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Abstract
We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus 0 K-theoretic
Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in
genus 0.

1. Introduction
1.1. Étale gerbes

Let X be a smooth projective variety over the complex numbers. An étale gerbe G over X may be thought
of as a fiber bundle over X whose fibers are the classifying stack BG of a certain finite group G. Geometric
properties of G are of purely stack-theoretic nature.

In ref. [17], physical theories on an étale gerbe G are considered, leading to the formulation of
decomposition conjecture (also known as gerbe duality). Interpreted in mathematics, the decomposition
conjecture for G asserts that the geometry of G is equivalent to the geometry of a disconnected space
Ĝ equipped with a C

∗-gerbe. The decomposition conjecture has been proven in several mathematical
aspects in ref. [22].

1.2. Gromov-Witten theory

Gromov-Witten theory of a target Z is defined using moduli stacks Kg,n(Z, d) of stable maps to Z.
Gromov-Witten invariants of Z are integrals of natural cohomology classes on Kg,n(Z, d) against the
virtual fundamental class of Kg,n(Z, d).

The Gromov-Witten theory of an étale gerbe G has been studied, with a point of view toward the
decomposition conjecture, in various generalities in refs. [5], [6], [19], [23], [25].

1.3. Quantum K-theory

Quantum K-theory, introduced in refs. [13], [20], is the K-theoretic counterpart of Gromov-Witten the-
ory. K-theoretic Gromov-Witten invariants of a target Z are Euler characteristics of natural K-theory
classes on Kg,n(Z, d) tensored with the virtual structure sheaf Ovir

Kg,n(Z,d). An extension of quantum
K-theory to target Deligne-Mumford stacks is given in ref. [24].

Quantum Hirzebruch-Riemann-Roch theorems [16], [24], [14], [15] imply that quantum K-theory
can be determined by (cohomological) Gromov-Witten theory. Since (cohomological) Gromov-Witten
theory of étale gerbes has been shown to satisfy the decomposition conjecture in many cases, it is natural
to ask if quantum K-theory of an étale gerbe G can be studied with a viewpoint toward the decomposition
conjecture. This note contains an attempt to address this for root gerbes over X in genus 0.
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1.4. Root gerbes

Given a line bundle L → X and an integer r > 0, one can associate the stack r
√

L/X of r-th roots of L,
which is a smooth Deligne-Mumford stack whose points over an X-scheme f : S → X are

r
√

L/X(S) = {(M, φ) | M → S line bundle, φ : M⊗r �−→ f ∗L}.
The coarse moduli space of r

√
L/X is X. Furthermore, the natural map ρ : r

√
L/X → X has the structure

of a μr-gerbe.
The strategy employed to study quantum K-theory of r

√
L/X in this note is the same as that of

[5]. Namely, we examine the structure of moduli stacks of genus 0 stable maps to r
√

L/X and apply
pushforward results for virtual structure sheaves. The main result of this note is Proposition 2.2.

1.5. Root stacks

Given a smooth irreducible divisor D ⊂ X and an integer r > 0, one can associate the stack XD,r of r-th
roots of X along D. In [1], genus 0 relative Gromov-Witten invariants of (X, D) and Gromov-Witten
invariants of XD,r are shown to be the same when r is sufficiently large. Their proof uses pushfor-
wards of virtual fundamental classes and an intermediate moduli space. In Section 2.6, we explain how
to adapt their argument to obtain a similar result for genus 0 K-theoretic Gromov-Witten invariants,
see (2.13).

1.6. Outline

The rest of this note is organized as follows. Section 2.1 recalls notations used the definition of
K-theoretic Gromov-Witten invariants of Deligne-Mumford stacks. In Section 2.2, we discuss prop-
erties of the structure morphism for moduli stacks of genus 0 stable maps to a root gerbe. In Section 2.3,
we discuss pushforwards of virtual structure sheaves. Section 2.4 contains the proof of our main result
and Section 2.5 discusses an extension of the main result to a more general class of gerbes. In Section
2.6, we discuss a K-theoretic version of relative/orbifold correspondence. In Section 3, we discuss some
related questions.

1.7. Acknowledgment

This note is inspired by the results on virtual pushforwards in K-theory in refs. [10] and [11]. It is a
pleasure to thank the authors Y.-C. Chou, L. Herr, and Y.-P. Lee. The author also thanks E. Sharpe for
discussions. The author is supported in part by Simons Foundation Collaboration Grant.

