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Basal-flow characteristics of a non-linear flow sliding
frictionless over strongly undulating bedrock
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ABSTRACT. The flow field of a medium sliding without friction over a strongly un-
dulating surface is calculated numerically. The results are used to elucidate the basal-flow
characteristics of glacier flow and they are discussed with reference to known analytical
solutions. Extrusion flow is found to become increasingly pronounced as the value of n,
where n is a parameter in Glen’s flow law, becomes larger. For sinusoidal bedrock undula-
tions, a flow separation occurs if the amplitude-to-wavelength ratio exceeds a critical
value of about 0.28. The main flow then sets up a secondary flow circulation within the
trough, and the ice participating in this circular motion theoretically never leaves it. The
sliding velocity is calculated numerically as a function of the mean basal shear stress, the
amplitude-to-wavelength ratio and the flow parameter n. For moderate and high slope
fluctuations, the sliding velocity is significantly different from what would be expected
from results based on the small-slope approximation.

INTRODUCTION s(,6,n) 1= " kup(e,6.n)/(2AT")
uy, Basal-sliding velocity

Knowledge of the characteristics of basal flow is mostly Uy Non-dimensional sliding velocity,

based on 7a11aly1.ical solutions valid for Newtonian fluids ‘U" = An,”J.\U},uE

and bedrocks that are sufficiently smooth so that € : = ak Us ?:Pl'facc "’Elomt? i

« 1, where a is the amplitude and k is the wave number of Uz T'he local maximum of v, at kz = 7/2

the bed (Nye, 1969, 1970; Kamb, 1970; Morland, 1976a, b; Usg  The saddle point of v, at kzr = /2

Gudmundsson, 1997). The possibility cannot be excluded U'l;,:}lz The local minimum of v, at kz = 37 /2
that the non-linearity of Glen’s flow law, and relaxing the Vi, Vz  Scaled velocities; (Vi, Vz) 1= (vq, v2) [
condition £ < 1, gives rise to flow patterns markedly differ- v; “omponents of the velocity vector
ent from those suggested by the analytical solutions. I,z Space coordinates
In this paper, I use a numerical approach to calculate X Z Scaled coordinates; (X, Z) : = k(z, 2)
non-linear flow over strongly undulating sinusoidal beds. % Vertical position of glacier bed
The sliding velocity wuy, is calculated as a function of £ and Mean surface slope
n, and its sensitivity to changes in 6 (8 : = 1/kh) is investi- B(z) Local bedrock slope; tan A(z) = dzo(z)/dz
gated. The flow characteristics (.)f basal glacier flow over s Thinness parameter; § : = (kh) ™"
perfectly luhrlca_ted beds for h'lgh \-'alu'es of € 'dr?d for a 8 Eisnsberdilia
range of n \'ai_uc:s is analysc_d. This numerical work is an ex- Ale,8) Ale,6):=s(c,6,n)/s(e.6,n+ 1)
tension of a similar analytical study (Gudmundsson, 1997) A Ay vl
which was limited to linear flow and to beds having small : . oy g )
: . > €1l Second invariant of the strain-rate tensor;
amplitude-to-wavelength ratios. S
(o = §F,J‘E,‘j

€ Components of strain-rate tensor
NOTATION ; _— . i A5

€ Effective strain rate; € 1 = /5 €€
A Softness parameter, a constant in Glen’s flow law & Loc:al bed-slope parameter, E‘: = ak.
a Amplitude of a sinusoidal wave ) £ is always taken to be positive
ap Depth of a parabolic channel E(—L/Hz Fore < Eir/l} vy (@, 2) hasa §tatio_nary point
by Half width of a parabolic channel _ somcwhe_rc along the vertical line kz = /2
¢i(8,n)  Taylor coefficients of the sliding function fcgr-l}g Fore < 5%2;2} (2, 2) has a stationary point
g Acceleration of gravity somewhere along the vertical line kx = 3n/2
h Mean glacier thickness n Viscosity
k Wave number Teff Effective viscosity
n Parameter in Glen’s flow law A Wavelength
P Mean normal pressure As Transition wavelength
Pa Atmospheric pressure p Specific density
T Roughness; 7 : = a/A oy Second rle\';1at(,)ric stress invariant;
s(e,6,n) Sliding function; i S %(}'Uo’u
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aij Components of the stress tensor
’ . -
0, Components of the deviatoric stress tensor;
) e LR
(J‘.,AJ = Gy 3 b,',a'g.k
B Asperity; ¢ 1= A/h
T Effective stress; 7 ;= Ui]
Th Driving stress; 7, : = pygh sin o
Suffixes
I Properties of ice

b Basal properties

Dimensional quantities are usually in lower-case letters and
non-dimensional quantities in capital letters.

THEORETICAL FRAMEWORK

Field equations, flow-law assumption and boundary
conditions

The constitutive law for ice is taken to be

5 r (n—=1)/2

(,"_,':AO'” (J'_,-J,- (1)
where F',J- are strain rates and T, are the deviatoric stresses
defined by

(T.‘_j Y= Oy — %6,'.1;0'],-],-. (2)

U . . . . .
ayy 1s the second invariant of the deviatoric stress tensor

I . l ' ’
H = 3940} (3}
and 6;; is the Kronecker delta.

