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ABSTRACT. The flow fi eld of a m edium sliding without fri ction over a strongly un­
dulating surface is calcula ted numerically. The results are used to elucidate the basal-flow 
characteri stics of glacie r fl ow and they a re di sc ussed with r eference to known analytical 
solutions. Extrusion fl ow is found to become increasingly pro nounced as the value of n, 
where n is a parameter in Glen's flow law, becomes large r. For sinusoidal bedrock undul a­
ti o ns, a fl ow sepa rati on occurs if th e a mplilude-to-wavel eng th rat io exceed s a critical 
value of about 0.28. The m ain flow then sets up a seconda ry fl ow circula tion within the 
trough, and the ice participating in thi s circular motion theoretica ll y never leaves it. The 
sliding velocity is calculated numerically a s a function of the mean basal sh ear stress, the 
a mplitude-to-waveleng th ratio and the flow parameter n. For moderate a nd high slope 
flu ctua tions, the sliding velocity is sig nificantl y different from what wo uld be ex pected 
from results based o n the small-slope approximation. 

INTRODUCTION 

Knowledge of the charac teri stics of basal flo w is mostl y 
based on analytica l solutions va lid fo r Newtonia n fluid s 
a nd bedrocks lhat a re suffi ciently smooth so that 6 : = ak 
« 1, where a is the amplitude and k is th e wave number of 
the b ed (Nye, 1969, 1970; K a mb, 1970; M o rl a nd , 1976a, b; 
Gudmund sson, 1997). The p ossibility canno t be excluded 
that the non-linearity of Glen's fl ow law, and relaxing the 
condition 6 « 1, gives ri se to flow patlerns m a rkedl y differ­
em from those sugges ted by the analytical solutions. 

In this paper, I use a numerica l approac h to calcula te 
non-linea r fl ow ove r strongly undulating sinuso idal bed s. 
The sliding velocity 7Lb is ca lculated as a fun ction of 6 a nd 
n, a nd its sensitivity to changes in 8 (8 : = l / kh ) is investi­
gated. The fl ow cha racte ri stics of basal g lacier flow ove r 
p e rfec tl y lubricated b ed s for hig h va lues of 6 a nd fo r a 
ra nge of n values is a na lysed. This numerical work is a n ex­
tension ofa simil a r a na lytical stud y (Gudmundsson, 1997) 
which was limited to linear fl ow and to b eds having small 
amplitude-to-waveleng th ratios. 
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Amplitude of a sinusoidal wave 
Depth of a p a rabolic channel 
H alf width of a parabolic ch a nnel 
Taylor coefficients of the sliding fun ction 
Accelera tion of gravity 
M ean glacier thickness 
Wave number 
Para meter in Glen's flow law 
M ean norm al pressure 
Atmospheric pressure 
Roughne s; T : = a/ A 
Sliding functi on; 

Us 

umax 
7r/ 2 

u sadd le 
7f/ 2 

umin 
37f/ 2 

Vx , Vz 
Vi 

X, Z 

X , Z 
Zo 
et 

f3 (x) 
8 
8;j 

6 (6 , 8) 
6 b 

Ell 

'r/ 

'r/eff 

A 
A. 
p , 
0'1I 

8(6,8, n) : = 6,,+l kub(c, 8,n) / (2ATb") 
Basal-sliding velocity 

Non-dimensiona l sliding velocity, 

Ub = ATb" AUb 7Ls 
Surface velocity 

The local ma xi mum of Vx at kx = 7r / 2 

The saddle point of V y at kx = 7r / 2 

The local minimum ofv.T at kx = 37r/2 

Scaled velocities; (V\" , Vz) : = (vx, Vz)/ 7Lb 
Components of the velocity vector 
Space coordinates 

Scaled coordin a tes; (X , Z) : = k(x , z) 
Vertical positio n of g lacier bed 
M ean surface slop e 

Local bedrock slope; t an f3 (x) = d zo(x) / dx 
Thinness pa ra m eter; 8 : = (kh )- l 
Kronecker delta 

6 (6, 8) : = 8 (6, 8, n ) /8 (6, 8, n + 1) 
6 b : = Ub / Us 

Second invari a nt of the strain-rate tensor; 
. 1" 
En : = '2Eij Ei) 

Components of stra in-rate tensor 

Effective strain ra te; E : = J~ EijEij 
Loca l bed-slope parameter, 6 : = ak. 

6 is always ta ken to be positive 

For 6 < c~n, Vx(x , z) has a sta tiona r y point 
somewhere a long the vertica l line kx = 7r / 2 

For 6 < 6~~/2' vJ: (x , z) has a sla tiona ry point 
somewhere a long the vertical line kx = 37r / 2 

Viscosity 
Effective viscosity 
Wavelength 
Transition waveleng th 

Specific density 
Second devia toric stress invari a nt; 

' . _ 1 I , 
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Suffixes 
I 

b 

Components of the stress tenso r 
Components of the deviatori c stress tensor; 

, . _ 1 <:: 
0' . . . - O'ij' - -3 Uij O'kk 'J . . 

Asperity; <;" : = AI h 
Effective stress; T : = h 
Driving stress; Tb : = Plgh sin a 

Properties of ice 
Basal properti es 

Dimensio nal quantiti es are usuall y in lower-case letters a nd 
non-dimensiona l qu a ntiti es in capita l le tter s. 

THEORETICAL FRAMEWORK 

Field equations, flow-law assum.ption and boundary 
conditions 

The constituti ve law for ice is taken to b e 

. '(11 - 1)/2 , 
fij=A O'II O'ij (1) 

where Eij a re stra in ra tes a nd O';j a re th e de\'iatori c stresses 
defin ed by 

O';j : = O'ij - ~DiP"'" (2) 

0"11 is the second inva ri a nt of the deviato ri c stress tenso r 
. _ 1 I , ) 

0'1f . - '2 O'iFij (3 

and oij is the Kronec ker delt a. 

The fi e ld equati ons fo r the conse rva ti o n of mass and m o­
ment um a rc 

Vi.i = 0 (4) 

a nd 

O'ij.j + Pig; = 0 (5) 

whe re Vi a re the compo nents of the velocity vec tor. The ice 
densit y PI is assumed to be constant and the ratio of inerti a l 
forces to vi scous forces to be small. 

