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We derive equations of motion that describe the dynamics of a fluid confined within an
elastic nanotube subject to periodic bending deflections. We use the principle of least
action applied to a continuous open system at constant temperature. We solve the equations
analytically in two limiting situations: when the tube oscillations are so small that they
do not affect the fluid motion, but this one affects the tube dynamics; and when the
flow magnitude is so small that it has no influence on the tube dynamics, but this one
affects fluid motion. In the first case, we find out that the characteristic bending frequency
spectrum of the tube depends not only on the magnitude of flow velocity, as previously
stated in the literature, but also on the fluid velocity profile. This could constitute the
basis of a strategy for indirect determination of the slip length in carbon nanotubes
conveying flow via measurement of the buckling speed. In the second case, we find that
tube vibrations can modify the dynamics of the fluid. Particularly, for a fluid subject to a
constant pressure gradient, the tube motion induces an oscillatory motion in the fluid with
twice the frequency of the tube. Moreover, the amplitude of the oscillatory fluid motion
persists at high frequencies. This could constitute a strategy to generate high-frequency
flows at nanoscales. Our results open up a panorama to control flow across nanotubes
via tube vibrations, which could be complementary to chemical functionalization of
nanostructures.
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1. Introduction

Understanding the flow dynamics across nanometric channels plays an important
role in the development of biomedical and chemical technology, from biosensors for
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cancer detection (Díaz-Cervantes, Robles & Aguilera-Granja 2018; Stirling 2018; Zhiani,
Razavipanah & Emrani 2018) to ultrafast filtration membranes (Chu et al. 1999; Majumder
et al. 2005a; Whitby & Quirke 2007; Joseph & Aluru 2008; Davey & Schäfer 2009; Sears
et al. 2010; Das et al. 2014).

Most of the current applications of nanofluidic devices mimic biological channels by
synthesizing nanostructures of similar size and geometry (Walczak et al. 2005; Fang et al.
2008; Hou, Guo & Jiang 2011). As a consequence, large efforts have been made to expand
the spectrum of nanostructures capable of conveying fluid flow. Nowadays, nanofluidic
systems span a diversity of materials and arrangements of channels whose size ranges
from a few nanometres to tenths of micrometres, both in cross-sectional area and length
(Martin et al. 2005).

A complete picture of the physical and chemical properties of the fluid/confining
medium system is fundamental in order to design and simulate nano-devices, carry out
experiments and, subsequently, implement nanofluidic technology for target applications.
As the confinement size is reduced, the surface-to-volume ratio increases, and the
fluid/confining medium interactions turn out to be fundamental to the dynamics of fluid
flow at nanoscales.

The magnitude of the fluid/confining medium interaction along with the wall’s rugosity
play a role in the permeability of fluids confined within nanostructures. Particularly,
the weak interaction and low rugosity between water and carbon nanotubes has
been shown to be responsible for the low-friction flow observed in experiments with
membranes (Hummer, Rasaiah & Noworyta 2001; Majumder et al. 2005a; Whitby &
Quirke 2007; Joseph & Aluru 2008; Bonthuis et al. 2011). Understanding the tube/fluid
interaction has allowed modification of the friction at the tube/fluid interface by chemical
functionalization of carbon nanotubes (Majumder, Chopra & Hinds 2005b; Kim et al.
2007; Qiu et al. 2009; Chan et al. 2013; Feng et al. 2018; Wei & Luo 2018). Also,
flow permeability is sensitive to changes in tube rugosity, as observed in several types
of nanopipes and nanochannels (Kyotani, Tsai & Tomita 1996; Rossi et al. 2004; Miller,
Young & Martin 2001; Mattia et al. 2006b; Mattia, Bau & Gogotsi 2006a; Whitby &
Quirke 2007; Whitby et al. 2008; Cao et al. 2018). However, tuning the permeability of
the confined fluid is possible only to some extent, since the capability to functionalize the
tube surface and modify its rugosity is limited (Yang et al. 2010b; Wu et al. 2017). Novel
strategies to push such limits are developed continuously.

Despite all the advances achieved so far, there are some aspects of the physics of
nanofluidic systems that have not been addressed in full detail. This is a challenge for flow
control and has limited, to some extent, the implementation of potential applications of
nanofluidic devices (Holt et al. 2006; Kannam et al. 2013; Ritos et al. 2014; Wu et al. 2017).
In particular, it is necessary to go deeper into the description of the fluid/confining medium
interactions in dynamic situations where a sustained motion is exerted on the confining
media, either by thermal fluctuations or by other types of external forces (Krishnan et al.
1998).

Most of the theoretical studies done to explain and predict the efficiency of nanofluidic
devices have been done using molecular dynamics (MD) and continuum mechanics
(CM). Both approaches have been useful under different approximations and physical
situations. MD is especially useful to account for tubes of small radii, where the continuum
description is not suitable and a complete description must account for the low-density
regime in which fluid particles collide with the tube walls (Thomas & McGaughey 2009).
However, the simulation of long tubes and long sampling times is not attainable with
MD due to the computational expense demanded. Moreover, a realistic description of the
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interaction between tube and fluid is not clearly established in the literature; in particular,
the nature of the interaction forces between water molecules and graphene-like structures
has been shown to be strongly dependent on the value of the parameters used in the
different force fields in the literature (Hummer et al. 2001; Werder et al. 2003; Holt et al.
2006; Joseph & Aluru 2008; Bonthuis et al. 2011; Kannam et al. 2013; Wu et al. 2017;
Wei & Luo 2018). The choice of an appropriate force field is always dependent on the type
of property desired to be simulated computationally and on the experimental arrangement
that one intends to reproduce (Werder et al. 2003; Alexiadis & Kassinos 2008; Nakamura
& Ohno 2012), rather than on the accurate description of the chemical interaction. This
limitation is intrinsic to all MD simulations.

In contrast, CM has allowed for the simulation of relatively large tubes at any
time scale, but at the cost of losing details in the description of flow properties that
depend on the formation of complex molecular aggregates or structures (Yoon, Ru
& Mioduchowski 2005; Whitby & Quirke 2007; Wang & Ni 2008; Zhen & Fang
2010; Arash & Wang 2012; Gărăjeu, Gouin & Saccomandi 2013; Kelly, Balhoff &
Torres-Verdín 2015). Efforts to account for both levels of physical description have
inspired the development of hybrid approaches (Werder, Walther & Koumoutsakos 2005;
Mohamed & Mohamad 2010; Alexiadis et al. 2013; Ritos et al. 2015). However, studies of
fluid/confining medium systems at nanoscales in hybrid frameworks are also dependent
on the force field parameters used, the chemical compositions of tube and fluid and
on the implementation details of the simulation. Moreover, the comprehension of the
underlying physical principles is a challenge in MD and hybrid frameworks, since there
is no simple procedure to establish general trends or simplified expressions from the large
number of simulated chemical systems in the literature that generalize the behaviour of
carbon nanotubes conveying flow. In contrast, the CM approach allows for modelling of
the complex fluid/tube interaction in an understandable manner, via a mean description
of the interaction. In the literature, CM studies of nanostructures conveying fluid have
considered static rigid tubes in which the fluid/tube interaction has been incorporated by
the slippage of the fluid at the fluid–solid interface (Majumder et al. 2005a; Whitby &
Quirke 2007). However, there is no agreement in the magnitude of slip length in carbon
nanotubes conveying flow, since this description inherits the limited knowledge existing
on the tube/fluid interaction (Bonthuis et al. 2011; Kannam et al. 2013; Ritos et al. 2014;
Li et al. 2016; Wu et al. 2017).

Numerous techniques and materials have been developed for the preparation of
nanostructures for fluid transport, such as solid-state pores (Storm et al. 2003; Dekker
2007; Yameen et al. 2009; Li et al. 2010; Yusko et al. 2011), nanochannels (Walczak
et al. 2005; Camargo, Satyanarayana & Wypych 2009; Yang et al. 2010a; Hou et al. 2011;
Kortaberria & Tercjak 2016; Rahman 2018), nanotubes (Majumder et al. 2005a; Joseph &
Aluru 2008; Qin et al. 2011), nanopipes (Kyotani et al. 1996; Miller et al. 2001; Rossi et al.
2004; Mattia et al. 2006a,b; Whitby & Quirke 2007; Whitby et al. 2008) and protein-based
nanopores (Alcaraz et al. 2006; Jung, Bayley & Movileanu 2006; De La Rica & Matsui
2010). Most of these nanostructures share one property: they have an elastic response to
small mechanical deformations (Lu 1997; Ruoff, Qian & Liu 2003; Ji & Gao 2004; Guo
& Zhao 2007; Feng et al. 2009).

The different types of deformation exerted on nanotubes allow for several strategies
of mechanical manipulation. The role of the radial expansion and compression has been
studied and compared with previously known results in micro and macrofluidic devices
(Zhao et al. 2002; Machón et al. 2005; Araujo et al. 2008). However, the role of size
in the dynamics of elastic nanotubes is particularly important in a very specific type of
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elastic deformation: flexural bending. At nanoscales, flexural bending has two interesting
and useful qualities: it requires a very small external force to cause it, from several pN to
some nN – which is considerably smaller than the forces involved in radial expansion or
compression (Salvetat et al. 1999) – and it has a high-frequency response to those external
forces, in the range of kHz to GHz (Krishnan et al. 1998; Lourie & Wagner 1998; Poncharal
et al. 1999; Gibson, Ayorinde & Wen 2007). In terms of energy, the bending of nanotubes
can be produced in the range of [1–1000] kT, where k stands for the Boltzmann constant
and T is temperature, depending on the tube length and radius. This means that bending
modes might be excitable at room temperature, particularly for large length-to-radius
ratios.