2. Results
2.1. Quantum K-theory of target stacks

We begin with recalling the definition of K-theoretic Gromov-Witten invariants of Deligne-Mumford
stacks, as given in ref. [24]. Let Z be a smooth proper Deligne-Mumford stack with projective coarse
moduli space Z. The moduli stack of n-pointed genus g degree d stable maps to Z is denoted by
Kg,n(Z , d). The detailed definition can be found in [4]. It is known that Kg,n(Z , d) is a proper Deligne-
Mumford stack equipped with a perfect obstruction theory, see [4], [3]. Applying the recipe of [20]
to this perfect obstruction theory yields a virtual structure sheaf Ovir

Kg,n(Z ,d). There are evaluation maps
evi : Kg,n(Z , d) → ĪZ , where ĪZ is the rigidified inertia stack of Z . See [3] for more details on the
construction of evaluation maps.
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K-theoretic Gromov-Witten invariants of Z are Euler characteristics of the following form:

χ

(
Kg,n(Z , d), Ovir

Kg,n(Z ,d) ⊗
n⊗

i=1

ev∗
i αi

)
∈Z, α1, . . . , αn ∈ K∗(ĪZ). (2.1)

2.2. Structure morphism

Sending a stable map f :
(C, {�i}n

i=1

)
/S →Z to the induced map f̄ :

(
C, {�̄i}n

i=1

)
/S → Z between coarse

moduli spaces yields a morphism

Kg,n(Z , d) →Kg,n(Z, d). (2.2)

We examine (2.2) in the special case Z = r
√

L/X and g = 0.
As explained in [5, Section 3.1], the rigidified inertia stack of r

√
L/X is a disjoint union of components

Ī
(

r
√

L/X
)

g
indexed by g ∈ μr. As in [5, Definition 3.3], for g1, . . . , gn ∈ μr, put

K0,n

(
r
√

L/X, d
)
g =

n⋂
i=1

ev−1
i

(
Ī( r
√

L/X)gi

)
.

In order for K0,n

(
r

√
L/X, d

)
g to be non-empty, the elements g1, . . . , gn are required to satisfy certain
condition, see [5, Section 3.1].

We consider the restriction of (2.2) to K0,n

(
r

√
L/X, d

)
g:
p : K0,n

(
r
√

L/X, d
)
g →K0,n(X, d). (2.3)

The structure of the map p has been analyzed in ref. [5]. We reproduce [5, Diagram (26)] as
follows:

0,n
r L X,d g

t

s

p

Pn
r

q

r 0,n X,d

q

Yg
0,n,d Mtw

0,n,d

s

M0,n,d

s

Mtw
0,n M0,n.

g P

(2.4)

Here, M0,n is the stack of n-pointed genus 0 prestable curves (see e.g. [7] for a discussion), and Mtw
0,n is

the stack of n-pointed genus 0 prestable twisted curves (see [21]). M0,n,d and Mtw
0,n,d are variants of M0,n

and Mtw
0,n parametrizing prestable (twisted) curves weighted by d ∈ H2(X, Z), see [5, Section 3.2] for an

introduction and [7] and [26] for further details.
In (2.4), the stack Y
g

0,n,d is constructed in [5, Definition 3.12] by applying the root construction to a
certain divisor ofM0,n,d. It follows that the compositionY
g

0,n,d →Mtw
0,n,d →M0,n,d is proper and birational.

The stacks P and P
g
n are defined by cartesian squares. The map s is defined by [5, Lemma 3.18].

Example 2.1. When X is a point, the line bundle L is necessarily trivial. In this case, r
√

L/X = Bμr. The
moduli stacks K0,n(Bμr)
g and K0,n(pt) =M0,n are smooth of expected dimensions. The morphism (2.3)
in this case has been studied in [8]. It is shown in [8] that there is a factorization K0,n(Bμr)
g →N →
M0,n, where K0,n(Bμr)
g →N is the stack of r-th roots of certain line bundle, and N →M0,n is a root
construction.
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2.3. Pushforward

We now examine obstruction theories. Since the map s′′ is étale, the standard obstruction theory on
K0,n(X, d) relative to M0,n can be viewed as a obstruction theory E•

K0,n(X,d) → L•
q on K0,n(X, d) relative to

the morphism q. The stack P can be equipped with an obstruction theory relative to the morphism q′

by pulling back E•
K0,n(X,d). The stack P
g

n can be equipped with an obstruction theory relative to Y
g
0,n,d by

pulling back the obstruction theory on P.
Since both maps s′ and Y
g

0,n,d →Mtw
0,n,d are étale [5, Lemma 3.15], the standard obstruction the-

ory on K0,n

(
r

√
L/X, d

)
g relative to Mtw
0,n can be viewed as an obstruction theory E•

K0,n( r√L/X,d)

g → L•

s on

K0,n

(
r

√
L/X, d

)
g relative to the morphism s.
By [5, Lemma 4.1], E•

K0,n(X,d) pulls back to E•
K0,n( r√L/X,d)


g . We then have the following results on virtual
structure sheaves.