The bed profil e is g iven by 

zo : =asin kx (6) 

whe re Zo represents the z coordinate o f the bed line. Th e 
coordina le sys tem is lilted a nd the x ax i. m a kes a n angle Cl' 

with res pec t to hori zonta l. The z axi s m a kes a ri ght-ang le 
with th e glac ier surface a nd the mean b ed line (sec Gud­
mundsso n, 1997, fi g. I). The amplitude-to-wavelellgth ra ti o 
is denoted by T (7' : = alA) and is referred to as the (sing le 
wavele ng th ) roughness of the beel. 

The bed is considered to be sufficiently welllubricateel as 
to exert no (or negli gible ) ta nge ntial forces o n the overl y ing 
ice. This assumption is known as the ass umption of perfec t 
sliding. Th e shape of th e bed line is ass umed to be sinusoid a l. 
Fo r e sm a ll , thi s represe nts no ac tual limita ti o n, because to 
firsl o rde r in e the probl em is linear a nd a Fouri er decom­
position ca n be used to obta in the fl ow fi e ld for a rbitra ry 
shap ed b ed lines (as long as E « 1 is fulfill ed [0 1' each o f 
the Fourier components ). Because of th e intrinsic non- line­
a rit y oflh e bounda ry conditions (Gudmund sson, 1997), lhi s 
is not true for modera te to high e values. U sing a sinuso ida l 
bed fo r hig h amplitude-to -wavelength ratios, however, fa­
cilit a tes compa ri son with a na lyti ca l so lutions a nd repre­
se nts a co m 'e ni ent idea li za ti o n o [ a n undul a ting b e d 
suita bl e fo r a stud y o f the genera l cha rac te ri sti cs of basa l 
fl ow. 

Gudm lllldsson: Basalflow characteristics qfa non -lineal'flow 

Ig noring the effec t o f regelation, the bo und a ry condi­
ti ons a long the bed line a re 

dzo 
-V.r ili + V z = 0 , on z = Zo (7) 

a nd 

O'.l·Z = ~ ( O':r.r - O'zz ) t a n 2(3(x), on z = Zo (8) 

where tan (3(x) : = dzo(x)/d x, is the local slop e o[th <.: bed . 
The uppe r surface is free but it is implicitly ass umed th at 

the ratio A/ h, where h is the m ean thickn ess, is sm all enough 
to ensure negligible tra nsfer o f basa l sliding va ri a tion to the 
surface. Fo rma ll y, this means that the thinness parameler, 
D: = l /( kh ), mu st be small co mpa red to unit y. Peri odic 
bounda ry conditions a rc imposed in the hori zonta l direc­
ti on. 

PREVIOUS WORK 

[fthe bed line is sufficientl y slowl y va rying so that E « 1, 
th e pro bl e m ca n be so lv ed [o r n = 1 u sin g s t a nd a rd 
pe rturba li o n tec hniqu es . Thi s has bee n di sc usse d by 
Gudmundsson (1997), where references to earli er work can 
be found. 

Some kn o wledge o[ the sliding veloc it y, U Il> can be ob­
tained fro m dimensiona l a n a lysis (Lliboutry, 1968, 1987 b). 
There a re three dimensio nless numbers th at e nt er the pro­
bl em: 17 , e a nd D. For Glen 's now law, dime nsion a l a rgu­
ments g ive 

(9) 

where Ub is a non-dimension a l sliding \·eloc ity. 
By usi ng a va ri ational theo rem for non-Newto nia n flow 

Uohnson, 1960), Fowler (1981) derived a sliding law va lid [or 
a non-linea r m edium. He concluded that the sliding \'e locity 
Llb should va ry as l /e,,.,· J in the limit E -> O. Thi s has, how­
ever, heen ques ti oned by Sc hweize r (1989) a nd Sehweize r 
and Iken (1992) who, th roug h finit e-element (FE ) ca lcul a­
ti ons, fo u ncl Uh to be less depe ndel1l on E tha n Llb ex: 1/ e"+l 
indicates. 

R ay m o nd (unpubli shed ), in what seem s to be the first 
numerical stud y of thi s problem, calculated th e sliding \'elo­
city [or a pe rfec tl y lubricated sinusoidal bed w ith no regela­
ti on using Glen's fl ow law. His calculations were limited to a 
few e va lues a nd they do no t g ive the sliding veloc it y as a 
genera l fun c tio n o[ E, D a nd n but they a re in ag recmclll 
with 'tll , ex: 1/e" +1 

If ub is indeed proportion a l to E-(n+ll, then it is cOI1\'e­
nient to de fine a functi on 8(e, D, n), called the sliding func­
tion, as 

e,,+ lkUb 
8(E . D, n) : = ?AT" . 

~ b 
(10) 

8 can be tho ught of as a no n-dimensiona l sliding velocity 
where the E- (n+ l ) depcndency has bcen accounted fo l'. Lin­
ea r per turb a ti o n theo ry (N ye, 1969; K a mb, 1970) g i\'es 
limb O 8(e, 0 , 1) = l. 

The [unc tio n 8(E. D.17) ca n be expressed as a Taylor series 
with res pec t to the va ri abl e e 

x 

8(e,D,n) = L C2 Xi(D,n)e2 Xi, (11) 
;=0 

where Ci a re the Taylor coefficient s. Note tha t 8 must be a n 
cven functio n of ak, since the sliding \'eloc it y is independent 
o[ the sig n o f a. Fowler (1981 ), L1iboutry (1987a ) a nd Meys-
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sonnier (1983) were abl e to give a numeri ca l estimate of 
eo(O, 3) . Using variationalmcthods, Meyssonnier found 

0.305 -:; co(O, 3) -:; 0.338 . (12) 

M eyssonni er (1983), in a co mpreh ensive num eri cal 
study, compared numeri call y ca lcul ated sliding velociti es 
with ana lyti ca l es tim ates. By calcula ting th e sliding velo­
city for values of T in the range 0.01 - 0.05 and 8 in the range 
0.25/ 7r to 1/ 7r, he was able to give an es tim ate of C2(0, 3), 
which was C2(0, 3) ~ 2.4. 

Lliboutry (1993) later improved Meyssonnier's estim ate, 
again using va ri ationa l methods, and obta ined an upper 
bound on 8 for n = 3. His result is 

8(0, 3) -:; 0.33839 + 3.688E2 + 0.169 E3
. (13) 

Kamb (1970) used the fact that the effective stress is, to first 
order in E, independent of x as a sta rting point for the devel­
opment of a theory of sliding incorporating rheological non­
lin earit y. K amb's express ion for the sliding \'elocity is 
(K a mb, 1970, p.703) 

( ?) (n- 1)/2 
2,,+1 1 + (eE/2)- 2ATb1 

ub = 4en - 1 En+1k ' (14) 

Using thi s expression, one find s that co(O, 3) = 4/e2 ~ 0.54. 
This as a value is not within the range given by expressio n 
(12), showing that Meyssonnier's and Lliboutry's results a nd 
those of Kamb differ somewhat. In the light of the assump­
tions th at K amb had to make, the agreem ent is in fact sur­
prising ly good. K a mb's theory not onl y g ives the correc t 
dep end ency of the sliding velocity on roughness but th e 
numerical values a re also a lmost correct. K amb's non-line­
a r theory was the fi rst theoretical work tha t predicted the 
1/ En+ 1 behaviour Oftlb for E « l. 