The capability to generate high-frequency vibrations by mechanical manipulation at
a very small energetic cost opens up a landscape of possibilities that deserves further
exploration, since it could be of potential use to improve both knowledge and control of
the fluid dynamics at nanoscales. Some efforts have been made in such direction. Previous
theoretical CM studies have demonstrated the relationship between the magnitude of
fluid flow conveyed within an oscillating nanotube and the frequency of tube deflection
(Yoon et al. 2005; Wang & Ni 2008; Zhen & Fang 2010; Liu et al. 2018). Recently, the
experimental feasibility of flow determination by measurement of the tube oscillation
frequency by taking advantage of such a relationship has been theoretically proposed
(Torres-Herrera & Corvera Poiré 2018). In such studies, incorporation of tube vibrations
in the description of nanoscale flow has been addressed by a model that is focused on the
dynamics of a tube conveying a plug flow, i.e. flow velocity is a constant parameter of the
model.

A CM model that fully couples the tube and fluid dynamics, accounting for external
driving forces, velocity profile and axial dependence of flow velocity, is missing in the
literature. We consider that a model with these features can be derived by means of simple
physical and geometrical constraints, via a formulation based on the principle of least
action (Djukic & Vujanovic 1971; Lebon & Lambermont 1973; Leech 1977; Bedford &
Drumheller 1983; Salmon 1983; Bedford 1985; Sieniutycz & Berry 1989; Shepherd 1990;
Benaroya & Wei 2000). This approach has been useful to study complex geometries, such
as the flow dynamics inside compressible nanobubbles (Teshukov & Gavrilyuk 2002) and
systems subject to very complicated physical interactions, such as magnetorheological
fluids (Sun, Zhou & Zhang 2003).

In this work, we derive a system of two coupled equations of motion for the dynamics of
a fluid and a confining nanotube, when this one is subject to periodic bending deflections.
In order to do so, a theoretical treatment based on the principle of least action allows us
to account for the complex fluid/tube interaction in a simple understandable manner, that
couples the tube and fluid dynamics via a constraint in the flow velocity. Our formulation
allows for a broad comprehension of when the dynamics of the fluid affects the tube,
of when the dynamics of the tube affects the fluid, in which case the dynamics is fully
decoupled, and for which situations the fully coupled equations should be solved. Such
a panorama could not be attained with the numerical schemes reported in the literature
for nanotubes conveying fluid subject to oscillations (Wang & Ni 2008). As an example
of the different phenomena that our methodology allows us to reveal, we report a new
phenomenon in the limit at which the tube modifies the dynamics of the fluid, i.e. it gives
a modified linearized Navier–Stokes equation, accounting for the tube effect on the fluid
motion. We predict an oscillating velocity for the fluid within the nanotube, with twice the
frequency of the latter one, that persists at high frequencies, even for a fluid driven by a
constant pressure drop.
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u(z0, t)

z0 z

y

r′
θ′

z′

Figure 1. Description of the model. The system consists of an elastic tube, described by its vertical
displacement u(z, t), conveying a fluid described by the axial flow v(r′, θ ′, z′, t), according to a local cylindrical
frame of reference, whose origin is located in the tube symmetry axis. The z axis coincides with the tube
symmetry axis when the tube is undeformed.

2. Methodology

Our approach is based on the minimal action principle, which has successfully been used to
establish the Navier–Stokes dynamics when a fluid is subject to a wide range of forces and
restrictions (Djukic & Vujanovic 1971; Lebon & Lambermont 1973; Leech 1977; Salmon
1983; Bedford 1985; Sieniutycz & Berry 1989; Shepherd 1990; Benaroya & Wei 2000).
Such a methodology is particularly useful when constraints are imposed on a physical
system, since it is capable of accounting for the restrictions in the resulting equation of
motion in a straightforward and consistent manner (Bedford & Drumheller 1983; Bedford
1985; Teshukov & Gavrilyuk 2002).

We model a tube/fluid system via two dynamic variables: the vertical tube position, u,
and the flow velocity, v. In order to do so, we consider that the tube is an Euler–Bernoulli
elastic cylindrical shell subject to small deformations and no axial tension. Also, the tube
radius is much smaller than the curvature radius of the tube at its maximum deflection.
Besides, we consider a Newtonian incompressible fluid. The system is kept at constant
temperature, which implies a constant fluid viscosity and also allows us to study the fluid
dynamics without considering equations for heat transfer processes.

2.1. Principle of least action
Two frames of reference arise in the study of a fluid confined within an oscillating tube:
a static frame, (x, y, z), which is an inertial frame of reference and is used to describe the
tube motion; and a dynamic frame, which is a non-inertial frame and is used to describe the
fluid motion, which consists of cylindrical coordinates (r′, θ ′, z′) or equivalently, (x′, y′, z′)
such that the z′-axis is located at the centre of the tube as it moves. A scheme of the physical
system and the frames of reference is shown in figure 1. The relation between the static
and dynamic frames of reference is given in appendix B.

The principle of least action for this system is given by

δS + δW + δC = 0, (2.1)

where S is the action of the system, W accounts for the external and the non-conservative
work applied on the system and C accounts for the constraints; δS, δW and δC are
the corresponding variations of these quantities. The action, S, is given in terms of the
Lagrangian, L, which is the difference between the kinetic and potential energy of the
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system, as

S =
∫

t
L dt

=
∫

t
(Tt + Tf − Vt − Vf − Vt/f ) dt, (2.2)

where Vt/f denotes the interaction potential between tube and fluid, whereas the kinetic and
potential energies of the tube and the fluid are denoted by Tt, Tf , Vt and Vf , respectively,
and are given in terms of the vertical displacement of the tube, u(z, t), and the fluid
velocity vector, vfluid(r, t). The study can be applied to any elastic hollowed nanostructure,
regardless of the specific geometry of its cross-section. For this particular derivation, a
cylindrical tube is considered.

With these considerations, each term in (2.2) is expressed as

Tt =
∫

V

1
2ρt |vtube|2 dV, (2.3)

Tf =
∫

V

1
2ρ
∣∣vfluid

∣∣2 dV, (2.4)

Vt =
∫

V

1
2
ρtet

(
∂u
∂z

,
∂2u
∂z2

)
dV and (2.5)

Vf =
∫

V
ρe
(

ρ,
∂rfluid

∂x′ ,
∂rfluid

∂y′ ,
∂rfluid

∂z′

)
dV, (2.6)

while Vt/f depends on the force field employed and on the level of physical detail of
the model. As we will show later, we take advantage of the principle of least action to
model the tube/fluid interaction via a geometrical constraint, and therefore we consider
Vt/f = const. The potential energy of the tube is given by the bending energy of an
Euler–Bernoulli cylindrical shell, which is a widely used model to study the properties
of a bent tube (Chen 1985; Gibson et al. 2007; Wang & Ni 2008; Bauchau & Craig
2009). Axial tension caused by changes in tube length is negligible for tubes subject to
small amplitude deformations; besides, nanotubes in typical experimental settings are
not subject to external axial tensions, so we consider no axial tension. In this case, the
Euler–Bernoulli potential energy for an elastic shell with Young’s modulus E leads to the
following expression:

Vt =
∫

V

1
2

y2E
(

∂2u
∂z2

)2

dV. (2.7)

The potential energy of the fluid arises from the interaction between its particles. In
a CM approach, the interaction potential between particles responds to changes in the
bulk density, ρ, and the strain, ∂rfluid/∂xi. For this reason, the potential energy in (2.6)
is given in terms of a local potential energy per unit mass, e, that depends on those
quantities. Hence, the potential energy of incompressible fluids with no elastic properties
is considered as a constant (Bedford 1985).

The pressure and the viscosity of the fluid are considered through the term W in (2.1).
The viscous forces are excluded of the potential energy because they are dissipative.
From a mathematical point of view, dissipative forces have a functional dependence
on fluid velocity and its spatial derivatives, rather than on fluid displacement. For an
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incompressible fluid that moves along the z′-direction subject to a stress given by pressure
p and the viscous shear stress τ , the variation of W is given by

δW =
∫

t

∫
S

F ext · δrfluid dS dt =
∫

t

∫
S
(−p1 + τ ) · n · δrfluid dS dt, (2.8)

where n denotes the vector normal to the surface at which the force is exerted. It is
important to point out that Hamilton’s principle allows us to incorporate a force in
multiple manners which are mathematically equivalent (Bedford 1985; Goldstein, Poole &
Safko 2002), leading to the same equations of motion after performing the corresponding
variations on the scalar fields δS + δW + δC. In the literature, some works on fluid
mechanics account for the viscous terms via a potential energy term in Vf (Djukic &
Vujanovic 1971). In the formulation that we have chosen, the viscous stress term is
considered as an external force applied to an open system. This allows for a treatment
conceptually consistent with the non-conservative nature of viscous forces.

2.2. Constraints
The CM approach allows us to account for the interaction between the tube
and fluid by means of a constraint that couples their motion. In this work, we
consider tubes deflected with small amplitudes and small values of the Dean
number, defined as De ≡ Re

√
R/Rc, where Re is the Reynolds number, R is

the tube inner radius and Rc is the local radius of curvature of the tube –
i.e. we consider tubes deflected with small curvature and, thus, a large radius of curvature.
This assumption guarantees that only laminar flows parallel to the tube exist, since
analytical studies have proven that non-parallel secondary flows only exist at large values
of the Dean number (Berger, Talbot & Yao 1983; Nivedita, Ligrani & Papautsky 2017).
It is an assumption characteristic of tubes conveying flow at the nanoscale, because
the influence of the tube affects all of the confined fluid, not only the water molecules
immediate to the tube wall. For macroscopic tubes, in contrast, the wall only interacts
with a thin, infinitesimal layer of fluid, and affects the equation of motion as a boundary
condition. As the tube position changes in time and space, its direction is also changing.
Therefore, parallelism of fluid flow and tube implies that the relative velocity between
them is parallel to the tube direction. Mathematically, this is expressed as

vfluid = vtube + v(r, t)qtan, (2.9)

where qtan is a unitary vector that points in the direction of the tube. In Cartesian
coordinates, vtube and qtan are given by

vtube =
(

0,
∂u
∂t

, 0
)

, (2.10)

qtan =

⎛⎜⎜⎜⎜⎝0,

∂u
∂z√

1 +
(

∂u
∂z

)2
,

1√
1 +

(
∂u
∂z

)2

⎞⎟⎟⎟⎟⎠
≈
(

0,
∂u
∂z

, 1
)

, (2.11)

where the approximation, in this and subsequent equations, refers to the small-deformation
limit. This one allows us to simplify many expressions in our treatment.
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Equation (2.9) is sufficient to account for the tube/fluid interaction. Therefore, the
interaction potential between the tube and the fluid is considered constant, leading to
Vt/f = const. Equation (2.9) also implies a geometrical restriction that will be reflected
as a new force in the equations of motion, a force that couples the dynamics of tube and
fluid.