The field equations for the conservation of mass and mo-
mentum are

P =10 (4)

and
@ijj+ pgi =0 (5)
where v; are the components of the velocity vector. The ice
density py is assumed to be constant and the ratio of inertial

forces to viscous forces to be small,
The bed profile is given by

zp 1= asin ka (6)
where zj represents the 2 coordinate of the bed line. The
coordinate system is tilted and the 2 axis makes an angle o
with respect to horizontal. The z axis makes a right-angle
with the glacier surface and the mean bed line (see Gud-
mundsson, 1997, fig. 1). The amplitude-to-wavelength ratio
is denoted by r (r:= a/A) and is referred to as the (single
wavelength) roughness of the bed.

The bed is considered to be sufficiently well lubricated as
to exert no (or negligible) tangential forces on the overlying
ice. This assumption is known as the assumption of perfect
sliding. The shape of the bed line is assumed to be sinusoidal.
For £ small, this represents no actual limitation, because to
first order in = the problem is linear and a Fourier decom-
position can be used to obtain the flow field for arbitrary
shaped bed lines (as long as £ < 1 is fulfilled for each of
the Fourier components). Because of the intrinsic non- line-
arity of the boundary conditions (Gudmundsson, 1997), this
is not true for moderate to high £ values. Using a sinusoidal
bed for high amplitude-to-wavelength ratios, however, fa-
cilitates comparison with analytical solutions and repre-
sents a convenient idealization of an undulating bed
suitable for a study of the general characteristics of hasal
flow.
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Ignoring the effect of regelation, the boundary condi-
tions along the bed line are

(I.ZU
=y ==} on
da

(7)

&
[
o

and
Ops = %(cr‘,_._,‘ — 03 tan28(x) , on z=2z (8)

where tan 3(z) : = dz(x) /d, is the local slope of the bed.

The upper surface is free but it is implicitly assumed that
theratio A/ h, where his the mean thickness, is small enough
to ensure negligible transfer of basal sliding variation to the
surface. Formally, this means that the thinness parameter,
6 :=1/(kh), must be small compared to unity. Periodic
boundary conditions are imposed in the horizontal direc-
tion,

PREVIOUS WORK

If the bed line is sufficiently slowly varying so that = < 1,
the problem can be solved for n = 1 using standard
perturbation techniques, This has been discussed by
Gudmundsson (1997), where references to earlier work can
be found.

Some knowledge of the sliding velocity, uy, can be ob-
tained from dimensional analysis (Lliboutry, 1968, 1987h).
There are three dimensionless numbers that enter the pro-
blem: n, £ and 6. For Glen’s flow law, dimensional argu-
ments give

up = Uy(g,8,m) AR A (9)

where Uy, 1s a non-dimensional sliding velocity.

By using a variational theorem for non-Newtonian ow
(Johnson, 1960), Fowler (1981) derived a sliding law valid for
anon-lincar medium. He concluded that the sliding velocity
uy, should vary as 1/5’"I in the limit £ — 0. This has, how-
ever, been questioned by Schweizer (1989) and Schweizer
and Tken (1992) who, through finite-clement (FE) calcula-
tions, found 1y, to he less dependent on £ than wu, o 1/t
indicates.

Raymond (unpublished), in what seems to be the first
numerical study of this problem, calculated the sliding velo-
city for a perfectly lubricated sinusoidal bed with no regela-
tion using Glen’s flow law. His calculations were limited to a
few € values and they do not give the sliding velocity as a
general function of ¢, & and n but they are in agreement
with uy, oc 1/™,

If w;, is indeed proportional to £~ "1 then it is conve-
nient to define a function s(e, 6, n), called the sliding func-
tion, as

£% e,
s can be thought of as a non-dimensional sliding velocity
where the e~"*1 dependency has been accounted for. Lin-
car perturbation theory (Nye, 1969; Kamb, 1970) gives
lim. g s(s,0,1) = 1.

The function s(g, 6, n) can be expressed as a Taylor series
with respect to the variable £

sleq0,m) = (10)

oC

s(e,6,n) = Z('Q“‘(é""') Pl (11)

i=0
where ¢; are the Taylor coefficients. Note that s must be an
even function of ak, since the sliding velocity is independent
of the sign of a. Fowler (1981), Lliboutry (1987a) and Meys-
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sonnier (1983) were able to give a numerical estimate of
¢p(0, 3). Using variational methods, Meyssonnier found

0.305 < ¢o(0,3) < 0.338. (12)

Meyssonnier (1983), in a comprehensive numerical
study, compared numerically calculated sliding velocities
with analytical estimates, By calculating the sliding velo-
city for values of r in the range 0.01-0.05 and ¢ in the range
0.25/7 to 1/7, he was able to give an estimate of (0, 3),
which was ¢(0,3) = 2.4.