Schweizer (1989), in a numerical stud y, came to the con­
clusion that the sliding velocity does not vary as C (n+l) but 
somewhat more slowly. Hi s results are also not in accor­
da nce with re ults based on a dimensional a nalysis (Equa­
tion (9)). They must therefore be, to some extent, inaccura te. 

SLIDING LAW FOR A NON-LINEAR MEDIUM 

Theoretical considerations 

It is instructive to see how it can be shown convincingly, a l­
beit not rigorously, that as E -> 0 and for 8 « 1 the sliding 
fun ction 8(E, 8, n) approaches asymptotica lly a function 
which is only dependent upon n. A somewh at similar a rg u­
ment has previously been given by Lliboutry (1968, 1987b) 
and K a mb (1970). The a rgument, given below, suggests a 
certa in form of the sliding law but does not prove that it 
must have this form. The proof of this result has been given 
by Fowler (1986, 1987). 

The idea is to express the pressure va ri ation a long the 
bed as a function of the a mplitude, the wavelength, the slid­
ing velocity and the viscosity, and incorporating the effects 
of the non-linearity of the fl ow law by using a n effective v isc­
osity. The main underlying assumption is that E « l. 

To thi s end, I sta rt by writing a pla usible expression for 
the pres ure distribution, given by 

p(x) = Pa + Prgh eosa + 8p (15) 

where 

82 

(16) 

Co is some unknown constant, Pa is the atmospheric pressure 
and 'T)eff is a n effective vi scosity that will be defin ed below. In 
order to see the plausibility of this expression, note that 8p 
must vanish as E -> O. Tha t 8p(x) depends linearly on E 

can be thought to be the result of a Taylor expansion with 
respect to E where only the first term is retained. The pro­
duct 'T)Ubk gives the ri ght dim ension for the pressure. It 
would also have been possibl e to use the basal shear stress 
Tb to get the right dimensions but then 'T) wou Id not have 
been a pa rt of the expression. Note also that k cannot be 
substituted by l / a because, if a -> 0, bp must vanish (an­
other way of seeing thi s is that if a f-7 - a, 8p must change 
sign). It is a lso clear that the variation of 8p with x must be 
of the form cos kx if E is sufficiently small. 

To get a n estimate of the effective viscosity 'T)cl1 consider 
a column of ice which extend s from the bed up to some dis­
tance I where the disturbance due to the bed undulations 
has disappeared. As the ice moves a di stance D.x, in the 
time D.t = D. X/Ub , it is stretched /compressed to the length 
1+ D.z, where D.z = D.x dzo/dx . The (average) strain rate 
is given by 

(
.) 1 D.z 
Ezz = D.t-l- (17) 

where the brackets are used to indicate that th ese are aver­
aged strain rates over a given vertical distance l , th at is 

(E;j ) : = ~ 10
1 

Eij dz. (18) 

For the average vertical strain rate, one gets 

( . ) _1_D.x ak coskx 0 (( k )2) 
Ezz ex A / /k + a L...l. X Uh 1 " 

= Ubae cos kx + 0 (( ak)2) (19 ) 

where use was made of the fact that lmust be proportional 
to I l k, since the only param eters entering the problem that 
have the dimension length a re a and I l k, and that using a 
would again be incorrect since the strain ra tes must change 
sign as a f-+ - a. (This expression could a lso have been ob­
tained by calcula ting the ave rage of th e verti cal strain 
rate over the whole glacier using results from the first-or­
der perturbation theory.) A simila r argument for the shear 
rates lead to (En) 

(Ex, ) = u bak2 sin kx . 

The effecti ve strain rate Eis 
·2 . _ l' . _ ' 2 '2 
E . - 'iEij E;j - E~.x + f ez ' 

leading to 

E = Ubak2. 

Glen's flow law can be written as 

i (l - n )/ n 

(Jij = A 1/ n Eij = 2rlerfEij 

where 

E(l -n)/" 

'T)eff : = 2Al/n . 

(20) 

(21 ) 

(22) 

(23) 

(24) 

Inserting Equations (22) a nd (24) into Equation (16) gives 

Uba 

I 
k211 /Tl 

8p(x) = Co ~ eos kx . (25) 

Force equilibrium requires 
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PIgh ( sin ll ) = C(l ) j an ds 
cos II 'Y '( 

(26) 

w here 'Y is a pa th a long the sin e c urve, Ch) is the pa th 
leng th, a is the stress tenso r and fi is a unit normal vector 

fi = 1 ( - dzo/ dX) (27) 

)1 + (dzo/ dx)2 1 . 
A cha nge of va ri a ble dx = dS(l + (dzo/dx)2 ) -4 g ives for 
the drag (the x component of Equ a tion (26)) 

1 f ).. ( dZo) 
Tb = >: la a.rz - au dx dx 

1 f ).. ( dzo ' ) 
= >: la P dx + ax z - a r .r tan /3 dx (28) 

where tan /3 = d zo/ dx. The las t te rm o n the righth a nd side 
is of second order in E and the exact b oundary condi tion on 
Zo, Equati on (8), shows that a~·z is the n a lso of second o rder. 
U p to fi rst order in E, the drag can th erefore be calcu la ted 
aceordi ng to 

1 l ).. dz 
Tb : = Prgh sin II = -;- p (x. zo) -10 dx 

A. O ex 
(29) 

C k j '27r/k ( u ak2) 1/ 11 

Tb = 2
0
7T 0 T ak eos

2 
kx dx (30) 

where Co is the same unknown consta nt introduced in Equa­
tio n (16). After integrating and re-a rra nging term s, one gets 

2AT" -n 
U b CC - +

1k
co ' (31) 

Ell A 

Ex press ion (31) brings out the asympto tie 1/.::"+1 behaviour 
of the sliding ve locity as .:: --> 0 and shows how strongly it 
dep ends on the bedrock roughness. 