The second constraint is the conservation of fluid mass for an incompressible fluid, given
by ∫

V
∇ · vfluid dV = 0. (2.12)

For a fluid moving along z′ direction, the divergence in (2.12) is incorporated into (2.1) and
expressed in terms of the relative flow velocity v, as defined in (2.9) and in the dynamic
frame of reference, as shown in appendix B. We consider small tube deformation, a tube
radius much smaller than the radius of curvature at its maximum deflection and negligible
angular dependence. Hence, mass conservation of the fluid is simplified in terms of the
fluid displacement zfluid, and can be incorporated in Hamilton’s principle in (2.1) as the
constraint C, as

C =
∫

t

∫
V

Λ∇ · rfluid dV dt =
∫

t

∫
V

Λ
∂zfluid

∂z′ dV dt, (2.13)

where the scalar field Λ is a Lagrange multiplier. Divergence of fluid displacement in
(2.13) is typically used in the context of deformable media rather than fluid mechanics,
and simplifies the mathematical treatment (Bedford 1985; Landau et al. 1986; Landau &
Lifshitz 1987). Also, (2.13) implies that flow velocity does not depend on the z′ coordinate,
just as it occurs in cylindrical static tubes subject to uniaxial flow. This is a consequence
of the consideration of small tube deformations and a tube radius much smaller than the
radius of curvature of tube bending, along with the consideration of locally uniaxial flow
parallel to the tube direction. Mathematical details on such considerations are included in
appendix B.

The variation of this restriction is computed, leading to

δC =
∫

t

∫
S
Λ n · δrfluid dS dt −

∫
t

∫
V

∇Λ · δrfluid dV dt. (2.14)

When the surface integral in (2.14) is incorporated along with the term δW in (2.8), into
the principle of least action (2.1), we understand the physical meaning of the Lagrange
multiplier, since it turns out to be related with Cauchy’s stress tensor. This can be seen
when comparing the surface term in the variation of the constraint with the variation of
the external and non-conservative work applied on the system in (2.8).

Also, it is possible to see that the volume integral in δC in (2.14) incorporates a force in
the equation of motion, since mass conservation couples the external forces exerted at the
surface of the differential volume with the bulk response. The force exerted on the fluid
bulk is given by the gradient of Λ, as follows:

∇Λ · ez′ = ∂p
∂z′ − (∇ · τ ) · ez′, (2.15)

where the stress tensor of a Newtonian fluid and its divergence must be given in terms
of the dynamic coordinates (r′, θ ′, z′), as shown in appendix B. Since we consider
small tube deformation, a tube radius much smaller than the radius of curvature and
negligible angular dependence, the viscous stress tensor component along the z′-direction
is simplified to
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(∇ · τ ) · ez′ = μ

(
∂2vz′

∂r′2 + 1
r′

∂vz′

∂r′

)
. (2.16)

where μ stands for fluid viscosity.

2.3. Governing equations
The prime notation in (x′, y′, z′) or (r′, θ ′, z′) will be omitted in the rest of the treatment; it
is implicitly understood that the fluid velocity is studied in the dynamic frame of reference,
whereas the tube position is studied in the static one. Including (2.2)–(2.16) into the
principle of least action (2.1), two coupled equations of motion for the system dynamics
are obtained,

EI
∂4u
∂z4 + ρAf 〈v2〉∂

2u
∂z2 + 2ρAf 〈v〉 ∂2u

∂z∂t
+ ρAf

∂u
∂z

∂〈v〉
∂t

+ (
ρAf + ρtAt

) ∂2u
∂t2

= 0, (2.17)

ρ
∂v

∂t
= −ρg(t)v − ρh(t) − ∂p

∂z
+ μ

(
∂2v

∂r2 + 1
r

∂v

∂r

)
, (2.18)

where L is the tube length, Af and At are the cross-sectional areas occupied by the fluid
and the tube, respectively, I is the second moment of inertia of a cylindrical hollow tube,
given by

I =
∫

A
y2 dA = π

4

(
R4

o − R4
)

, (2.19)

where Ro and R are its outer and inner radii, respectively. Also, 〈v〉, 〈v2〉, g(t) and h(t) are
defined as follows:

〈v〉 =

∫ R

0
2πrv(r, t) dr

Af
, (2.20)

〈v2〉 =

∫ R

0
2πr(v(r, t))2 dr

Af
, (2.21)

g(t) = 2
L

∫ L

0

∂u
∂z

∂2u
∂z∂t

dz, (2.22)

h(t) = 1
L

∫ L

0

(
∂u
∂t

∂2u
∂z∂t

+ ∂u
∂z

∂2u
∂t2

)
dz. (2.23)

The term −ρg(t)v in (2.18) is called the Coriolis force per unit volume. Typically, the
Coriolis force per unit volume is encountered in the context of fluid mechanics in rotational
frames of reference (Tillmark & Alfredsson 1996; Waters & Cummings 2005) as follows:

F Cor

V
= −2ρΩ × vfluid, (2.24)

where Ω is the angular velocity vector of the reference frame. In this case, the tube rotation
occurs locally during the tube’s bending motion. Such local rotation is described in terms
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U. Torres-Herrera and E. Corvera Poiré

of an angular velocity as the time derivative of tube slope with respect to the horizontal
line (Chen 1985), which, in the limit of small tube deformations, is given by

Ω · ex′ = ∂θ

∂t
= ∂2u

∂t∂z
. (2.25)

Considering the axial component of the Coriolis force in (2.24) and incorporating the
expression for the angular velocity in (2.25), the following result is obtained for our system:

F Cor · ez′

V
= −2ρv

∂u
∂z

∂2u
∂t∂z

. (2.26)

The term −ρg(t)v shown in (2.18) and (2.22), corresponds to the z-averaged value of
(2.26). The above reasoning justifies denominating (2.26) as the Coriolis force along the
flow direction.

The term −ρh(t) – called the effective pushing force – is the sum of two contributions:
the centrifugal force, given by −ρ(∂u/∂t)(∂2u/∂z∂t), where the term ∂u/∂t is the
tangential velocity and the term ∂2u/∂t∂z is the angular velocity of the tube; and the
pushing force exerted on the fluid, given by −ρ(∂u/∂z)(∂2u/∂t2).

Equations (2.17) and (2.18) constitute a system of two coupled integro-differential
equations for the tube and fluid dynamics. These are the departing point to understand
the complex relation between the tube and fluid motion.

First, when no coupling between fluid and tube is considered, (2.17) and (2.18) are,
respectively, the Euler–Bernoulli and the linearized Navier–Stokes equations (also known
as unsteady Stokes equations)

EI
∂4u
∂z4 + (

ρAf + ρtAt
) ∂2u

∂t2
= 0, (2.27)

ρ
∂v

∂t
= −∂p

∂z
+ μ

(
∂2v

∂r2 + 1
r

∂v

∂r

)
. (2.28)

Comparing (2.17) and (2.18) with (2.27) and (2.28), we can see that it is convenient to
think of (2.17) as the equation that describes the effect of the fluid dynamics on the tube
dynamics, since it is basically a modification to the Euler–Bernoulli equation for the force
per unit length exerted on the tube (Bauchau & Craig 2009); whereas we can think of
(2.18) as the equation describing the effect of the tube dynamics on the fluid dynamics, as
it is basically a modified linearized Navier–Stokes equation, for the force per unit volume
exerted on the fluid. In general, we can see that fluid motion along the tube affects the
tube dynamics, whereas the tube vibration influences the fluid dynamics. These effects
vanish for a stagnant fluid (v = 0) and a static tube (u = 0), respectively. Such an analysis
constitutes a partial validation of the model developed in this work, since it recovers the
decoupled equations, extensively studied in the literature.

A general solution of such a system is not possible by analytical means. However, it
is possible to solve these equations, analytically, in regimes in which one of the dynamic
variables is not strongly dependent on the other one. These regimes correspond to different
physical considerations and they are: (i) a regime in which the tube deformation is very
small, and the fluid dynamics is not affected by the tube oscillation; and (ii) a regime in
which the fluid flow magnitude is very small, and the tube dynamics is not affected by
fluid motion.

Such considerations are fully exposed in the following sections and summarized in
figure 2. The upper-left quadrant in figure 2 (high flow magnitude and small tube
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Figure 2. Effect of amplitude of the tube and fluid motion in the coupling of equations.

oscillation amplitude) allows us to study the influence of fluid motion on the tube
dynamics. In contrast, the lower-right quadrant (low flow magnitude and relatively large
tube oscillation amplitude) establishes a framework to explore the influence of tube
vibration on the fluid dynamics. The upper-right quadrant corresponds to a case where
both fluid and tube motions are fully coupled and none of the terms in (2.17) and (2.18)
can be neglected. Finally, the lower-left quadrant shows the limit in which the tube and the
fluid dynamics are fully decoupled. This limit that has been widely studied in the literature.