Lliboutry (1993) later improved Meyssonnier’s estimate,
again using variational methods, and obtained an upper
bound on s for n = 3. His result is

s5(0,3) < 0.33839 + 3.688¢” + 0.169¢°.  (13)

Kamb (1970) used the fact that the effective stress is, to first
order in &, independent of x as a starting point for the devel-
opment of a theory of sliding incorporating rheological non-
linearity. Kamb’s expression for the sliding velocity is
(Kamb, 1970, p.703)
o\ (n=1)/2
2"+1 (1 + (05/2)“) 2 A,Tll:
4ent gntlk
Using this expression, one finds that ¢y(0,3) = 4/e* =~ 0.54.
This as a value is not within the range given by expression
(12), showing that Meyssonnier’s and Lliboutry’s results and
those of Kamb differ somewhat. In the light of the assump-
tions that Kamb had to make, the agreement is in fact sur-
prisingly good. Kamb’s theory not only gives the correct
dependency of the sliding velocity on roughness but the

U= (14)

numerical values are also almost correct. Kamb’s non-line-
ar theory was the first theoretical work that predicted the
1/e"*1 behaviour of uy, for e < 1.

Schweizer (1989), in a numerical study, came to the con-
clusion that the sliding velocity does not vary as g~("+1) put
somewhat more slowly. His results are also not in accor-
dance with results based on a dimensional analysis (Fqua-
tion (9)). They must therefore be, to some extent, inaccurate.

SLIDING LAW FOR A NON-LINEAR MEDIUM

Theoretical considerations

Tt is instructive to see how it can be shown convincingly, al-
beit not rigorously, that as ¢ — 0 and for < 1 the sliding
function s(z,6,n) approaches asymptotically a function
which is only dependent upon n. A somewhat similar argu-
ment has previously been given by Lliboutry (1968, 1987b)
and Kamb (1970). The argument, given below, suggests a
certain form of the sliding law but does not prove that it
must have this form. The proof of this result has been given
by Fowler (1986, 1987).

The idea is to express the pressure variation along the
bed as a function of the amplitude, the wavelength, the slid-
ing velocity and the viscosity, and incorporating the effects
of the non-linearity of the flow law by using an effective visc-
osity. The main underlying assumption is that & < 1.

To this end, I start by writing a plausible expression for
the pressure distribution, given by

p(z) = pa + prgh cos e 4 dp (15)

where
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p(x) = coupnetrke cos kz + O(e?) . (16)
¢ is some unknown constant, p, is the atmospheric pressure
and 1. is an effective viscosity that will be defined below. In
order to see the plausibility of this expression, note that ép
must vanish as € — 0. That ép(z) depends linearly on £
can be thought to be the result of a Taylor expansion with
respect to £ where only the first term is retained. The pro-
duct nupk gives the right dimension for the pressure. It
would also have been possible to use the basal shear stress
7h, to get the right dimensions but then 7 would not have
been a part of the expression. Note also that k cannot be
substituted by 1/a because, if @ — (), §p must vanish (an-
other way of seeing this is that if a— — a, dp must change
sign). It is also clear that the variation of dp with  must be
of the form cos kz if ¢ is sufficiently small.

o get an estimate of the effective viscosity 7efs, consider
a column of ice which extends from the bed up to some dis-
tance | where the disturbance due to the bed undulations
has disappeared. As the ice moves a distance Az, in the
time At = Az /uy, it is stretched/compressed to the length
| + Az, where Az = Axrdzy/dz. The (average) strain rate
is given by
.y 1Az
(6) = A7
where the brackets are used to indicate that these are aver-
aged strain rates over a given vertical distance [, that 1s

1 l
(é,‘j) :Z?A é,_,dz. (18)

For the average vertical strain rate, one gets
1 Azakcoskz

Az /w, 1/k

— wyak?® cos kz + O((ak)®) (19)

(17)

+0((ak)®)

(€:2) X

where use was made of the fact that [ must be proportional
to 1/k, since the only parameters entering the problem that
have the dimension length are a and 1/k, and that using a
would again be incorrect since the strain rates must change
sign as @+ —a. (This expression could also have been ob-
tained by calculating the average of the vertical strain
rates over the whole glacier using results from the first-or-
der perturbation theory) A similar argument for the shear
rates lead to {€,.)

(é4:) = upak®sinkz . (20)
The effective strain rate € is
E=Léey =, +E,, (21)
leading to
é = upak’ . (22)
Glen’s flow law can be written as
; ¢(1=n)/n
0= Wéu = 21eff€ij (23)
where
gll=n)/n
Nett # = 5 - (24)
Inserting Equations (22) and (24) into Equation (16) gives
op(x) = o upak? |1 cos k. (25)

Force equilibrium requires
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sin o 1 A :
'Olgh(cosnc) m[ onds (26)

where 7 is a path along the sine curve, C(y) is the path
length, o is the stress tensor and 0 is a unit normal vector

- 1 (dzi)/dbr). (27)

\/ 1+ ((12()/dl‘)2

A change of variables dx = d.r.'(l + (dzl./d;r‘)?)
the drag (the z component of Equation (26))

/ (U,r: — Ogp d_zﬂ) dax
Jo da

A
A
12 ) ‘
= K/(" ([)% + Opx — L tan d) dr (28)

where tan 4 = dzg/dz. The last term on the righthand side
is of second order in € and the exact boundary condition on

" gives for

1
TI]:X
1

20, Equation (8), shows that o,.. is then also of second order,
Up to first order in &, the drag can therefore be calculated
according to

. 1 A dzg g
™ i=pghsina =~ [ p(z,2)) — dx (29)
X Js dr
giving

7

cok [2* fuyak? 1/n ,
™ b 1 (ul e ) akcos® kx dx (30)