Equati on (31) shows that S(E , 8, n) as a fun ction of n w ill 
be equa l to cCOll

, where c is some un known number. Since 
limE~o S(E, 0, 1) = 1, it foll ows tha t is = Co, lead ing to 

s(E, 8, n) = cO(E, 8) J- n. (32) 

I t fo llows from the fi rst-order penurba ti on solution fo r the 
pressure that Co = 2 for a linea r New tonian medium (Nye, 
1969, 1970; K amb, 1970). Ass um ing th a t the cffect of a non­
linear fl ow law on the press ure va ria tio n along the bed can 
be desc ribed by a corresponding cha nge in the efTecti ve visc­
osity, Co in Equati on (16) will rpma in th e same for different 
va lues of n . The es tima te of the e ffec tive viscosit y g ive n 
above may, however, not accura tely d esc ribe the effect th at 
a change of n has on 'TIeff. The proper integrati on lcng th l in 
Equa tion (18) will, for example, depend on n if the deform a­
tio n is concentrated in a different way nea r the bed fo r non­
linear than for li nea r behaviour. 

NUMERICAL CALCULATIONS OF FLOW OVER A 
SINUSOIDAL BED 

Solution procedure 

Th e so lution procedure applied to solve the system of differ­
enti a l equations defin ed by Equa tions (I), (4) and (5), sub­
j ec ted to the bo und a r y co ndit io n s (7) a nd (8), was th e 
m e thod oflin ite elements (FE). Commercia ll y avail a ble FE 
so ftw a re, the ge nera l- purpose progl-am MA RC, was used 
fo r the ca lcul a ti ons (MARC Ana lysis Resea rch Corpora-

Clldmundsson: B asalflow characteristics cif a non -linemflow 

t ion, 1992). The technical details of the numerical calcula­
ti o n s, such as mess ge n e ra ti on, impl e m entat ion o f th e 
bound a r y conditi ons a nd pos t-process ing, have bee n ex­
plained by Gudmundsson (1994a). 

Verification of nume rical r esults 

A comprehensive testing of the correctness of the numer ica l 
res ults obta ined with MARC was done. A desc ription of the 
testing p rocedure and the results obta ined is found in G ud­
mund sson (1994b). 

Flow in jJarabolic channels - slzapeJactors 
As a p a rt of the tes ting p rocedure, sha p e fac tors for pa ra­
boli c ch annels having various aspects r a ti os, and for n ran­
g in g fr o m 1 to 5, we r e ca lcul a ted a nd com pa re d to 

previo usly published results. The sha pe fac to r f is here de­
fin ed as being related to the now velocit y Uo a long the cen­
tre lin e acco rding to 

f : = ((11, + 1) UO)I / 1/ . (33) 

Sincc th e number of calc ulated cases is la rge r and the esti­
mated numerical er ro r. sma ller than in p rev ious numerical 
stud ies o f this problem (Nye, 1965; Eche lmeyer, 1983), th e 
resu lts of the FE ca lcu la tions a re g ive n in Table I, a they 
may be o f ge neral interes t. 

SLIDING VELOCITY 

The slid ing veloc ity was de termined by calcu lati ng numer i­
cally the slid ing funct ion s(E ,8,n) for n = 1 LO n = 5, fo r 
r = 0.001 to T = l.O, a nd for c; : = A/ hi n the range from 
0.025 to l.0. Some of t he results a re s how n in Fig u re I, 
whi ch d epicts In s as fun c tion ofln E fo r n = [1, 2, 3, 4 , 5]' 
for 8 = 0. 05/ 27r. 

The s liding veloc ity as a function of n and the am­
plit ude-to-wavelength ratio 

rf Ui> ex e (I/H) for E « 1 (see Equations (31) a nd (9)), then 
S must be independent of E for E small. Th e numerical results 
depicLed in Figure I a re in a n agreement with thi s theoretica l 
res ult. T he slope of the In Ub : n curves is g ive n inTable 2. The 
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symboL re/J1'esen/s t/te result qf one calculation. T h.e collstant 
slojJe oJ the curvesJor E ---f 0 shows t/tat Ub ex E-( n.,-l ) iJ7 
t/tal Limit. 
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Table 1. Velocities, discharge and shapeJactorsfor parabolic 
channeLs. VV is the aspect m tio, defined as the mtio oJ the 
channeL's half-width ( bp) to its dejJth (ap). Uo is the velo -
city at the centre Lille normaLized by 2apATb nand Q is the 
dischalge normalized by 2Aag Tb n. T he shapefactor was cal-
culated according to f = ((n + 1) UO)l /ll. T he numbers in 
parentheses are from Nye (1965). CaLcuLated vaLues are esti-
mated to deviate less than 0 .22%from exact ones 

IV Uo Q J 

0.25 0.025777 0.0039027 0.05155 
0.5 0.083069 0.026672 0.166 14 
I 0.208831 0.13779 0.41766 
1.5 0.30003 0.29',84 0.60007 
2 0.358 132 0.46352 0.71626 
3 0.420510 0.79978 0.84102 
4 0.450332 1.12699 0.90067 

0.25 0.0032176 0.000545513 0.09825 
0.5 0.016891 0.0063679 0.22511 

0.063681 0.05037 0.43708 
1.5 0.1 1079 0. 13001 0.57653 
2 0.1 48571 0.22722 0.66762 

3 0.200355 0.43936 0.77528 
4 0.232740 0.65668 0.83559 

0.25 0.00042698 0.000 078 841 0.11953 
0.5 0.0037698 0.001572 0.24705 

0.021771 0.019 14 0.44325 
(0.0221) (0.0199) (0.H5) 

1.5 0.045694 0.059555 0.56751 
2 0.068 117 0. 11539 0.64829 

(0.0675) (0.11 72) (0.646) 
3 0.103610 0.24979 0.74557 

(0.104) (0.255) (0.746) 
4.0 0.12898 0.39682 0.80204 

(0.131) (0.404) (0.806) 

0.25 0.000059572 0.000011671 0.13137 
0.5 0.00089236 0.00039802 0.25845 

0.013045 0.0074772 0.44634 
1.5 0.020074 0.028012 0.56286 
2 0.033204 0.060158 0.63832 
3 0.056627 0.145521 0.72945 
4 0.075239 0.24-5742 0.783 17 

0.25 0.000 008 602 4 0.000001 7582 0.13885 
0.5 0.00021933 0.000 10256 0.26537 

0.0030124 0.00297799 0.44814 
1.5 0.009 1756 0.013433 0.55996 
2 0.016814 0.031941 0.63207 
3 0.032085 0.086290 0.71927 
4 0.045424 0. 15489 0.771 06 

Tab Le 2. Linear regression coifficientsJor In Ub = an + bn 

In Efor the range 0< E < 0.125 and 8 = 0.05;27r. The caLcu ­
Lated numbers Jor bn are in agreement with the theoreticaL 
estimate bn = - (n + 1) at the Limit E -t 0 

a ll b" Standard devialion 

1.159 - 2.002 0.00071 
1.671 - 2.987 0.0017 

- 2.174 - 3.976 0.0032 
- 2.653 4.962 0.0047 
- 3.1 10 - 5.943 0.0060 

calcul ated slope is -(1.017 + 0.986 n) or within 2% of the 
theoretical slope of - (1 + n). 

