ , \ 

From Lemma 1 we have that PF[w0>..., wfc_2, wfc] and ^[w05..., W/c-i] are of the 
same sign in a right-hand deleted neighborhood of t. Since 

0(0 < min[rn.fc+1,fc_1(0, rn-fc-i,fc+i(OL 

ryfo,...,uk.29uk]Y = y fo uk.2]W[u0 ..., « j { o r t < x < m 

\ FF[w0,...,«fc-i] J W2[u0,...,uk.1] 
[7, pp. 51-54]. 

It follows from Rolle's theorem that W[w0,..., wfc_2, wfc] has at most one zero in 
(7, j8(0). If both y[w0 , . . . , W/c-i] and W[u0,..., wfc_2, W/d are zero at (0(0, t) one 
can show that this implies the existence of a nontrivial solution of (1) with either a 
(« —k+1, k— l)-pair or (n — k, k+ l)-pair of zeros at t and 0(0, which is a con­
tradiction. Hence, 

W[u0, ...,wfc_!] 
W[u0,...,uk.2,uk] (0(0, 0 = 0. 
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By considering the Taylor's formula with remainder at x=t for each of the ele­
ments of W[uQ,..., t/fc_2, uk] and W[u0,..., wfc_i] it is easy to see that 

W[u0,,..,uk^] ( , + 0 ) 0 = a 

W[u0,...,uk-2,uk] 

Assume W[u0,..., wfc_2, «fcl̂ O for t<x<fi(t), then by Rolle's Theorem 

W[u0,...,uk.2]W[u0, ...,uk] ( TF[IIQ,...,«>-!] y _1 
\W[u0,... uk]j W2[u0,...,uk-2,uk] 

has a zero in (f, j8(f)), which is a contradiction. Hence W[w0> • •• > W/t-2> wfc] has 
exactly one zero in (t, fi{t)). It follows from Lemma 1 and the fact that 
W[u0,..., wfc_2, wfc] has exactly one simple zero in (t, ]8(f)) that W[w0,..., wfc_i] 
and ^[w0, • • •> Wfc-25 wfc] have the same sign at (j3(t),t). Hence z'n_ktk(t)>0. 
Therefore, for te D, zn„ktk(t) is a strictly increasing continuously differentiate 
function of t and consequently 

rn-k,k(t) = zn-Kh{t\ ' G ^ -

Of course we now know that 

D = {f: rB.fcifc(0 < min [rn_fc+lf fc_x(0, rn-fc_i,fc+i(0]} 

and the proof is complete. 
For numerous examples of differential equations satisfying the hypotheses of 

Theorem 1 see ([1], [2], [5]). 
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