- 27 0 A

where ¢ is the same unknown constant introduced in Equa-
tion (16). After integrating and re-arranging terms, one gets
2A7"
= .
Wy X m(” < (51}
Expression (31) brings out the asymptotic 1/2"*! behaviour
of the sliding velocity as £ — 0 and shows how strongly it
depends on the bedrock roughness.
Equation (31) shows that s(z. 8, ) as a function of 1 will
be equal to é¢,", where ¢ is some unknown number. Since
lim. 4 s(e,0,1) = 1, it follows that ¢ = ey, leading to

s{e.6.0) = r:“(s._f‘i)l_”. (32)

It follows from the first-order perturbation solution for the
pressure that ¢y = 2 for a linear Newtonian medium (Nye,
1969, 1970; Kamb, 1970). Assuming that the effect of a non-
linear flow law on the pressure variation along the bed can
be described by a corresponding change in the effective visc-
osity, ¢p in Equation(16) will remain the same for different
values of n. The estimate of the effective viscosity given
above may, however, not accurately describe the effect that
a change of n has on 7. The proper integration length [ in
Equation (18) will, for example, depend on n if the deforma-
tion is concentrated in a different way near the bed for non-
linear than for linear hehaviour.

NUMERICAL CALCULATIONS OF FLOW OVER A
SINUSOIDAL BED

Solution procedure

The solution procedure applied to solve the system of differ-
ential equations defined by Equations (1), (4) and (5), sub-
jected to the boundary conditions (7) and (8), was the
method of finite elements (FE). Commercially available FE,
software, the general-purpose program MARC, was used

for the calculations (MARC Analysis Research Corpora-
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tion, 1992). The technical details of the numerical calcula-
tions, such as mess generation, implementation of the
boundary conditions and post-processing, have been ex-
plained by Gudmundsson (1994a).

Verification of numerical results

A comprehensive testing of the correctness of the numerical
results obtained with MARC was done. A description of the
testing procedure and the results obtained is found in Gud-
mundsson (1994b).
Flow in parabolic channels — shape factors
As a part of the testing procedure, shape factors for para-
bolic channels having various aspects ratios, and for n ran-
ging from 1 to 5, were calculated and compared to
previously published results. The shape factor f is here de-
fined as being related to the flow velocity Uy along the cen-
tre line according to

fi=((n+1)U)"". (33)
Since the number of calculated cases is larger and the esti-
mated numerical errors smaller than in previous numerical
studies of this problem (Nye, 1965; Echelmeyer, 1983), the
results of the FE calculations are given inTable 1, as they
may be of general interest.

SLIDING VELOCITY

The sliding velocity was determined by calculating numeri-
cally the sliding function s(g,8,n) for n = 1 ton = 5, for
r=0.001 to r = 1.0, and for ¢ := A/h in the range from
0.025 to 1.0. Some of the results are shown in Figure 1,
which depicts Ins as function of Ine for n = [1,2,3,4, 5],
for & = 0.05/2m.

The sliding velocity as a function of 7 and the am-
plitude-to-wavelength ratio

If U, oc eV for e < 1 (see Equations (31) and (9)), then
s must be independent of € for € small. The numerical results
depicted in Figure | are in an agreement with this theoretical
result. The slope of the In Uy, : ncurves is given in'Table 2, The

6 +N= a .

In(s)

2 o Doooo -

T
=

In(ak)

Fig. 1. In s as a function of n€ and n_for ¢ = 0.05, Every
symbol represents the resull of one calculation. The constant
slope of the curves for € — 0 shows that wy, oc "1 i
that limit.
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Table 1. Velocities, discharge and shape factors for parabolic
channels. W is the aspect ratio, defined as the vatio of the
channel’s half-width (by,) to its depth (ay). Ug is the velo-
city al the centre line normalized by 2ap, ATy and Q is the
discharge normalized by 2Aa 7y, The shape factor was cal-
culated according to | = ((n + 1) Up)"'™. The numbers in
parentheses are from (\‘w (1965). Calculated values are esti-
mated to deviate less than 0.22% from exact ones

n I Uy Q ¥
E 625 0.025777 0.0039027 0.05155
0.5 0.083 069 0,026 672 0.166 14
1 0.208 831 013779 0.417 66
1.5 0.300 03 0.294 84 0.60007
2 0.358 132 046352 0.716 26
3 0420510 0.79978 0.84102
4 0.450 332 1.126 99 0.90067
2 025 0.003 2176 0.000 545513 0.098 25
0.5 0.016 891 0.006 3679 022511
1 0.063 681 0.050 37 043708
L5 0.11079 0.130 01 0.576 53
2 0.148 571 0.22722 0.667 62
3 0.200 335 0.439 36 077528
i 0.232740 0.656 68 0.83559
3 025 0.000 426 98 0.000078 841 0.11953
0.5 0.003 769 8 0.001572 0.24705
1 0021771 0.01914 044325
(0.0221) (0.0199) (0.445)
15 0.045 694 0.059 555 0.567 51
2 0.068117 0.11539 064829
(0.0675) (0.1172) (0.646)
3 0.103 610 024979 0.745 57
(0.104) (0.255) (0.746)
4.0 0.12898 0.396 82 0.802 04
(0.131) (0.404) (0.806)
4 025 0.000059 572 0.000 011671 0.13137
0.5 0.000 89236 000039802 0.258 45
1 0.013 045 0.0074772 0.446 34
1.5 0.020 074 0.028 012 0.562 86
2 0.033 204 0.060 158 063832
3 0.056 627 0.145521 0729 45
1 0.075239 0245742 0.78317
5 025 0.000 008 602 4 0.000 0017582 0.138 85
0.3 0.00021933 0.000102 56 0.265 37
1 0.003 012 4 0.00297799 0448 14
1.5 0.0091756 0.013 433 0.359 96
2 0.016 811 0.031941 063207
3 0.032 085 0.086 290 071927
1 0.045 424 0.154 89 0.77106
Table 2. Linear regression coefficients for ln Uy, = a, + b,
In & for the range 0< € < 0.125 and b = 0.052m. The calcu-
lated numbers for b, are in agreement with the theoretical
estimate b, = —(n+ 1) at the limite — 0)
n iy, by Standard deviation
1 1159 —2.002 0.00071
2 1671 2,087 0.0017
3 —2 14 -3.976 0.0032
1 -2.653 4962 0.0047
5 -3.110 —5.943 0.0060
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calculated slope is —(1.017 4+ 0.986 n) or within 2% of the
theoretical slope of —(1 + n).