Figure I shows that the range of validi ty of Equ ation (31) 
depends strong ly on n and tha t t hi s range dec reases with 
increas ing n. This is in contra t to statements made by Fow­
ler (1981, p.675), who a rgued tha t it was onl y E"+! tha t had to 

be small for Equation (31) to be va lid . That wo uld mean that 
the range of E values, [or which Equation (31) is accurate, 
should increase with increasing n and not decrease as the 
numerica l results show. As an exampl e, for n = 5, E must 
be small er tha n about e-2 ~ 0.135 (or r < 0.0215) for Equa­
tion (31) to b e a n approx im a ti o n va lid within 20 % . 
Although a value less than 0.02 for r is not unreasonably 
sm a ll , this fact considerably reduces the usefulness of Equa­
tion (31). For n = 1, on the other ha nd, it i not until E = 1.0 
is reached tha t S(E, 0.05/27r, 1) differs more than 20 % from 
the E -t 0 limit. 

Another interesting finding from Figure I is tha t, for E 

a nd 8 fixed, In S changes by a constant amount for every 
uni t change in n, i. e. In(s(E, 8, n)) -In(s(E, 8, n + 1)) = 

: In!:J. (E, 8). H ence, S(E, 8, n) ex .0. (E, 8f" . This is in accor­
d a nce with Equa tion (32), which was shown to be correct for 
c « 1. That the function !:J. (c, 8) d oes not depend on n is of 
some prac tical value, since one d oes not therefore have to 
calculate S for eve ry possible value of n. An interpolation or 
extrapolation based on several diffe rent n values will suffice. 

In Figure 2, the logarithm of the sliding func tion S is 
shown as a function of n for a few roughness values r and a 
fixed co rrugati o n va lue of c; = 0 .005. It is see n th at a 
stra ight line a lways results but with a slope dependent on E. 

.For E = 0.01 7r ( the small est value of c in the fi gure) 

( 0.05 ) ( In s E = 0.0l 7r, 8 = -, n = 0. 5138 - 0.5370 n 35) 
27r 

with a standard deviation of 0.010. Equation (32) predicted 
thi s power-l aw b ehav iour but w ith a slop e of - In 2 ~ 
- 0.69. Note tha t relation (35) gives In S = - 0.0232 of. 0 for 
n = 1, althou g h S was d e fin e d in such a w ay th a t 
In s(O, 0, 1) = O. This small di sc repancy can be a ttributed 
to numeri cal errors and the finite values oC 8 and c. 

For 8 = 0.05/27r, S was approx imated using the first six 
terms in Equatio n (ll ) [or the ra nge 0 ::::; E < 7r / 2. The re­
sulting curves a re seen in Fig ure 3, which shows S as a func­
tion of E2 The values of the Taylor coeffi cient a re given in 
Table 3. If the numerica l value of s is needed for som e other 

(i) 
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0 

H=0.005 
)l(r=0.05 
or=0.2 
M=1.0 
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./ 
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./ 
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n 

Fig. 2. In s as a function qf n for severaL roughness vaLues r 
and\ = 0.05. 
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Table3. Ta)llorcoifficients rifthe slidingfllnction s(c, 8, n) = 
L~o C2Xi(8,n)c2xi fo r 8 = O.05/h. These values can be 
llsedfol' 8 = 0 with less than 2% error 

2 3 5 

Co 0.9936 0.5661 0.329+ 0.19+3 0.1153 

C2 0.1486 0.9328 l. 163 l.055 0.8701 

Cl -0.1137 0.+997 - 0.3795 0.06+ 65 0.298 <I-

('6 0.08996 - 0.3361 0.3066 0.4760 0.8857 

('s - 0.01813 0.5192 0.+69 3 -0.7965 1.03+ 

('10 - 0.001253 - 0.2334 0.2459 0.3642 0.3583 

C12 0.0006450 0.03723 - 0.0+077 0.05325 - 0.0380 

Standard clc\'iation 

3.5 x 10 -' 0.0028 0.0027 0.0067 0.007+ 

en 

Fig. 3. sas afil11ction of c2 jor 8=O.05/hr and c < 7r/2 
( r <0.25). The S)llI1bols reJJ1'esent calculated values and the 
lines are least-squares approximations using s(c, 8, n) = 
L~=o C2 x i (8, n) c2xi Table 3 gives the valuesfor C2 xi· 

n, s shou ld be calcul ated using th e nu merica l values fo r the 
first six terms in Equati on (11) from Table 3 and interpolated 
o r extrapolated using the fac t th a t In s(c, 8, n) = Cl (c, 8)+ 
C2(c, 8) n wh ere Cl and C2 a re obtained thro ug h a least­
squares approx imation. 

With increasing c, the sliding-veloc ity var ia tion changes 
markedl y. The numerical resu lts show that for la rge c values 
(ln c> 1), Ub ex c"'(, where r depend s on n (sce Fig. 4). The 
best straight-line approx ima tion to r is given by r = - 1.11 
- 0.228 n wilh a sta nd a rd d evia ti on of 0.010, i. e. U" 
c-1.11-0.228n fo r In c > 1. 

Com.parison with previous estim.ates of the Taylor 
coefficients of the sliding function 

The values of Co for n = 3 from Tabl e 3 agree with the esti­
mate (12) from Meys on nier (1983) based on theoretical ar­
guments. The value of C2(0 , 3) = 1.163 ± 2% from l 1tble 3 
is, howeve r, no t in accord a nce w it h hi s est im a te fo r 
C2(0, 3), which was C2(0, 3) ~ 2.4. T hi deviati on could be 
caused by the limited number of calculati ons done by Meys­
sonnier, num erical errors o r bo th . Despi te thi s difference, 
there seems to be no rea on to d oubt the ge nera l correct­
ness ofMeyssonnier's findings. 