1. Since Y
g
0,n,d →M0,n,d is proper and birational, by [11, Theorem 1.12], we have

(r ◦ r′)∗
[
Ovir

P
g
n

]
=
[
Ovir

K0,n(X,d)

]
. (2.5)

2. By [5, Theorem 3.19], the map t : K0,n

(
r

√
L/X, d

)
g → P
g
n is a μr-gerbe. Hence, by

[11, Proposition 1.9], we have

t∗

[
Ovir

K0,n( r√L/X,d)

g

]
=
[
Ovir

P
g
n

]
. (2.6)

2.4. Invariants

The evaluation maps on K0,n(X, d) and K0,n

(
r

√
L/X, d

)
g fit into the following commutative diagram:

0,n
r L X,d g

evi

p

Ī r L X gi

Īρ

0,n X,d
evi

ĪX X.

Consider the descendant line bundles L1, . . . , Ln →K0,n(X, d) associated to the marked points. The
following is the main result of this note:

Proposition 2.2. For α1, . . . , αn ∈ K∗(X) and k1, . . . , kn ∈Z, we have

χ

(
K0,n

(
r
√

L/X, d
)
g

, Ovir

K0,n( r√L/X,d)

g ⊗

n⊗
i=1

(
(p∗Li)

⊗ki ⊗ ev∗
i

((
Īρ
)∗

αi

)))

= χ

(
K0,n(X, d), Ovir

K0,n(X,d) ⊗
n⊗

i=1

(
L⊗ki

i ⊗ ev∗
i (αi)

))
.

Proof. Since Īρ ◦ evi = evi ◦ p, projection formula gives

p∗

(
Ovir

K0,n( r√L/X,d)

g ⊗

n⊗
i=1

(
(p∗Li)

⊗ki ⊗ ev∗
i

((
Īρ
)∗

αi

)))= p∗

(
Ovir

K0,n( r√L/X,d)

g

)
⊗

n⊗
i=1

(
L⊗ki

i ⊗ ev∗
i (αi)

)
.

Since p = r ◦ r′ ◦ t, the result follows from (2.5) and (2.6).
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2.5. Banded abelian gerbes

Suppose G is a finite abelian group. Suppose G → X is a gerbe banded by G. Then the isomorphism class
of G → X is classified by the cohomology group H2(X, G), where G is viewed as a constant sheaf on X.
We say that G → X is essentially trivial if the image of its class is trivial for maps H2(X, G) → H2(X, C∗)
induced by group homomorphisms G →C

∗. Examples of essentially trivial gerbes include toric
gerbes [25].

Let G → X be an essentially trivial gerbe over X. Then by [5, Lemma A.2], G is of the form

G � r1
√

L1/X ×X
r1
√

L2/X ×X . . . ×X
rk
√

Lk/X (2.7)

where L1, . . . , Lk are line bundles over X and r1, . . . , rk are natural numbers.
Consider the morphism (2.2) in this case:

K0,n(G, d) →K0,n(X, d). (2.8)

By the alaysis of [5, Appendix A], (2.8) also fits into diagram like (2.4), with a factorization

K0,n(G, d)
g → P
g
n →K0,n(X, d). (2.9)

Here, 
g is defined in [5, Definition A.5].
The map P
g

n →K0,n(X, d) is by construction virtually birational, hence we can apply [11, Theorem
1.12] to it. By [5, Theorem A.6], the map K0,n(G, d)
g → P
g

n is also a gerbe, so we can apply
[11, Proposition 1.9] to it. Therefore, we may repeat the arguments in Section 2.4 to extend
Proposition 2.2 to essentially trivial banded abelian gerbes G → X.

2.6. Root stacks

Let D ⊂ X be a smooth irreducible divisor. For an integer r > 0, one can construct the stack XD,r of r-th
roots of X along D, see [9] and [3, Appendix B]. The natural map

XD,r → X (2.10)

is an isomorphism over X \ D and is a μr-gerbe over D. Denote by Dr ⊂ XD,r the inverse image of D
under (2.10).

It is shown in ref. [1] that genus 0 relative Gromov-Witten invariants of the pair (X, D) are the same
as Gromov-Witten invariants of XD,r for r sufficiently large. Here we explain how their method can be
adapted to K-theoretic Gromov-Witten theory.