Figure 1 shows that the range of validity of Equation (31)
depends strongly on n and that this range decreases with
increasing n. This is in contrast o statements made by Fow-
ler (1981, p.675), who argued that it was only £ that had to
be small for Equation (31) to be valid. That would mean that
the range of & values, for which Equation (31) is accurate,
should increase with increasing n and not decrease as the
numerical results show. As an example, for n = 5, £ must
be smaller than about e = 0.135 (or r < 00215) for Equa-
tion (31) to be an approximation valid within 20%.
Although a value less than 0.02 for 7 is not unreasonably
small, this fact considerably reduces the usefulness of Equa-
tion (31). For n = 1, on the other hand, itisnot until e = 1.0
is reached that s(g,0.05/2m, 1) differs more than 20% from
the e — 0 himit,

Another interesting finding from Figure 1 is that, for £
and 6 fixed, In s changes by a constant amount for every
unit change in n, i.e. In(s(g, 8,n)) —In(s(,6,n + 1)) =

:1In A (g,6). Hence, s(z,6,n) oc A(=,8)". This is in accor-
dance with Equation (32), which was shown to be correct for
£ < 1. That the function A(z, §) does not depend on n is of
some practical value, since one does not therefore have to
calculate s for every possible value of n. An interpolation or
extrapolation based on several different n values will suffice.

In Figure 2, the logarithm of the sliding function s is
shown as a function of n for a few roughness values 7 and a
fixed corrugation value of ¢ = 0.005. It is seen that a
straight line always results but with a slope dependent on &.
For ¢ = 0.01 7 (the smallest value of  in the figure)

5
Ins(e=0.01x,6 = Ll
2’

) = 0.5138 — 0.5370n  (35)

with a standard deviation of 0.010. Equation (32) predicted
this power-law behaviour but with a slope of —In2~
—0.69. Note that relation (35) gives Ins = —0.0232 # 0 for
n =1, although s was defined in such a way that
In 5(0,0,1) = 0. This small discrepancy can be attributed
to numerical errors and the finite values of ¢ and &.

For § = 0.05/27, s was approximated using the first six
terms in Equation (11) for the range 0 < & < m/2. The re-
sulting curves are seen in Figure 3, which shows s as a func-
tion of £2. The values of the Taylor coefficient are given in
"Table 3. If the numerical value of s is needed for some other

In(s)
e
B Y L A S |

r
T

Fig. 2. In s as a_function of n for several roughness values v
and ¢ = 0.05.
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dable 3. Taylor coefficients of the sliding function (g, 6,n) =
Y i (B, ) ¥ for § = 0.052r. These values can be
used for & = 0 with less than 2% error

n 1 2 3 4 i)

Cp 0.993 6 0.5661 0.329 4 0.194-3 01153
co 01486 09328 1.163 1.035 0.8701
¢y =037 04997 {.3795 0.064 65 0.298 4
g 0.08996 -0.3361 0.306 6 0476 0 0.8837
cg 001813 0.5192 0.4693 -0.7965 1.034
cyp 0001253 0.233 4 0.2459 0364 2 0.3583
e 00006450 0.037 23 0.0407 7 0.053 25 0.0380

Standard deviation

35 x 107 00028 0.0027 0.006 7 0.007 4

T T T T

2.5

(ak)?

Fig. 3. s as a_function of €% for §=0.0527 and £ < /2
(r <0.25). The symbols represent calculated values and the
lines are least-squares approximations using s(g, 6, n) =
Zfl“ Coxi (8, 1) 2. Table 3 gives the values for €.

1, § should be calculated using the numerical values for the
firstsix terms in Equation (11) from Table 3 and interpolated
or extrapolated using the fact that Ins(e,é,n) = é (g, 8)+
¢a(£,6) n where ¢ and ¢ are obtained through a least-
squares approximation.