Gudmllndsson: B asal flow characteristics Va non-linearflow 

-3.0 
-3.5 

-... -4.0 .0 

::> -- -4.5 +n=1 
.n=2 
<>n=3 
An=4 

c 
-5.0 

-5.5 n=5 
1.0 1.2 1.4 

In(ak) 
1.6 1.8 

Fig. 4. In Ub as ajullction rif ln cjor n = J to n = 5 and 
C; = 0.05 for large c values (c >2.7). The straight Lines show 
the best linear aJ)proximations through calculated values given 
b)l the rymbols. 

The numerica l resul ts a re a lso in agreement with Lli­
boutry's (1993) theo retical upper estimale for s(O, 0 , 3) (see 
E qu ation (13)) a nd hi s tabulated va lues fo r s. Hi s u pper 
est imate is, however, up to severa l times greater than the 
calculated values. (Lli boutry (1993) used the symbol V for 
the si iding functi on.) 

The dependency of the sliding velocity on glacier 
thickness 

T he slidi ng functi on s depends on the ra tio of the g lac ier 
t hi ckness to the w3\'elength of the bedrock undulat ions, as 
well as on c and n . In G udmundsson (1994b), the depen­
de ncy of Ub on 8 is d iscussed and it is shown that most of 
the var iati on of s with 8 can be described by wri ting 

s(c, 8, n) = (1 - c8)1l s(c, 0, n) . (36) 

C hanging the value of 8 used in Fig ure I by a factor of 2 
has a lmost no effec t on the results shown in that fi g ure. A 
relati \'e change in c has a muc h la rger effect on the value of 
s tha n a co rresponding change in 8. Neve rtheless, by calcu­
la ting the slope of the s( c) curve fo r different 8 "al ues, it was 
fo und that the sm all but finite value of 8 is responsib le for 
the 0.64% dev ia ti o n of co(0.05/27r, 1) fro m uni ty seen in 
l 1tbl e 3. 

The ratio of the internal deforITlation velocity to the 
sliding velocity 

If onc writes the surface velocity Us as a sum of the deform a­
tion velocity Ucl a nd the slidi ng velocity (which in genera l is 
only approx imately co rrect for n i= 1) 

_ A nh( 1 s(c, 8, n) 8) 
Us - 2 Tb n + 1 + c,,+l . (37) 

one finds 

( 
cT/+1 ) -l 

1 + (n + 1) 8s(c, 8, n) 
(38) 

NOle lhat t.b can be quite large. Fo r r = 0.1, <; = 0.05 a nd 
n = 3, one find s, for example, using the values frorn Table 3, 
tha t t.b = 0.58. C ha nging T to r = 0 .05 g ives t.b = 0. 99. 
Slidi ng over a ha rd bed without bed sepa ration can be sig­
nificant. 
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J ournal qfGlacioLogy 

BASAL-FLOW CHARACTERISTICS 

As expla ined by Gudmundsson (1997), second-order p ertur­
bation theor y for a linear medium predicts tha t the hori­
zo nta l velocit y component will have a loca l m aximum 
( U;!~x ) above the peak of the sinusoid as long as E < 0. 138, 
a nd a local minimum ( U~~/~ ) a bove th e trough of the sinu­
so id as long as E < ~. Regio n s o f ex trusion fl ow d evelop 
above U;I~X a nd below U~';;~. The region of ex trusion fl ow 
a bove UliaX ex tends up to a point called u saddle . In the fol-

rr/ 2 rr/ 2 
lowing, use o f sca led coo rdin a tes, (X, Z) : = k(x, z), a nd 
sca led velociti es (Vx, Vz) : = (v.r, Vz)/Ub, will be m a de. 

E xtrus ion flow above the p eak of the s inusoid 

Fig ure 5 shows the percentage increase of the velocit y U;/':!, 
compa red to th e hori zo nta l ve locity a t th e b ed lin e a t 
X = 7r/ 2, as a fun ction of E fo r n = 1 to 11, = 5. Symbols 
sta nd for numerically calcu la ted values. In agreem ent with 
the a na lytica l predicti on fo r n = 1, no U;!~x p oints were 
fo und for E > 0.138. The long d ash es show the th eoreti cal 
asymptotic slope for E --> O. A good agreement b e tween nu­
m erical a nd a nalytical results is found. 

(]) 
(/) 

'" (]) 

20 

I:; 0 

.~ 10 

:z-
'g 
Qi 
> 5 

o~~~~~~~~~~~~~~~~~ 
0.00 0 .05 0. 10 0 .15 0.20 0.25 

ak 

Fig. 5. T he velocity increase ifU;/~x with res/Ject to the velo ­
city at the bed at X = 7r / 2,101 C; = 0. 05. 

Extrusion fl ow is not li mited to a linear m edi um. It is 
a lso found for n > 1. Indeed , as n increases, the ra nge of E 

va lues, for which extrusion fl ow is found , becomes progres­
sively la rger. Extrusion Oow is th erefore enh a nced by the 
non-linearity o f Glen's flow la w. For 11, = 3, extrusion fl ow 
is, for example, found for E values of up to approximately 
E = 0.2 (or r ~ 0.03) and the velocity U;!~x is a bout 10% 
la rger tha n the local basal slid i ng velocity direc tl y below 
u max The ver tical di sl)lacem e nt of umax for n = 1 as E \'a r-rr/ 2 . rr/2' 
ies follows closely the theore ti cal predicti on (Gudmunds-
son, 1997). With n increasing but E and fj fi xed, U;)~X moves 
p rog ress ively close r to the bed . This is in ag reem ent with 
other numerica l calculations (R aym ond , unp ubli shed ). 

Extrus ion flow ab ove t h e trough of t h e s inusoid 

As a measure of the magnitude o f the extrusion flow, the rati o 

(
millZ(IV,(37r/2, Z)I) ) 

100 x-I , 
v\ , (37r/2, -E) 

(39) 

g iving the minimum of th e absolute hori zontal vel ocity at 
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x = 37r/2 as a percentage of the velocity a t the bed, can be 

used. This ra ti o is shown in Figure 6 [or = 0.05 as a func­

tion of E for a few diffe rent val ues of n. 
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Fig. 6. Relative decrease qfU;~;b with respect to the veLocity at 
the bed. 