3. Influence of fluid motion on the tube dynamics

The limit that allows us to study the influence of fluid motion on the tube dynamics is
given by (2.17) and (2.28). To derive such a limit, it is possible to estimate the magnitude
of the Coriolis and effective pushing terms that couple the tube and fluid motion in (2.18),
using typical properties of carbon nanotubes conveying flow, as follows:

|ρg(t)vL| ≈
√

ρE
v0Ro

L

(
U0

L

)2

=
(

104–106 Pa
)(U0

L

)2

, (3.1)

|ρh(t)L| ≈ E
R2

o

L2

(
U0

L

)2

=
(

104–106 Pa
)(U0

L

)2

, (3.2)

where v0 denotes the typical magnitude of flow velocities encountered in these systems
(Kannam et al. 2013; Wu et al. 2017). Estimated forces per unit volume multiplied by tube
length in (3.1) and (3.2) can be compared directly with the typical magnitude of pressure
drops, which lies in the range [104–107] Pa. Therefore, if we study tube deformations below
(U0/L)2 = 10−8, the coupled terms ρg(t)v and ρh(t) in (2.18) turn out to be negligible
relative to the pressure gradient exerted on the fluid.
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In such a case, the fluid dynamics described in (2.18) leads to the classical linearized
Navier–Stokes equation given in (2.28). Thus, solution of (2.28) gives a fluid dynamics
independent of the tube motion. For example, for a tube subject to a constant pressure
gradient and no-slip boundary conditions, the steady flow velocity is given by the parabolic
Poiseuille profile. Then, Poiseuille profile is incorporated in (2.20) and (2.21), with the
purpose of studying the effect of fluid flow in the tube dynamics. This leads to the
following expressions:

〈v〉 = − R2

8μ

∂p
∂z

, 〈v2〉 = R4

48μ2

(
∂p
∂z

)2

, (3.3a,b)

which in turn, can be incorporated in (2.17). For the subsequent discussion, the average
flow velocity and the average squared flow velocity are incorporated in the tube dynamics
by defining two parameters to describe the fluid flow velocity, namely,

v̄ ≡
√

〈v2〉 and β ≡ 〈v〉√
〈v2〉

, (3.4a,b)

where β is called the radial structure factor of the fluid profile, whereas v̄ is the average
flow magnitude. For the case of a Newtonian fluid with no slip at the tube walls, described
in (3.3a,b), the average flow magnitude and radial structure factor are

v̄ = R2

4
√

3μ

∂p
∂z

and β =
√

3
2

. (3.5a,b)

As (3.5a,b) exemplifies for Poiseuille flow, the definitions of v̄ and β allow us to separate
the effect of the flow magnitude and the shape of the radial profile, since v̄ is sensitive to
changes in the magnitude of the driving force, whereas β is not, and only changes for
different radial profiles.

Incorporation of v̄ and β from (3.4a,b) into (2.17) leads to the following expression:

EI
∂4u
∂z4 + ρAf v̄

2 ∂2u
∂z2 + 2ρAf βv̄

∂2u
∂z∂t

+ ρAf β
∂u
∂z

∂v̄

∂t
+ (

ρAf + ρtAt
) ∂2u

∂t2
= 0. (3.6)

Equations (3.6) and (2.28) allow us to establish the relation between the frequency of
tube oscillations and the magnitude of the flow velocity, via the determination of the
vibration modes of a tube subject to specific boundary conditions at its edges. In this
work, we use three types of boundary conditions at each tube edge: pinned, clamped
and free edges, along with their combinations. Their mathematical expression is given
in appendix C. The relation between the frequency of the fundamental mode of a tube
pinned at its edges and flow velocity follows the same qualitative behaviour for the
different values of β, as shown in figure 3(a). For a stagnant fluid, the tube develops an
oscillating motion when an initial deformation is exerted on the tube. If a small pressure
gradient is applied on the fluid, a low magnitude flow velocity will be developed within the
tube, causing the fundamental vibration frequency of the tube to decrease, because flow
generates forces that oppose the elastic bending force. If flow velocity increases further,
the frequency of tube oscillation keeps decreasing until a critical zero-frequency point is
reached. If flow magnitude increases beyond this point, an initial deformation will cause an
instability of the tube motion, that can be of two types: buckling (imaginary frequency),
where the amplitude of the tube deformation grows in the absence of oscillations, and
fluttering (complex frequency), where the amplitude of tube deformation grows while the
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Figure 3. (a–c) Effect of the radial flow profile in the flow/frequency relation for the fundamental mode of a
tube that is pinned at both edges. The real component of frequency is shown with continuous lines, whereas
the imaginary component is plotted with dashed lines. (a) Global view. (b) Zoom-in at the buckling regime.
(c) Zoom-in at the fluttering regime. (d,e) Tube motion in unstable regimes. (d) Buckling causes the amplitude
of tube deformation to increase without oscillation. (e) Fluttering causes the amplitude of tube deformation to
increase while the tube oscillates. Both instabilities lead, eventually, to breaking of the tube.

tube oscillates. Both regimes of unstable tube motion are shown schematically in
figures 3(d) and 3(e).

Our model recovers the flow/frequency relation developed for plug-like flow in the
literature previously, but it also accounts for the effect of the radial flow velocity profile in
the tube dynamics via the structure factor β. In particular, (3.6) is reduced to the equation
developed by Paidoussis (Chen 1985) and used by Wang to study flow within nanotubes
(Wang & Ni 2008) for plug-like flow, for which β = 1. Our model reproduces the same
qualitative decrease of the tube vibration frequency as a function of flow velocity in the
stable oscillation regime. Also, prediction of the buckling and fluttering regimes happens
in the same frequency ranges as Wang & Ni (2008) and later papers that consider more
sophisticated models (Zhen & Fang 2010; Arash & Wang 2012).

Given the conditions established in this limit, i.e. when the fluid motion is independent
of the tube vibration, it is possible to explore the flow/frequency relation for a fluid subject
to other time-dependent driving forces or other boundary conditions. For example, the
behaviour of an oscillatory pressure gradient could be incorporated in an equation of
motion analogous to (2.28) and solved independently of the tube motion. Later on, the
complex velocity profile for this fluid would be incorporated in the tube dynamics by
computing its corresponding structure factor β, which turns out to be time dependent in
this case, except in two limiting cases: when the frequency of the pressure gradient is either
much smaller or much larger than the viscous frequency, given by

ωμ = μ

ρR2 . (3.7)
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Type of fluid β

Plug flow 1.0
Newtonian fluid with no slip 0.866
Newtonian fluid with slip λ = 0.1R 0.9245
Newtonian fluid with slip λ = R 0.9934
Newtonian fluid with slip λ = 10R 0.9999
Pulsatile flow with ω � ωμ 0.866
Pulsatile flow with ω 	 ωμ 1.0

Table 1. Comparison between the radial structure factor, β, of fluids with different behaviour.

The same procedure could be carried out for a fluid subject to a constant pressure
gradient and complex boundary conditions, such as an effective slippage at the tube wall,
modelled using the Navier hypothesis. It is also possible to go beyond the scope of this
work, and explore the rheological behaviour of complex fluids. In such cases, it would be
necessary to think of regimes where the tube-induced forces are negligible in comparison
to the ones caused by the complex fluid. Computation of the structure factor for typical
fluids and situations in which it is constant has been summarized in table 1. A change in
the value of β modifies quantitatively the flow/frequency relationship observed for tube
vibration, particularly at the buckling and fluttering regimes. This is observed in a global
view of the flow/frequency relation for different fluid profiles, shown in figure 3. In order
to emphasize such an effect, the plot has been zoomed in on the buckling regime (in
figure 3b) and on the fluttering regime (in figure 3c).

The effect of β on the flow–frequency relationship can be used as a tool for analysis
of the velocity profile within nanostructures. It opens up the possibility of indirectly
determining details of fluid motion inside nanotubes by measurement of their oscillation
frequency spectrum. Such an idea has been previously proposed to be useful for the
indirect determination of the flow velocity across nanotubes (Torres-Herrera & Corvera
Poiré 2018). However, such a strategy can be taken further by knowing, not only the
magnitude of the flow inside a nanotube, but some characteristics of its radial profile. This
might help to partially clarify the existing controversy concerning the real velocity profile
inside carbon nanotubes, in order to quantify slip lengths (Holt et al. 2006; Whitby et al.
2008; Kannam et al. 2013; Ritos et al. 2014). It might also shed light into the discussion
of the effects of shear thinning and viscoelasticity in mica channels (Kageshima 2014;
Kapoor, Amandeep & Patil 2014; Carpentier et al. 2015).

4. Influence of tube vibration on fluid dynamics

The incorporation of terms that modify the fluid dynamics within nanotubes by
considering the effects of tube vibration is the most important consequence of our
methodology. The influence of tube on the fluid dynamics is studied via (2.18) and (2.27).
In order to establish the conditions for this limit from the coupled equations (2.17) and
(2.18), we define the characteristic flow velocity, vc, as

vc = 1
L

√
EI
ρAf

, (4.1)

since it gives a systematic way to compare the different fluid-induced forces exerted on
the tube. As defined in (4.1), vc depends on the mechanical and geometric properties of

916 A16-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.176
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the tube. For carbon nanotubes of typical lengths and Young moduli (Yoon et al. 2005;
Feng et al. 2018), vc lies in the range [10–100] m s−1. In comparison, flow velocities
measured across such nanotubes are approximately 0.1 m s−1 and lower, when driving
forces of low to medium magnitude are exerted on such confined fluids. Corresponding
pressure drops are of the order of 1 bar along tubes of approximately 100 μm in length
(Holt et al. 2006; Whitby & Quirke 2007). Using typical parameters for nanotubes, it is
possible to estimate the magnitude range of fluid-induced forces, per unit length, in (2.17)
in terms of v/vc. These ones are: the centrifugal force, Fcent, the Coriolis force, Fcor, and
the pushing force, Fpush. They correspond, respectively, to the second, third and fourth
terms on the left-hand side of (2.17), and lie in the ranges

Fcent

U0
≈
(

EI
L4

)(
v

vc

)2

=
(

100–102 Pa
)( v

vc

)2

, (4.2)

Fcor

U0
≈
(

EI
L4

)
v

vc
=
(

100–102 Pa
) v

vc
, (4.3)

Fpush

U0
≈
(

EI
L4

)1/2 (
ω2

μρAf

)1/2 v

vc
=
(

100–102 Pa
) v

vc
. (4.4)

Thus, in the low pressure gradient regime (pressure drop lower than 0.1 bar across tubes
of approximately 10–100 μm in length), v/vc is less than 0.001 and it is possible to neglect
the fluid forces in (2.17) in comparison to the elastic bending force per unit length, Felastic,
corresponding to the first term on the left-hand side of (2.17), that lies in the range

Felastic

U0
≈ EI

L4 = (100–102) Pa, (4.5)

so, (2.17) reduces to the Euler–Bernoulli equation (2.27), that is, to the case in which the
fluid has no influence on tube motion. This implies that the tube moves independently of
the dynamics of the fluid; however, the fluid dynamics is still affected by tube oscillations.