With increasing g, the sliding-velocity variation changes
markedly. The numerical results show that for large = values
(Ine > 1), Uy x €7, where y depends on n (see Fig, 4). The
best straight-line approximation to 7 is given by v = —1.11
—0.228 n with a standard deviation of 0.010, i.e. U}, x
gl -0 G e 5. 1,

Comparison with previous estimates of the Taylor
coefficients of the sliding function

The values of ¢ for n = 3 from Table 3 agree with the esti-
mate (12) from Meyssonnier (1983) based on theoretical ar-
guments. The value of ¢3(0,3) = 1.163 + 2% from Table 3
is, however, not in accordance with his estimate for
c2(0,3), which was ¢3(0,3) & 2.4. This deviation could be
caused by the limited number of calculations done by Meys-
sonnier, numerical errors or both. Despite this difference,
there seems to be no reason to doubt the general correct-
ness of Meyssonnier’s findings.
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Fig. 4. In U, as a_function of lne for n =1ton =3 and
§ =005 for large € values (& >2.7). The straight lines show
the best linear approximations through calculated values given
by the symbols.

The numerical results are also in agreement with Lli-
boutry’s (1993) theoretical upper estimate for (0,0, 3) (see
Equation (13)) and his tabulated values for s. His upper
estimate is, however, up to several times greater than the
calculated values. (Lliboutry (1993) used the symbol V for
the sliding function,)

The dependency of the sliding velocity on glacier
thickness

The sliding function s depends on the ratio of the glacier
thickness to the wavelength of the bedrock undulations, as
well as on £ and n. In Gudmundssan (1994h), the depen-
dency of wy, on 6 is discussed and it is shown that most of
the variation of s with ¢ can be described by writing

s5(g,6,n) = (1 —6)" s(,0,n). (36)

Changing the value of § used in Figure 1 by a factor of 2
has almost no effect on the results shown in that figure. A
relative change in € has a much larger effect on the value of
s than a corresponding change in 8. Nevertheless, by calcu-
lating the slope of the s(¢) curve for different § values, it was
found that the small but finite value of & is responsible for
the 0.64% deviation of ¢y(0.05/27, 1) from unity seen in
Table 3.

The ratio of the internal deformation velocity to the
sliding velocity

If one writes the surface velocity ug as a sum of the deforma-
tion velocity uq and the sliding velocity (which in general is
only approximately correct for n # 1)

i 1 s(e,6,n)é
iy = 24708 (n 7 + i ) (37)
one finds
~n+1 =
ey (] e (38)
w2 (n+1)8s(s,6,n))

Note that Ay, can be quite large. For r = 0.1, ¢ = 0.05 and
n = 3, onc finds, for example, using the values from Table 3,
that Ay, = 0.58. Changing r to r = 0.05 gives Ay, = 0.99,
Sliding over a hard bed without bed separation can be sig-
nificant.
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BASAL-FLOW CHARACTERISTICS

As explained by Gudmundsson (1997), second-order pertur-
bation theory for a linear medium predicts that the hori-
zontal velocity component will have a local maximum

(UZ)5") above the peak of the sinusoid as long as £ < 0.138,
and a local mlmmuml( %“'}‘,' above the trough of the sinu-
soid as long as £ < Rtglonz, of extrusion flow develop
above U5 and be lm\ U”“}' The region of extrusion flow
above U“”“ extends up to a point called U“"‘d‘”‘" In the fol-
lowing, use of scaled coordinates, (X, Z) = k(z, 2), and

scaled velocities (Vy, Vz) : = (v,, v:) /un, will be made.

Extrusion flow above the peak of the sinusoid
Figure 5 shows the percentage increase of the velocity '.l'f',éﬁ
compared to the horizontal velocity at the bed line at
X =7/2, as a function of € for n = 1 to n = 5. Symbols
stand for numerically calculated values. In agreement with
the analytical prediction for n = 1, no U“",‘”‘ points were
found for = > 0.138. The long dashes show the theoretical
asymptotic slope for £ — 0. A good agreement between nu-
merical and analytical results is found.
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Fig. 5. The veloctly increase of U ;:}3\ with respect to the velo-
city at the bed at X = /2, for ¢ = 0.05.

Extrusion flow is not limited to a linear medium. It is
also found for n > 1. Indeed, as n increases, the range of &
values, for which extrusion flow is found, becomes progres-
sively larger. Extrusion flow is therefore enhanced hy the
non-linearity of Glen’s flow law. For n = 3, extrusion flow
is, for example, found for & values of up to approximately
£ =0.2 (or r = 0.03) and the velocity UTS" is about 10%
larger than the local basal sliding \Clomty directly below
UM The vertical displacement of Ul forn = 1 as e var-
ies follows closely the theoretical p]Ldunon (Gudmunds-
son, 1997). With n increasing but £ and 6 fixed, 7‘:}‘;“ Moves
progressively closer to the bed. This is in agreement with
other numerical calculations (Raymond, unpublished).