2.0 

The th eo re tical predi ct ion fo r n = 1 was th a t U~~;1 
shou ld only exist fo r E < ~ (Gudmundsso n, 1997). However, 
fo r n = 1, a minimum was found for E up to 1.17 and not only 
up to E = l The most direct expla na tion for this devia tion 
fro m the theoretically predicted r a nge is th at the theoreti­
cal value is based on a per turbation a na lys is which is onl y 
va lid fo r E« 1. Since the numer ical calc u lations sho w 
U~~i;1 to ex ist even fo r E > I, it is cl ear that the perturba­
tion approach could never ha, 'e g ive n the correct a nswer. 
The asympto tic ch a nge of the velocity d ecrease as E ---> 0, 
sh ow n as a solid line, is however r ep roduced. There is there­
[or e a good ag reem ent betwee n theor y a nd numerics a t E 

values where an agreem ent can be exp ec ted . 
Fo r a ll calculated va lues o f n, the veloc it y dec rease 

(sh own in Fig ure 6 as a nega ti ve ve loc ity increase ) b e­
comes la rger as E increases from zero, reaches a max imum 
a nd d ec rea es again. T here is a lways some E value a bove 
which no extrusion fl ow is found . Simil a rly to the situa tion 
a bove the peak of the sinusoidal, extrusion fl ow above the 
t ro ugh becomes prog ressively larger in m agnitude a nd ex­
ists up to higher E values as 11, increases. Comparison o[ Fig­
ure 6 with Figure 5 sh ows that extrusion-Oow behavio ur is 
more d ominant a bove the t rough tha n a bove the ri egel. 
Above a trough, a 30- 40% decrease in horizontal velocity 
with height over a di sta nce of approx im a tely 1/ k is possible 
a nd could, for example, cause a considerable inversion of a 
bore hole inelina tio n. 

U~i12 is found for E = 0 at Z = 1 a nd it moves towards 
th e bed with increasing E (see Fig. 7). The d ashed-dotted line 
in Figure 7 denotes Z = -E, which is the vertical position of 
the bed lin e. As long as the symbols rem ain above the d as hed­
dotted line u.mil1 exists. u.min remains m ore or le s at a con-, 37f/ 2 3,,/ 2 
sta nt height of approx imately I (or a t ).. /27r in dimensiona l 
units) above the bed [o r a ll values of E. 

Flow w it h in the t rough of t h e sinus o id 

The velocity wi t hin a n overdeepening as a fraction of the 
sliding velocity is ofte n of interest. It is, for example, som e­
times importa nt to know at what ro ug hness values ice with­
in a n overdeepe ning effec ti ve ly r e m a in s there w ith o ut 
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Fig. 7 Vertical jJosition ofU~~i)~ Jor n = 1 /0 n = 5 andJor 
C; = 0.05. 

2.0 

ta king pa rt in the ove rall g lae ie r moti on. Wh a t exac tly is 

mean t by saying that the ice d oes not move d ep ends, of 

course, on what part of the overdeepening ~ at the bed or 

only "close" to the bed ~ one is referring to bu t it turns out 

that thi s is, at least for the case o f a perfectly lubricated bed, 

rclati\'e ly un important. 
The ra ti o o f the loca l basal velocity a t the base of the 

t rough ((X, Z) = (37r/2, - E) ) to the sliding ve locity Ub is 
one possible measure of the m agnitude oflhe fl ow within the 

t rough in relation to the mean fl ow a long the bed line. Figure 

8 shows that, as e increases, this ra tio at first becomes larger, 

reaches a m ax imum and then decreases. T he somewhat sur­

pr ising increase is a conseq uence of the extrusive nature of 

t he fl ow. T he max imum inc rease is la rge r for no n-linear 

than for linear fl ow. 

"" 5. 
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lIEn=2 
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11 x 
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0.0 0 .5 1.0 
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Fig. 8. VelociljICll (X, Z) = (37r/2, - c) asaJraction of the 
sliding velocity (c; =0.05). 

O ther useful measures o f t he m agnitude o f ice move­
ment within a tro ugh would be the ra tios of bo th : (I) the 
basa l \'eloc ilY a t the base o f the tro ugh ((X, Z) = (37r/2, 
- c) ), a nd (2) the minimum veloc ity a t X = 37r/2 for some 
Z, to the basa l vcloci t y a t t he top o f the ri egcl ((X, Z) = 
(7r /2. c) ). D epicting these ra ti os g ives essenti a ll y the same 
informati on as does Fig ure 8 (G udmundsson, 1994b). For e 
g reater tha n a bout 1.5, th ere is a lmost no ice m ove menl 
through the t roug h. 

Gudmundsson: Basalflow (hamcteristics of a non-linemflow 

Flow separation 

The m inimu m of V" a long the ve rti cal li ne X = 37r/2 is 
shown in Fig ure 9. }<o r e large eno ug h to exclude extrusion 
flow, the minimum is found at the bed (Z = -c). Note that 
fo r e > 1.8, V,(X = 37r / 2. Z = -c) is negative, i.e. the med­
ium in the lowes t pa rt of the trough fl ows in the opposite di­
rection to the m a in flow. This is a clear indication of a fl ow 
sep a ra tion. 

111 '1 ' 1:1 '. ' . ' - '1'- ' ~-. - . - . ~- . tI- ·-
++++ + lIE 0 0 

+ 
+ 

+ 
-3 
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ak 

Fig. 9. The ratio oJ the minimum cif the horizontal velocif:J' 
above the trough cif the sine wave to the sliding veloci f:J', as a 
Junctionofe, i.e. m inz(u(37r/2, Z))/Ub . 

A n example o f a fl ow sepa ra ti o n is g iven in Fig ure 10. It 
is an enl arged part o f Figure 11, whic h shows the flow a bove 
and w it hi n an ove rd ee pening fo r A = 50 m, a = 20 m , 
h = 200 m, n = 1 a nd prgsin a = 8.99577 x to 3 bar m I. 

Fig u re II again o n Iy shows a pa rt o f the whole con fi g ura­
ti o n, which had the dimensions 200 m x 200 m. T he velo­
cili es have the d ime nsion m a I. A lth ough the veloc iti es 
w ithin the O\·erdeepen ing are sma ll compared to the velo­
c it y a t the ri egel, t hey are a sig nificant fract ion of the slid­
in g \'e loc ity, whic h fo r thi s pa rti c ul ar case is 0.50 III a I 

Figure 10 shows how the ma in fl ow induces a seco ndary 
fl ow circul ati on in a clockwise d il-ecti o n. A separation line 

.- .. ----------
-==~:Mtim'l+tr 

L 
Fig. 10. De/ailed view of a rfcircu/a/iol1 within a trough cif a 
sinusoid. Ollly a part of the FE model is shown. 
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Fig. 11. Recirculatioll jJatlern within a Irough rif a sinusoid 
showing ajlow se/Jamtioll. T he direction rif the mainjlow is 
from left to right. The vectors indicate the direction riftheflow 
at each FE node. 

is formed (shown as long das hes in Figure 10), sepa ra ting the 
main flow from the induced fl ow. The ice below the separa­
tion line will theoretica ll y circul a te there for ever, never 
lea\'ing the trough. 