Equation (2.27) is solved for the tube displacement u(z, t) considering initial and
boundary conditions; the solution is incorporated into (2.18) via the auxiliary functions
g(t) and h(t). Finally, (2.18) can be solved for the fluid velocity v(r, t).

We find a solution for flow velocity independent of the explicit forms of g(t) and h(t).
This is given by

v(r, t) =
exp

(
−
∫ t

t0
g(t′) dt′

)
2π

×
∫ ∞

−∞
1

iρλ

⎛⎜⎜⎜⎜⎝1 −
J0

√
iρλr2

μ

J0

√
iρλR2

μ

⎞⎟⎟⎟⎟⎠
∫ ∞

−∞

(
∂p
∂z

+ ρh(t′)
)

exp

(∫ t′

t0
g(t′′) dt′′

)

× exp(−iλt′) dt′ exp(iλt) dλ, (4.6)

where J0 corresponds to the zero-order Bessel function. The explicit solution of v(r, t)
is given when the specific form of the pressure gradient and tube motion u(z, t) are
incorporated in g(t) and h(t). Details of the derivation to obtain v(r, t) in (4.6) are
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presented in § B of the supplementary material available at https://doi.org/10.1017/jfm.
2021.176. Equation (4.6) allows us to study different dynamics of the pressure gradient;
for example, the transient flow dynamics is observed if the pressure gradient vanishes for
times earlier than zero.

In contrast to the dynamics observed in the previous section, where our result can be
compared immediately with previous results in the literature (Wang & Ni 2008), this is
the first time, to the best of our knowledge, that the flow velocity has been determined
analytically in a vibrating nanotube. As part of validation of our equations, it is important
to remark that (4.6) reduces to the Hagen–Poiseuille profile when the pressure gradient is
constant and the tube is static, that is, in the limit when g(t) = 0 and h(t) = 0.

In this section, we study the particular case of a constant pressure gradient and a
mono-modal tube vibration. For a tube moving in a specific vibration mode, the tube
displacement can be written as

u(z, t) = U0 fn(z) sin(ωnt), (4.7)

where U0 denotes the amplitude of the tube oscillation, ωn denotes the frequency of the
nth mode, whereas fn(z) denotes the spatial modulation of the tube in such a mode, that
depends on the boundary conditions at its edges. The analytical expression of fn(z) is given
in § C of the supplementary material. The purpose of studying a one-mode oscillatory
regime is to explore the main consequences of the tube/fluid coupling and uncover its
generalities, in order to give qualitative insights. Once these are gained, our formalism
could be used to solve situations with complex dynamic driving forces or complicated
initial tube shapes.

When the tube displacement in (4.7) is incorporated into (2.22) and (2.23), expressions
for g(t) and h(t) are obtained

g(t) = ωnAU2
0

L2 sin(2ωnt), (4.8)

h(t) = ω2
nBU2

0
L

cos(2ωnt), (4.9)

where A and B are geometrical factors, different for each set of boundary conditions at the
tube extremes. Their analytical expressions are also provided in § C of the supplementary
material. Expressions for g(t) and h(t) in (4.8) and (4.9), are then incorporated into (4.6).

As (4.6) shows, it is necessary to compute the Fourier transforms of both,
(∂p/∂z) exp

(∫ t
t0

g(t′) dt′
)

and ρh(t′) exp
(∫ t′

t0
g(t′′) dt′′

)
. The lower limit of these integrals

is an arbitrary time, t0. For practical purposes, we perform computations considering
t0 = 0. We do this by computing the integral in exp

(∫ t
0 g(t′) dt′

)
, as follows:

exp
(∫ t

0
g(t′) dt′

)
= exp

(
AU2

0
2L2

)
exp

(
−AU2

0
2L2 cos(2ωnt)

)
. (4.10)

The second factor on the right-hand side of (4.10) can be simplified because its exponent
corresponds to an oscillatory function whose amplitude is small, proportional to U2

0/L2.
As far as the amplitude is lower than unit, the Taylor expansion of the second factor around
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Model for fluid dynamics within oscillating nanotubes

U0/L = 0 is convergent and leads to the following expression:

exp
(∫ t

0
g(t′) dt′

)
= exp

(
AU2

0
2L2

) ∞∑
m=0

1
m!

(
−AU2

0
2L2 cos(2ωnt)

)m

. (4.11)

The series obtained in (4.11) is useful because the Fourier transform of each term can
be computed by analytical means.

After computation of the integrals in (4.6) and an expansion in the relative deformation
ε, defined as ε = U0/L, the following expression is obtained for the radially averaged flow
velocity, 〈v〉:

〈v〉 = K0 + K2ω,c cos(2ωnt) + K2ω,s sin(2ωnt) + O(ε4), (4.12)

where K0, K2ω,c and K2ω,s are given, respectively, by

K0 = −∂p
∂z

R2

8μ
+ O(ε4), (4.13)

K2ω,c = −∂p
∂z

Aε2R2

16μ
+
(

−∂p
∂z

Aε2R2

16μ
+ ρω2

nLBε2R2

8μ

)
Re fbes

(
2ρωnR2

μ

)
+ O(ε6),

(4.14)

K2ω,s =
(

−∂p
∂z

Aε2R2

16μ
+ ρω2

nLBε2R2

8μ

)
Im fbes

(
2ρωnR2

μ

)
+ O(ε6), (4.15)

with fbes given by

fbes(x) = 8
ix

(
1 − 2J1

√
ix√

ix J0
√

ix

)
, (4.16)

and Re fbes and Im fbes account for its real and imaginary parts, respectively. The complete
expression of the flow velocity in (4.12) includes terms with frequencies as integer
multiples of 2ωn. However, their coefficients are proportional to ε4 and higher powers.
In the small-deformation limit, it is enough to keep powers up to ε2. Analytical expression
for higher-order frequency terms, 4ωn and 6ωn and corresponding coefficients ε4 and ε6,
are presented in § D of the supplementary material.

The most important consequence of the influence of tube motion on the fluid is that the
tube bending motion is capable of inducing oscillations in the flow velocity. This can be
appreciated by observing the oscillatory terms in (4.12). It is interesting to note that the
amplitude of the oscillatory component of flow, computed as

vosc =
√(

K2ω,c
)2 + (

K2ω,s
)2

, (4.17)

varies with ε2, which leads to an amplitude of the oscillation that is small but
non-negligible. Therefore, the tube vibration provides a mechanism to induce oscillatory
flow within elastic nanostructures.

In general, this type of system tends to couple all the characteristic times that are present
in the driving force. For a driving force with two characteristic frequencies, namely, ωn
and ωm, the final response incorporates a term with a frequency ωn + ωm and a term with
frequency ωn − ωm.
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For the particular case studied here, of a tube moving in a single mode and a constant
pressure gradient, inspection of (4.12)–(4.15) and the help of (4.8) and (4.9), allows us to
understand that the oscillatory flow velocity developed within an oscillating tube is caused
by two contributions, namely, the interaction between the constant pressure gradient and
the Coriolis force, that corresponds to the terms proportional to Aε2 in (4.14) and (4.15);
and the pulsatile driving force exerted by the tube pushing, given by the term −ρh(t), that
corresponds to the terms proportional to Bε2 in (4.14) and (4.15).

An interesting manner to study this oscillatory flow is by comparing it with the classical
mechanism to generate pulsatile flow in a rigid tube, via an oscillatory pressure gradient of
the form ∂p/∂z = (∂p0/∂z) cos(2ωnt). That is, a one-mode oscillatory pressure gradient
of amplitude |∂p0/∂z| and frequency 2ωn. The pressure-gradient-induced flow velocity,
vpress, is given by Del Rio, De Haro & Whitaker (1998) and Collepardo-Guevara & Corvera
Poiré (2007), as follows:

vpress = −

∣∣∣∣∣∣∣∣∣∣
1

2iρωn

⎛⎜⎜⎜⎜⎝1 −
2J1

√
2iρωnR2

μ√
2iρωnR2

μ
J0

√
2iρωnR2

μ

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
∂p0

∂z
cos(2ωnt + ϕ), (4.18)

where ϕ, is the phase between flow velocity and pressure gradient.
In our model, the first contribution to pulsatile flow is given by the tube pushing when

no external pressure gradient is exerted on the fluid, that is, when ∂p/∂z = 0 in (4.6). In
this case, the pushing-induced flow velocity, vh, has an expression of the form

vh =

∣∣∣∣∣∣∣∣∣∣
1

2iρωn

⎛⎜⎜⎜⎜⎝1 −
2J1

√
2iρωnR2

μ√
2iρωnR2

μ
J0

√
2iρωnR2

μ

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
ρω2

nBLε2 cos(2ωnt + ϕ). (4.19)

Comparison of (4.18) and (4.19) allows us to think of a pulsatile flow caused by an
oscillatory driving force of frequency 2ωn and amplitude ρω2

nBLε2, which, in turn, is the
amplitude of ρh(t) (see (4.9)). In other words, the tube pushing force plays a similar role
here to an oscillatory pressure gradient in a rigid tube, and leads to the classical response
of a Newtonian fluid driven by a pulsatile pressure gradient.