Extrusion flow above the trough of the sinusoid

As a measure of the magnitude of the extrusion flow, the ratio

100 x (mi“Z(V"(SW/?‘ a0 _ 1), (39)

Vx(3m/2, —¢)

giving the minimum of the absolute horizontal velocity at
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X = 37/2 as a percentage of the velocity at the bed, can be
used. This ratio is shown in Figure 6 for ¢ = 0.05 as a func-
tion of ¢ for a few different values of n.
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° E xn=2 Bo X xxx & 3
> - on=3 ﬁg o 4 ]
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ak
Fig 6. Relative decrease of Um"‘, with respect ta the velocity al
the bed.
The theoretical prediction for n = 1 was that fi'l‘/',lz

should only exist for € < % (Gudmundsson, 1997). However,
for n. = 1, a minimum was found for £ up to 117 and not only
up to £ = % The most direct explanation for this deviation
from the theoretically predicted range is that the theoreti-
cal value is based on a perturbation analysis which is only
valid for £ < 1. Since the numerical calculations show

é“T‘/’l, to exist even for £ > 1, it is clear that the perturba-
tion approach could never have given the correct answer.
The asymptotic change of the velocity decrease as € — 0,
shown as a solid line, is however reproduced. There is there-
fore a good agreement between theory and numerics at €
values where an agreement can be expected.

For all calculated values of n, the velocity decrease
(shown in Figure 6 as a negative velocity increase) be-
comes larger as £ increases from zero, reaches a maximum
and decreases again. There is always some ¢ value above
which no extrusion flow is found. Similarly to the situation
above the peak of the sinusoidal, extrusion flow above the
trough becomes progressively larger in magnitude and ex-
ists up to higher £ values as n increases. Comparison of Fig-
ure 6 with Figure 5 shows that extrusion-flow behaviour is
more dominant above the trough than above the riegel.
Above a trough, a 30-40% decrease in horizontal velocity
with height over a distance of approximately 1/k is possible
and could, for example, cause a considerable inversion of a
borehole inclination.

U““/"Z is found for £ = 0 at Z = 1 and it moves towards
the bed with increasing & (see Fig. 7). The dashed-dotted line
in Figure 7 denotes Z = —¢, which is the vertical position of
the bed line. As long as the symbols remain above the dashed-
dotted line, [ 3‘;‘;‘2 exists. 5‘1‘/"2 remains more or less at a con-
stant height of approximately 1 (or at A/27 in dimensional
units) above the bed for all values of &.

Flow within the trough of the sinusoid

The velocity within an overdeepening as a fraction of the
sliding velocity is often of interest. It is, for example, some-
times important to know at what roughness values ice with-
in an overdeepening effectively remains there without
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Fig. 7. Vertical position q/U?l“fz forn=1ton =5 and for
& =0105.

taking part in the overall glacier motion. What exactly is

meant by saying that the ice does not move depends, of

course, on what part of the overdeepening — at the bed or
only “close” to the bed —one is referring to but it turns out
that this is, at least for the case of a perfectly lubricated bed,
relatively unimportant,

The ratio of the local basal velocity at the base of the
trough ((X, Z) = (37/2, —¢)) to the sliding velocity uy, is
one possible measure of the magnitude of the low within the
trough in relation to the mean flow along the bed line. Figure
8 shows that, as = increases, this ratio at first becomes larger,
reaches a maximum and then decreases. The somewhat sur-

prising increasc is a consequence of the extrusive nature of

the flow. The maximum increase is larger for non-linear
than for linear flow.
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Fig. 8.Velocity at (X, Z) = (37 /2, —€) as a fraction of the
sliding velocity (¢ =0.05).

Other useful measures of the magnitude of ice move-
ment within a trough would be the ratios of both: (1) the
basal velocity at the base of the trough ((X, Z) = (37/2,
—¢)), and (2) the minimum velocity at X = 3m/2 for some
Z, to the basal velocity at the top of the riegel ((X,2) =
(7/2,£)). Depicting these ratios gives essentially the same
information as does Figure 8 (Gudmundsson, 1994h). For =
greater than ahout 1.5, there is almost no ice movement
through the trough.
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Flow separation

The minimum of Vy along the vertical line X = 3m/2 is
shown in Figure 9. For ¢ large enough to exclude extrusion
flow, the minimum is found at the bed (Z = —¢). Note that
fore > 1.8 Vx(X = 37/2, Z = —¢) is negative, i.e. the med-
ium in the lowest part of the trough flows in the opposite di-
rection to the main flow. This is a clear indication of a flow
separation.
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Fig. 9. The ratio of the minimum of the horizontal velocity
above the trough of the sine wave to the sliding velocity, as a
Junction of ¢, i.e. ming (u(3n/2, Z)) /w,.

An example of a flow separation is given in Figure 10. It
is an enlarged part of Figure 11, which shows the flow above
and within an overdeepening for A = 50m, a = 20 m,
h =200m,n =1 and pigsine = 8.99577 x 10 *barm "
Figure 11 again only shows a part of the whole con figura-
tion, which had the dimensions 200 m x 200 m. The velo-
cities have the dimension ma . Although the velocities
within the overdeepening are small compared to the velo-
city at the riegel, they are a significant fraction of the slid-
ing velocity, which for this particular case is 0.50 m a
Figure 10 shows how the main flow induces a secondary

flow circulation in a clockwise direction. A separation line

7

Fig. 10. Detailed view of a vecirculation within a trough of a
stnusoid. Only a part of the FE model is shown.
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Fig. 11. Recirculation pattern within a trough of a sinusoid
showing a_flow separation. The direction of the main flow s
from left to right. The vectors indicate the divection of the flow
at each FIS node.

is formed (shown as long dashes in Figure 10), separating the
main flow from the induced flow. The ice below the separa-
tion line will thearetically circulate there for ever, never
leaving the trough.