Frequency doubling 

Due to the non-linearity of the bo undary conditions at the 
bed line, the bedrock perturbation will in general cause flow 
perturbations having higher ha rmonics than the bedrock 
undulation itse lf. A calculation of the first four ha rmonics 
of the fl ow field a long the bed line showed the rel a tive am­
plitude of higher harmonics to increase strongly with E and 
the frequency doubling to be m o re pronounced for non­
linear flow. This issue has been discussed in more de tail by 
Gudmundsson (1994a ). 

DISCUSSION 

Possibly the m ost striking result is the onset of a fl ow separa­
tion within the trough of the sinusoid when the number E 

exceeds a critical value. Review of the literature has not re­
vea led any other examples of flow separation for gravity­
driven fl ow nor for fl ow over a p erfectl y slippery boundary. 
The phenomenon of corner eddi es in Stokes flow is never­
theless widespread (Michael a nd 0 ' Teill , 1977; H as imoto 
and Sano, 1980; Sherman, 1990, p. 258- 65). Corner fl ow, as 
an example, driven by circumferenti a l motion with no-slip 
bounda ry conditions, is known to form so-called M offatt 
co rner eddies if the angle of th e corner is less tha n about 
146.3° (Moffatt, 1964). 

Pozrikidi s (1987) did nume rical calc ul ations of shea r­
d,-iven creeping fl ow of ~ew tonian materi a l in a channel 
constricted by a pla in wall a nd a sinuso idal wall. H e con­
cluded that, for every channel width, there is a critical am­
plitude-to-wavelength ra tio for fl ow separati on. For wide 
channels, thi s ra tio co rresponds to E ~ 1 (sce Pozrikidis, 
1987, fig. 7). This value for the critical number is somewhat 
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sm a lle r than obtained here for grav ity-driven fl ow. One 
should not expect perfec t agreement, since the driving me­
chanism of the flow is not the same a nd because the local 
properti es of Stokes fl ow depend in genera l strongly on the 
glob al structure of the flow (Sherma n, 1990). Note that, due 
to the limited spati a l resolution of the FE mesh, the poss ibi­
lity th a t the criti cal va lue for fl ow sepa ra ti on is somewh at 
less th an 1.8 cannot be ruled out. 

Gl aciologists oft en tend to think a bo ut basa l flow of 
glac ie r ice in terms o f the simple a naly tical solution for a 
plane slab fl owing down a n inclined pla ne. The presence of 
even sm all basal undul a tion leads, however, to a different 
picture of basal flow than the plane-slab solution suggests. 
The horizontal velocity can increa se with depth and even 
at only moderate amplitude-to-wavcleng th ratios of 0.28 a 
fl ow reversal takes place. It should therefore not come as a 
surpri se if the stratigraphy of basa l ice b ecomes strongly dis­
rupted by glacial fl ow. An E value of 1.8 can hardl y be con­
sider ed to be unreali sticall y large, and it must, in genera l, be 
exp ected that glacier beds have regions where the E values 
a re thi s big. 

vVhere an overdeepening is fo und , with a depth-to ­
width rati o corresponding to an E value of about 1.8, the ice 
will most probably m ove direc tly over the trough and ice 
within will be stagna nt. A possibl e candidate for this type 
of fl ow regime is the spectacula r ove rdeepening fo und a t 
K o n kordi aplatz, Ale tschgletschcr, Switzerl and , which is 
about 1000 m long a nd 400 m deep. 

CONCLUSIONS 

With the use of both a na lytical and numerical methods, the 
fl ow characteristics and the sliding velocity of a highly vi s­
cous m edium flowing under the inn L1 ence of gravity over a 
perfectly lubricated sinusoidal bed have been analy ed. 

Directl y above the peak of the sine curve (kx = 7r/2), a 
loc al ma ximum of the hori zo nt a l ve loc ity compon ent 
(umax

) develops if E < Ecrit (5 n). Ecrit is listed as a function ",/ 2 - 1f/2 ' ",/2 . 
of n for 5 « 1 in Table 4 for n = 1 to n = 5. The val ue of E~JA 
inc reases with increasing n, showing tha t the non-linearity 
of the flow law makes the range of E values for whieh u,:;~x 
exists la rger. 

Above the trough of the sine curve (kx = 37r / 2), a local 
minimum of the hori zonta l velocity component develops if 
E < E~~!2 (5, n) . The calculated va lues of E~~/2 for 5 « 1 a re 
a lso g iven in Table 4. 

R egions of local extrusion fl ow a re associated with both 
these stationary points (Urna.x and Umill 

) . The non-linea rity rr/ 2 3",/ 2 
o f the fl ow law incr eases the range of E values for which 
u;";.% is found, as th e table shows. The ve locity dec rease 
with respect to the velocity at the bed a lso becomes m ore 
pronounced with increasing n (see Fig. 6). 

Fl o w se pa ra tion occ urs for E > l.8 for a t leas t 1 ::::; 
n ::::; 5, for both perfec tly lubricated heds and for no-sI ip 
bo unda ry conditions. Based on the la rge number of a na ly ti­
cal, experimenta l a nd computationa l demonstrations of its 
existence, fl ow separ a tion for no-slip boundary conditions 
is known to be a universal feature o f la minar flow in cor­
ners (Sherman, 1990, p. 265). 

The sliding velocity as a function of n, E and 5 has been 
calcul ated. The numerical res ults agree with Equation (31). 
For finite values of E, the sliding velocity can be determined 
by using theTaylor coeffi cients li sted inThble 3. 
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Table 4. e~}~ and e~~/2 asjunctiolls rifnfor 8« I. The 
value of e~/;jor 17, = 1 is based 011 an analytical solution 
(Gudmundsson, 1997). All olher values are based on numeri­
cal calculations 

n ecrit 
,,/2 ecrit 

3,,/2 

I 0. 138 1.20 

2 0.19 1.37 

3 0.22 U5 

+ 0.2+ 1.50 

5 0.25 1.55 

In 1Lb dcpends linearly on n for a ll values of e and 8 as 
Equation (32) suggests. U sing th is fact, it is possible to cal­
culate s as a function ofn for all values ofn by using Table 3 
to calculate thc slid ing function for several n values and 
then interpolate or extrapolate the results assuming In s = 

a + 617, for ome a and 6. 
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