Moreover, we can compare the pulsatile pressure gradient scheme for a rigid tube, with
the second contribution to pulsatile flow in our model, namely, when our fluid is subject
to an external constant pressure gradient and we study it in the absence of tube pushing,
that is, when h(t) = 0 in (4.6). Such a condition is achieved for tubes moving in a single
mode with both edges fixed (see the value of B for each set of boundary conditions
in § C of the supplementary material). In this case, the flow velocity is composed by
a non-oscillatory term, corresponding to Hagen–Poiseuille flow, caused by the constant
pressure gradient, and an oscillatory term, given exclusively by the interaction between
the Coriolis force and the constant pressure gradient ∂p/∂z. The oscillatory component,
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called the Coriolis-induced flow velocity, vg, has an expression of the form

vg = −Aε2

2

∣∣∣∣∣∣∣∣∣∣
1

2iωnρ

⎛⎜⎜⎜⎜⎝1 −
2J1

√
2iρωnR2

μ√
2iρωnR2

μ
J0

√
2iρωnR2

μ

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
∂p
∂z

cos(2ωnt + ϕ)

− Aε2R2

16μ

∂p
∂z

cos(2ωnt), (4.20)

In contrast to the previous expression for pulsatile flow, vg exhibits an anomalous
behaviour, since it is the sum of two components: the first one, which we call the classical
pulsatile term, is the typical response of a pulsatile flow with frequency 2ωn and an
oscillating driving force of amplitude −(∂p/∂z)(Aε2/2); the second one, which we call
the non-classical pulsatile term, is always out of phase by π/2, with the Coriolis term
(4.8) and has an amplitude independent of the vibration frequency.

The peculiar behaviour of vg is more evident when compared with vpress in the
zero-frequency and infinite-frequency limits. At low frequencies, flow velocity vpress is
finite, and given by −(R2/8μ)(∂p0/∂z). In contrast, the classical and non-classical terms
of vg cancel each other in the zero frequency limit, leading to

lim
ωn→0

vg = 0. (4.21)

On the other hand, in the infinite-frequency limit, the amplitude of vpress tends to zero. In
contrast, the non-classical pulsatile term in vg oscillates with constant amplitude, whereas,
the classical pulsatile term in vg vanishes, leading to the following result:

lim
ωn→∞

∣∣vg
∣∣ = −∂p

∂z
Aε2R2

16μ
. (4.22)

The limit in (4.22) is non-intuitive, and it will be discussed later on.
Finally, we compare the pulsatile pressure scheme with ours, for the case of a tube

subject to both tube pushing and a constant pressure gradient. The cooperative role
between the pressure-Coriolis and the tube pushing effects leads, as we will see, to
unconventional results.

To achieve a simple and complete description of such conditions, it is useful to define
three dimensionless parameters, that summarize the physics described in the previous
analysis. First, the separation between low and high frequencies can be stated in terms
of the ratio between the tube vibration frequency and the viscous frequency, given by the
dimensionless frequency, ω∗, as

ω∗ ≡ ωn

ωμ

. (4.23)

Second, the relative dominance between pressure gradient and tube effective pushing is
quantified by the dimensionless pressure gradient F, defined as

F ≡ −
∂p
∂z

ρω2
nL

= −∂p
∂z

1
ρL(ω∗)2ω2

μ

. (4.24)
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Notice that the actual ratio between the constant pressure gradient and the magnitude of
the driving force caused by tube pushing –shown in (4.19) – is given by

−∂p
∂z

ρω2
nBLε2 = F

Bε2 . (4.25)

We do not include B, nor ε2, in the definition of F in (4.24), since both terms deserve
a separate analysis; B is a geometrical factor that accounts for the symmetry properties
of the tube pushing force. Under the conditions explored in this work, B is sensitive to
the boundary conditions at the tube edges. When the tube position is fixed at both edges,
the local tube motion is such that the effective pushing force in some regions of the tube
cancels the pushing in other portions of it, leading to B = 0; while for the pinned–free and
clamped–free cases, the pushing force at the free region is not cancelled, leading to B /= 0.
Besides, ε is related to the amplitude of tube motion and, therefore, quantifies the amount
of elastic energy that is available for the fluid to develop an oscillatory motion. Thus, we
expect the flow magnitude to increase monotonically and nonlinearly with ε.

Finally, in order to obtain a dimensionless expression that allows us to observe in simple
terms the contribution of Coriolis and effective pushing to the global flow velocity, the
flow velocity is re-scaled. For that, we first introduce the characteristic amplitude of a
velocity, vchar, as the one caused by a pulsatile driving force of magnitude ρω2

nL, in the
limit of low frequencies, given by

vchar = ρω2
nL
(

R2

8μ

)
, (4.26)

which is used to define the re-scaled flow velocity, v∗, as

v∗ ≡ 〈v〉
vchar

= 8〈v〉
Lωμ(ω∗)2 . (4.27)

In terms of ω∗, F and v∗, (4.12)–(4.15) are written as

v∗ = K∗
0 + K∗

2ω,c cos(2ω∗ωμt) + K∗
2ω,s sin(2ω∗ωμt) + O(ε4), (4.28)

where K∗
0 , K∗

2ω,c and K∗
2ω,s, are

K∗
0 = F + O(ε4), (4.29)

K∗
2ω,c = FAε2

2
+
(

FAε2

2
+ Bε2

)
Re fbes(2ω∗) + O(ε6), (4.30)

K∗
2ω,s =

(
FAε2

2
+ Bε2

)
Im fbes(2ω∗) + O(ε6). (4.31)

Figure 4 shows the amplitude of the oscillatory component of flow velocity,
v∗

osc =
√

(K∗
2ω,c)

2 + (K∗
2ω,s)

2, with continuous lines, as a function of the dimensionless
frequency, ω∗, for different values of the dimensionless driving force, F. The behaviour
of v∗

osc, can be understood in terms of the relative contributions of the terms containing
FA, and the ones containing B, which are additive, in (4.30) and (4.31). A monotonically
decreasing dashed red line in figure 4 corresponds to the pushing case, for which FA = 0.
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Figure 4. Effect of the magnitude of the pressure gradient and the frequency of tube oscillation in amplitude
of the oscillatory flow induced within a pinned–free tube vibrating at its fundamental mode. Each continuous
curve represents the amplitude/frequency relationship for different values of the dimensionless pressure
gradient, F. Also, the individual contributions to the flow amplitude are shown, namely, the effective pushing
contribution (red dashed line) and the Coriolis contributions (dashed lines in other colours).

While, the Coriolis regime, for which the B = 0, is shown in the same figure with several
monotonically increasing dashed lines, for a given A, and various values of F.

At low values of F (up to 10−1 in figure 4) and low ω∗ (up to 1 in the figure), the
effective pushing is orders of magnitude larger than the Coriolis force. Therefore, the
amplitude of the velocity as a function of frequency exhibits the typical plateau at low
frequencies, in a log–log scale. At the same low values of F, and higher values of ω∗
(above 1 in the figure), a change of behaviour occurs, such that the larger the forcing
frequency, the smaller the amplitude of fluid motion. That is, there is a frequency region
where the classical monotonic decrease of flow amplitude can be appreciated for any value
of F in the range that is being discussed. On the other hand, the Coriolis force increases
with increasing ω∗, this can be seen from the different dashed lines with a monotonic
increase with ω∗ in figure 4. This happens up to a critical value of ω∗, different for each
value of F, where the Coriolis force and the pushing force are equal in magnitude. For
a given F, this point happens when the corresponding monotonically increasing dashed
line crosses the monotonically decreasing dashed red line. For larger values of ω∗, the
dominant force of the system is the Coriolis force. Last one causes the flow velocity to
reach a constant amplitude.

In contrast, at high values of F (see F = 10 in figure 4, for example), the panorama
changes. This is the case of having a much larger pressure gradient than the forcing
caused by pushing, for any frequency. The departure between the Coriolis force and the
effective pushing (dashed red line) occurs at much lower values of ω∗, in the region where
the pushing force still has a low-frequency plateau, in a log–log scale. This leads to an
atypical flow magnitude/frequency relationship, that, for low values of ω∗, increases as
a function of ω∗. This regime, characterized by a positive flow/frequency slope, ends up,
approximately, when the pulsation frequency reaches the viscous frequency, that is, around
ω∗ = 1. For higher values of ω∗, the flow velocity amplitude reaches an asymptotic value,
just as in the case discussed for low values of F.
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Figure 5. Flow velocity within a tube subject to low-frequency and high-frequency bending oscillations.
A pinned–free tube is considered, with a dimensionless pressure gradient F = 1. (a) Fluid exhibits an
oscillation of increasing amplitude when frequency increases from ω∗ = 0.1 to ω∗ = 2. (b) Fluid exhibits
an oscillation whose amplitude does not diminish when frequency increases from ω∗ = 20 to ω∗ = 400. Flow
velocity has been translated to oscillate around v∗ = 0.

The transition between the low and high driving force regimes, occurs at

Ftransition = 2B
A

. (4.32)

For values of F smaller than Ftransition, the high-frequency plateau is below the
low-frequency one. For values of F larger than Ftransition, the high-frequency plateau is
above the low-frequency one. It is very important to remark that a finite pressure gradient
is needed in order for the Coriolis force to produce the high-frequency plateau in figure 4.
This high-frequency asymptotic behaviour is determined by the amplitude of the first term
in (4.30), when the inertial and viscous forces have produced the decaying regime, both in
the second term of (4.30) and in (4.31).