Frequency doubling

Due to the non-linearity of the boundary conditions at the
bed line, the bedrock perturbation will in general cause flow
perturbations having higher harmonics than the bedrock
undulation itself. A calculation of the first four harmonics
of the flow field along the bed line showed the relative am-
plitude of higher harmonics to increase strongly with € and
the frequency doubling to be more pronounced for non-
linear flow. This issue has been discussed in more detail by
Gudmundsson (1994a).

DISCUSSION

Possibly the most striking result is the onset of a flow separa-
tion within the trough of the sinusoid when the number &
exceeds a critical value. Review of the literature has not re-
vealed any other examples of flow separation for gravity-
driven flow nor for flow over a perfectly slippery boundary.
The phenomenon of corner eddies in Stokes flow is never-
theless widespread (Michael and O™Neill, 1977; Hasimoto
and Sano, 1980; Sherman, 1990, p. 258-65). Corner flow, as
an example, driven by circumferential motion with no-slip
boundary conditions, is known to form so-called Moffatt
corner eddies if the angle of the corner is less than about
146.3° (Moftatt, 1964).

Pozrikidis (1987) did numerical calculations of shear-
driven creeping flow of Newtonian material in a channel
constricted by a plain wall and a sinusoidal wall. He con-
cluded that, for every channel width, there is a critical am-
plitude-to-wavelength ratio for flow separation. For wide
channels, this ratio corresponds to € = 1 (see Pozrikidis,
1987, fig. 7). This value for the critical number is somewhat
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smaller than obtained here for gravity-driven flow. One
should not expect perfect agreement, since the driving me-
chanism of the flow is not the same and because the local
properties of Stokes flow depend in general strongly on the
global structure of the flow (Sherman, 1990). Note that, due
to the limited spatial resolution of the FE mesh, the possibi-
lity that the critical value for flow separation is somewhat
less than 1.8 cannot be ruled out.

Glaciologists often tend to think about basal flow of
glacier ice in terms of the simple analytical solution for a
plane slab flowing down an inclined plane. The presence of
even small basal undulation leads, however, to a different
picture of basal flow than the plane-slab solution suggests.
The horizontal velocity can increase with depth and even
at only moderate amplitude-to-wavelength ratios of 0.28 a
flow reversal takes place. It should therefore not come as a
surprise if the stratigraphy of basal ice becomes strongly dis-
rupted by glacial flow. An ¢ value of 1.8 can hardly be con-
sidered to be unrealistically large, and it must, in general, be
expected that glacier beds have regions where the £ values
are this big.

Where an overdeepening is found, with a depth-to-
width ratio corresponding to an £ value of about 1.8, the ice
will most probably move directly over the trough and ice
within will be stagnant. A possible candidate for this type
of flow regime is the spectacular overdeepening found at
Konkordiaplatz, Aletschgletscher, Switzerland, which is
about 1000 m long and 400 m deep.

CONCLUSIONS

With the use of both analytical and numerical methods, the
flow characteristics and the sliding velocity of a highly vis-
cous medium flowing under the influence of gravity over a
perfectly lubricated sinusoidal bed have been analysed.
Directly above the peak of the sine curve (b= /f2), &
local maximum of the horizontal velocity component
(UZ5°) develops ife < E::,i;(é. n). :"‘,‘_I/"2 is listed as a function
ofn for§ < linTable 4 forn = 1 ton = 5. The value (Jff;l}l;
increases with increasing n, showing that the non-linearity

]mux

of the flow law makes the range of £ values for which L 72

exists larger.

Ahove the trough of the sine curve (kx = 3n/2), a local
minimum of the horizontal velocity component develops if
g s‘é;ri‘/g(é.‘rz).Thc calculated values r)i:‘;_‘:,y, for 6 < 1 are
also given inTable 4.

Regions of local extrusion flow are associated with both
these stationary points ( j-.l,lf? and é‘ill/“g ). The non-linearity
of the flow law increases the range of £ values for which

%‘1'7'/“2 is found, as the table shows. The velocity decrease
with respect to the velocity at the bed also becomes more
pronounced with increasing n (see Fig. 6).

Flow separation occurs for € > 1.8 for at least 1 <
n < 5, for both perfectly lubricated beds and for no-slip
boundary conditions. Based on the large number of analyti-
cal, experimental and computational demonstrations of its
existence, flow separation for no-slip boundary conditions
is known to be a universal feature of laminar flow in cor-
ners (Sherman, 1990, p. 265).

The sliding velocity as a function of 1, € and 6 has been
calculated. The numerical results agree with Equation (31).
For finite values of &, the sliding velocity can be determined
by using the Taylor coefficients listed in'Table 3.
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/2
value @f'&“’_;';,‘;jur 1 = 1 is based on an analytical solution

( Gudmundsson, 1997). All other values are based on mumeri-

Table 4. % and E‘#;g as functions of n_for 6 < 1. The

cal ealculations
crit ~crit
o Ex/2 €3n/2
| 0.138 1.20
2 0.19 k37
3 0.22 1.45
| 0.24 1.50
& 0.25 1.55

In w, depends linearly on n for all values of £ and 6 as
Equation (32) suggests. Using this fact, it is possible to cal-
culate s as a function of n for all values of n by using Table 3
to calculate the sliding function for several n values and
then interpolate or extrapolate the results assuming In s =
@+ bn for some G and b,
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