By [2], there is an isomorphism between moduli spaces1 of stable relative maps,

� : M0,n(XD,r, Dr) → M0,n(X, D),

see also [1, Theorem 2.1]. This implies an identification of virtual structure sheaves,

�∗
[Ovir

M0,n(XD,r ,Dr )

]= [Ovir
M0,n(X,D)

]
. (2.11)

There is a natural map that forgets the relative structure

� : M0,n(XD,r, Dr) → M0,n(XD,r).

Assume that r is sufficiently large. The proof of [1, Theorem 2.2] implies that � is virtually birational.
Hence, by [11, Theorem 1.12], we have

�∗
[Ovir

M0,n(XD,r ,Dr )

]= [Ovir
M0,n(XD,r )

]
. (2.12)

1We omit curve classes from notations.
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Evaluation maps of these moduli spaces are compatible with � and �, see [1, Section 2.2]. It follows
from (2.11) and (2.12) that for α1, . . . , αk ∈ K∗(X), γ1, . . . , γl ∈ K∗(D), and r sufficiently large, we have

χ

(
M0,n(XD,r), Ovir

M0,n(XD,r ) ⊗
k⊗

i=1

Lki
i ⊗ ev∗

i (αi) ⊗
l⊗

j=1

L
mj
j ⊗ ev∗

j (βj)

)

= χ

(
M0,n(X, D), Ovir

M0,n(X,D) ⊗
k⊗

i=1

Lki
i ⊗ ev∗

i (αi) ⊗
l⊗

j=1

L
mj
j ⊗ ev∗

j (βj)

)
. (2.13)

We view (2.13) as a correspondence between genus 0 K-theoretic Gromov-Witten invariants of (X, D)
and XD,r.

3. Comments
3.1. On higher genus
3.1.1. Root gerbes
For h > 0, the genus-h version of the morphism (2.3),

Kh,n

(
r
√

L/X, d
)
g →Kh,n(X, d), (3.1)

has been studied in ref. [6]. The map (3.1) is understood well enough so that a result on the pushforward
of virtual fundamental classes is proven in ref. [6]. However, pushforward of virtual structure sheaves
under (3.1) appears to be difficult. The key issue is that, in order to apply [11, Proposition 1.9, Theorem
1.12], we need (3.1) to be factored into virtual birational maps and gerbes. A factorization of (3.1) was
obtained for more general banded gerbes in [6, Diagram (41)]. In our setting, this gives

Kh,n

(
r
√

L/X, d
)
g → P
g

h,n →Kh,n(X, d). (3.2)

For a root gerbe r
√

L/X → X, one can check that P
g
h,n →Kh,n(X, d) is also virtually birational. However,

by the discussion of [6, Section 6.2], the map Kh,n

(
r

√
L/X, d

)
g → P
g
h,n is a composition of two maps,

one has degree 1/r and the other had degree r2h > 1. The degree r2h-map cannot possibly be a gerbe.
Hence, [11, Proposition 1.9] is not applicable to Kh,n

(
r

√
L/X, d

)
g → P
g
h,n. This prevents us from obtaining

genus-h version of Proposition 2.2.

3.1.2. Root stacks
The relative/orbifold correspondence in cohomological Gromov-Witten theory has been extended to
higher genus in ref. [27]. A K-theoretic relative/orbifold correspondence in higher genus is an interesting
question. It is unlikely that virtual pushforwards used in genus 0 will be enough in higher genus. Some
foundational work in K-theoretic Gromov-Witten theory is required in order to follow the arguments in
ref. [27].

3.2. On virtual pushforward

There are many situations in cohomological Gromov-Witten theory in which “virtually birational” maps
occur, see [18] for a detailed list. In addition, we note that the morphism u in [12, Lemma 4.16] is vir-
tually birational. Hence, we can apply [11, Theorem 1.12] to obtain a calculation of the K-theoretic
J-function of weighted projective spaces. Since such a result is a special case of the work [28] on
quantum K-theory of toric stacks, we do not pursue it in detail.
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3.3. On decomposition conjecture

Consider an étale gerbe G → X. As defined in (2.1), K-theoretic Gromov-Witten invariants of G have
insertions coming from the K-theory K∗(ĪG) of the rigidified inertia stack ĪG. Since G ⊂ ĪG is a con-
nected component, the K-theory K∗(G) of G is a direct summand of K∗(ĪG). The proof of Proposition 2.2
only allows classes in K∗(Ī r

√
L/X) pulled back from X. Studying K-theoretic Gromov-Witten invariants

of r
√

L/X with other kinds of insertions requires new ideas.
For root gerbes G → X arising in toric geometry, for example, weighted projective spaces and

more general toric gerbes, it may be possible to study the decomposition conjecture by analyzing the
K-theoretic I-functions calculated in ref. [28] in a manner similar to [25]. An additive decomposition of
the K-theory K(ĪG) is a basic question.
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