In order to illustrate the low-frequency fluid flow, we have plotted the rescaled flow
velocity vs time for three different low frequencies (see figure 5a). It is remarkable that
flow magnitude increases when frequency increases for the chosen value of dimensionless
pressure gradient F = 1, as described in the previous discussion. Besides, in order to
illustrate the high-frequency fluid flow, we have plotted the re-scaled flow velocity vs time
at three different high frequencies (see figure 5b). It is observed that the amplitude of
oscillatory flow is sustained in situations for which, in the conventional scheme involving
a pulsatile pressure driven flow, the corresponding amplitudes would diminish by one order
of magnitude.

Our results regarding the influence of tube motion on the fluid dynamics, rely on the
validity of our assumptions. In this work, we have considered that tube deformations
are small, and that ε2 is negligible when compared to unity. In the analytical results for
flow velocity (4.12)–(4.15), or equivalently (4.28)–(4.31), high-order powers of ε can be
neglected with respect to the constant velocity caused by the pressure gradient in the
absence of tube vibration. However, it is worth remarking that terms proportional to
ε2 are relevant, since they are multiplied by physical parameters of the model such as
FA fbes(2ω∗) and B fbes(2ω∗), that, depending on the value of external forces such as the
pressure gradient, might be non-negligible, particularly at high frequencies. The properties
just encountered for the oscillatory flow velocity that is caused by the tube vibration
constitute a novel contribution to the dynamics of the system that has not been reported in
the literature, and not yet observed in experiments.
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Figure 6. Determination of flow slippage via the detection of tube displacement during a buckling event.
(a) Effect of the slip length on the tube displacement after an initial deformation of 5 nm close to the buckling
instability with a given flow velocity. We propose to measure the elapsed time (detection time) when the tube
reaches a target vertical displacement of 10 μm. (b) Detection time as a function of slip length for different
magnitudes of the initial deformation, ranging from 5 to 100 nm. For the simulations, a tube with a Young’s
modulus of 0.1 TPa, inner radius of 10 nm, outer radius of 15 nm, length of 500 μm and conveying flow with
velocity of 1.27 m s−1, was used.

5. Experimental perspectives

Our model has the potential to establish a framework for indirect determination of fluid
properties, based on measurement of the dynamic response of vertical tube displacement.

Our model allows for inclusion of fluid slippage at the tube wall via the radial structure
factor β, as discussed in figure 3 of § 3. This property could be exploited for indirect
determination of the slip length. In order to test this potential application, we propose
to carry out experiments in the buckling instability regime, where tube deflections
dramatically increase until the tube is broken. For that, we solve our equations, (2.17)
and (2.28), for a tube with a Young’s modulus of 0.1 TPa, inner radius of 10 nm, outer
radius of 15 nm, tube length of 500 μm and conveying flow with velocity of 1.27 m s−1.
We perform simulations, at a given value of the initial bending deflection, that correlate
the tube buckling speed with the magnitude of the slip length (figure 6a).

Our proposal is to measure the particular elapsed time (detection time) �t when the
tube reaches a certain vertical displacement, �u, of, for example, 10 μm (see the detection
position at figure 6a). The ratio �u/�t would give an approximate value of the tube
buckling speed, different for each slip length.

We also simulate the effect of the magnitude of initial bending deflection on detection
time. Initial deformations from 5 to 100 nm were explored (figure 6b).

The choice of a specific flow velocity for this proposed experiment is based on tube
geometry and mechanical properties. In particular, the flow velocity needs to be lower than
but close to the buckling/fluttering transition, shown in figure 3(a,b). Approximately, flow
velocities around 90 %–99 % of the transition value are adequate to observe a quantitative
and significant effect of slip length on the tube detection time. Reaching these flow
velocities would require middle-to-high-amplitude driving forces, close to the ones used
by Majumder et al. (2005a), Holt et al. (2006), Whitby & Quirke (2007) and Qin et al.
(2011).

As can be appreciated in figure 6(b), this proposal is useful to measure moderate values
of slip length, between 0.01 and 2 times the tube radius, because it is rather insensitive to
changes in slip length when it comes to hundreds of times the nanotube radius.
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In the literature, some groups claim that slip lengths in carbon nanotubes of this
relatively large tube radius (10 nm) are a small fraction of the tube radius (Babu & Sathian
2011; Chiavazzo et al. 2014), while others claim that slip lengths are of the order of the
tube radius or larger (Thomas & McGaughey 2008, 2009; Falk et al. 2010). Our proposal
would give complementary experimental information to determine the actual magnitude
of slip lengths in these systems.

6. Conclusion

The model developed in this work establishes theoretical foundations that could improve
the understanding of fluids confined within nanometric elastic tubes. The analytical
solution of the model, in two deliberately chosen limits, gives new insights on the
tube/fluid coupling with a level of detail that is deeper than the one in the existing
literature.

We have analysed our results with two different approaches in mind.
The first approach allows us to obtain information about the structure of fluid flow inside

nanostructures by measurement of the tube vibration spectrum. This is possible because
the model relates the frequency of tube motion with the characteristics of the fluid flow that
is conveyed within it. These characteristics are the magnitude of flow velocity, as well as
its radial profile. Our approach could be useful, for instance, to establish complementary
strategies to the ones existing in the literature to experimentally determine the value of
the slip length in carbon nanotubes conveying water, to understand the layering dynamics
in certain types of nanochannels, or the rheological behaviour exhibited by simple fluids
under nanoconfinement.

The second approach suggests that tube vibrations could be used as a strategy to induce
pulsatile flow within nanostructures. This might be worth considering, particularly at very
high frequencies, where the conventional mechanisms to induce flow oscillation, through
pulsatile pressure gradients, are very limited. The strategy proposed here might be useful
to experimentally overcome high-frequency limitations, because of the nonlinear nature of
the Coriolis force, which guarantees an asymptotic amplitude for oscillatory flows at high
frequencies, as long as a constant pressure gradient is coupled to the Coriolis force.

The assumption of small deformations in this model is important because of the
simplicity of the expressions obtained, that allow for analytical solutions. Our model
accounts for the relevant physics of fluid flow within nanostructures. For instance, it has
reproduced the qualitative behaviour regarding a monotonic decrease of tube bending
frequency with flow velocity. Also, tube instabilities are predicted in the same flow velocity
range as more sophisticated models of elastic bent tubes that have related numerically the
magnitude of fluid flow to the vibration frequency of tubes at moderate amplitudes (Zhen
& Fang 2010; Arash & Wang 2012). It also reduces properly to the fully decoupled case,
where the linearized Navier–Stokes equation of a fluid confined in a static tube, and the
Euler–Bernoulli equation, govern the system. Clearly, it would be desirable to develop
more realistic models, accounting for higher-order terms of tube deformation. Our work
provides a departing point whose analytical nature could also be exploited to test and
validate numerical solutions of complex models in limiting cases.

Our solutions for the specific limiting cases of (2.17) and (2.18), that is, the case
of influence of the fluid dynamics on tube motion – § 3 – and influence of the tube
dynamics on fluid motion – § 4 – have allowed us to obtain analytical results. In contrast to
numerical schemes to solve integro-differential equations, the analytical solutions allow
us to understand the role of the different terms by inspection, leading to a physical
understanding of phenomena such as the influence of the Coriolis and pushing forces on
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the fluid dynamics and their coupling to pressure gradients. Analytical intuition derived
from inspection of those limits might help us to understand more complex dynamics, when
addressing situations for which the fully coupled equations are necessary to describe the
system.

Results of our model could be useful at microscales, as far as the conditions of low
Re and De numbers are maintained. The latter implies a small ratio of tube radius and
bending radius of curvature. These conditions would ensure that no helical patterns
due to secondary flows are exhibited (Nivedita et al. 2017; Stoecklein & Di Carlo
2018). However, care should be taken when considering the role of high-frequency tube
vibrations at microscales, since there is experimental evidence of fluid convective effects
in microchannels subject to piezoelectric actuation (Kumar, Paraschivoiu & Nigam 2011).
Such findings are controversial and still a matter of discussion in the literature (Wang, Yang
& Zhao 2014; Wang et al. 2016; Dutta et al. 2019); however, they are not of concern when
dealing with fluid dynamics at nanoscales, since, in principle, the smallest length scale
for eddy formation is given by the Kolmogorov microscale (Tanahashi et al. 2004; Uranga
et al. 2011). Based on typical data for the kinetic energy dissipation rate, the Kolmogorov
microscale lies between 50 and 100 μm (Saarenrinne & Piirto 2000). This could make it
possible for microchannels to develop turbulence, as experimentally found in Wang et al.
(2014, 2016) and Dutta et al. (2019). In contrast, a nanometric tube or channel does not
provide enough space for eddies to develop. In consequence, uniaxial flow is the only
possibility for a wide spectrum of tubes and channels of nanometric size.

It is also necessary to go further in the study of the role of the Coriolis force in fluid
flow within nanostructures when the tube dynamics is subject to more complex spatial
deformations than the one used in this work.

The possibility of generating high-frequency flows, predicted by our model, opens up a
panorama to control and explore pulsatile flow in the range of the molecular time scales
(Pit, Hervet & Léger 2000; Zhu & Granick 2001; Chen et al. 2019; Zhao et al. 2020a).
This would enable us to study, for instance, the molecular causes of flow slippage at the
tube/fluid interface, since the detachment of a molecule from the pinning point in the
wall surface has been predicted to occur at shear rates of the order of GHz and higher
(Thompson & Troian 1997; Zhang et al. 2019; Zhao, Wei & Yuan 2020b). Generating
such high-frequency shear rates in flow systems would not imply the high energetic costs
of conventional pulsatile pressure forcing, which, in practice, have made it impossible to
drive fluids at high frequencies.

Coupling of the tube and pressure gradient could be exploited in the future as a strategy
to control flow within nanostructures by different mechanisms involving the capabilities of
modern devices, such as atomic force microscopes and piezoelectric actuators, to perform
nanometric mechanical manipulation of tubes conveying flow.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.176.
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Appendix A. List of symbols

All the symbols employed in this paper are summarized in alphabetical order in tables 2
and 3.

Appendix B. Mathematical details of the static and dynamic frames of reference

Transformation between the static and dynamic frames of reference is given by

x = x′, (B1)

y = u(z′, t) + y′√
1 +

(
∂u
∂z

(z′, t)
)2

, (B2)

z = z′ −
y′ ∂u

∂z
(z′, t)√

1 +
(

∂u
∂z

(z′, t)
)2

. (B3)

Such a transformation allows us to compute the mass conservation for an incompressible
fluid in the dynamic frame of reference, given by the divergence of flow velocity vector, as
follows:

∇ · vfluid =
1 +

(
∂u
∂z

)2

(
1 +

(
∂u
∂z

)2
)3/2

− r′ sin(θ ′)
∂2u
∂z2

∂v

∂z′ . (B4)

An approximate expression for the prefactor is given by defining the following
dimensionless parameters:

ũ ≡ u
U0

z̃ ≡ z′

L
r̃ ≡ r′

R
ṽz ≡ v

vHP
, (B5a–d)

where U0 is the amplitude of tube displacement, L the tube length, R the tube radius
and vHP the characteristic maximum velocity of the Hagen–Poiseuille profile, given by
vHP = −(R2/4μ)(∂p/∂z). These parameters allow us to rewrite (B4), as follows:

∇ · vfluid =
1 +

(
U0

L

)2 (
∂ ũ
∂ z̃

)2

(
1 +

(
U0

L

)2 (
∂ ũ
∂ z̃

)2
)3/2

−
(

U0R
L2

)
r̃ sin(θ ′)

∂2ũ
∂ z̃2

(vHP

L

) ∂ṽz

∂ z̃
. (B6)

In the small-deformation limit, it turns out that U0/L � 1. Along with it, the tube
radius is much smaller than the tube length, R/L � 1. Therefore, the prefactor in (B6)
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Symbol Description

A Geometrical factor related to the z-averaged Coriolis force
Af Fluid cross-section area
At Tube cross-section area
B Geometrical factor related to the z-average tube pushing force
C Constraints
E Young’s modulus of tube
e Local density of potential energy of fluid
et Local density of potential energy of tube
ez′ Unitary vector parallel to the z′-axis
F Dimensionless pressure gradient
fbes(x) Classical dynamic permeability for pulsatile Newtonian liquids
Fcent Magnitude of the centrifugal force
Fcor Magnitude of the Coriolis force
Felastic Magnitude of the elastic force
F ext External force vector
fn(z) Spatial modulation of tube at the nth vibration mode
Fpush Magnitude of the tube pushing force
Ftransition Dimensionless pressure gradient value for the transition between low

and high driving force regimes
g(t) Tangential component of the angular velocity of tube, averaged along z-axis
h(t) Tangential component of the tube pushing acceleration, averaged along z-axis
I Second moment of inertia of an elastic hollow
i Imaginary unit, given by

√−1
J0(x) Zero-order Bessel function
J1(x) First-order Bessel function
K0 Zero-frequency term of flow velocity
K2ω,c Two-omega cosine term of flow velocity
K2ω,s Two-omega sine term of flow velocity
K∗

0 Zero-frequency term of re-scaled flow velocity
K∗

2ω,c Two-omega cosine term of re-scaled flow velocity
K∗

2ω,s Two-omega sine term of re-scaled flow velocity
L Lagrangian

Also: Tube length
n Normal vector in surface integrals
p pressure
qtan Unitary vector parallel to the local tube direction
(r′, θ ′, z′) Dynamic frame of reference in cylindrical coordinates
(r, θ, z) Static frame of reference in cylindrical coordinates

Also: Simplified notation for dynamic frame of reference
R Tube inner radius
r̃′ Dimensionless radial coordinate
rfluid Fluid displacement vector
Ro Tube outer radius
Re, Im Real part, imaginary part of complex numbers
S Action of the system

Also: surface area (integration variable)
t or t′ or t′′ Time
Tt Kinetic energy of tube
Tf Kinetic energy of fluid
tμ Characteristic viscous time

Table 2. List of symbols employed in the manuscript.
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Symbol Description

u(z, t) Tube vertical displacement
U0 Amplitude of tube vertical displacement
ũ Dimensionless vertical tube displacement
V Volume (integration variable)
v(r, t) Scalar component of the flow velocity vector relative to the tube velocity
Vt/f Interaction potential between tube and fluid
Vt Potential energy of the tube
Vf Potential energy of the fluid
vosc Magnitude of the oscillatory component of flow velocity
vfluid Fluid velocity vector
vtube Tube velocity vector
v0 Typical experimental flow velocities within nanotubes
ṽ Dimensionless flow velocity
vHP Maximum velocity of the Hagen–Poiseuille profile
v̄ Average flow velocity magnitude
〈v〉 Radially averaged flow velocity
〈v2〉 Radially averaged square flow velocity
vpress Flow velocity induced by an oscillatory pressure gradient
ϕ Phase between oscillatory flow velocity and pressure gradient
vh Flow velocity induced by the oscillatory tube pushing force
vg Flow velocity induced by the Coriolis force at null tube pushing force
vchar Characteristic magnitude of a hypothetic pulsatile flow of magnitude ρω2

nL
at the low frequency limit

v∗ Re-scaled flow velocity
v∗

osc Amplitude of the oscillatory component of the re-scaled flow velocity
W External work
(x′, y′, z′) Dynamic frame of reference in Cartesian coordinates
(x, y, z) Static frame of reference in Cartesian coordinates

Also: simplified notation for dynamic frame of reference
z̃ Dimensionless axial coordinate in the dynamic frame of reference
β Radial structure factor
δzfluid Variation of the fluid displacement, relative to the tube motion
�u Tube displacement detected during the buckling event at short times
�t Time lapse at tube displacement detection during the buckling event at short times
∂p0/∂z Amplitude of an oscillatory pressure gradient
ε Relative tube deformation
θ Local angle between the tube and the horizontal line

Also: angular coordinate in the dynamic frame of reference
Λ Lagrange multiplier associated with the mass conservation constraint
λs Slip length
λ Integration variable in (4.5)
μ Fluid viscosity
ρ Fluid density
ρt Tube density
τ Stress tensor
ωn Frequency of a fluid-independent tube in its nth vibration mode
ωμ Characteristic viscous frequency
ω∗ Dimensionless frequency
∇Λ Gradient of Λ

Table 3. (Continuation) List of symbols employed in the manuscript.
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can be approximated as the unit, which also causes angular dependence to be negligible.
This leads to a simplified expression for (B6), which is written in terms of dimensional
quantities, as

∇ · vfluid =
(vHP

L

) ∂ṽz

∂ z̃
= ∂v

∂z′ , (B7)

which states that flow incompressibility, ∇ · vfluid = 0, leads to z′-independence of flow
velocity,

∂v

∂z′ = 0. (B8)

Also, the stress tensor of a Newtonian fluid and its divergence must be given in terms of
the dynamic coordinates (r′, θ ′, z′), leading to the following expression:

(∇ · τ ) · ez′ = ∂2vz′

∂r′2 + 1
r′

∂vz′

∂r′ + 1
r′2

∂2vz′

∂θ ′2 −
∂2u
∂z2

(
sin(θ ′)

∂vz′

∂r′ + cos(θ ′)
r′

∂vz′

∂θ ′

)
(

1 +
(

∂u
∂z

)2
)3/2

− r′ sin(θ ′)
∂2u
∂z2

−

(
∂2u
∂z2

)2

vz′⎛⎝(1 +
(

∂u
∂z

)2
)3/2

− r′ sin(θ ′)
∂2u
∂z2

⎞⎠2 . (B9)

When the small-deformation limit is considered, along with a tube radius much smaller
than the radius of curvature of the tube, a procedure completely analogous to the one in
(B5) and (B6) is carried out; then, the last three terms in (B9) are neglected, which leads
to the following approximated expression:

(∇ · τ ) · ez′ = ∂2vz′

∂r′2 + 1
r′

∂vz′

∂r′ . (B10)

Appendix C. Boundary conditions for tube dynamics

A specific experimental setting of the tube would determine the way in which edges are
fixed in an experiment (Arash & Wang 2012). Experimental literature on elastic nanotubes
shows three common geometrical conditions for the tube edges (Krishnan et al. 1998), as
shown below:

(i) Pinned edge. This means that the displacement of the tube edge is zero, and that
there is no curvature at that point. Physically, this implies that no elastic strain is
imposed at the tube edge. Mathematically, for a tube edge located at z = z0, this is
written as

u|z=z0 = 0 and
∂2u
∂z2

∣∣∣∣
z=z0

= 0. (C1a,b)

(ii) Clamped edge. This means that the displacement of the tube edge is zero, and that
the tube at that point is constrained to be horizontal. Mathematically, for a tube edge
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located at z = z0, this is written as

u|z=z0 = 0 and
∂u
∂z

∣∣∣∣
z=z0

= 0. (C2a,b)

(iii) Free edge. This means that the displacement of the tube edge is not fixed, the
only constraint is that there is no curvature at that point and on its neighbourhood.
Mathematically, for a tube edge located at z = z0, this is written in the following
way:

∂2u
∂z2

∣∣∣∣
z=z0

= 0 and
∂3u
∂z3

∣∣∣∣
z=z0

= 0. (C3a,b)

For a finite-size tube, which has two edges, any combination of these three possibilities
should be, in principle, experimentally possible. This gives 6 sets of boundary
conditions that discretize differently the dispersion relation, namely, pinned–pinned,
clamped–clamped, pinned–clamped, pinned–free and clamped–free.
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GĂRĂJEU, M., GOUIN, H. & SACCOMANDI, G. 2013 Scaling Navier–Stokes equation in nanotubes. Phys.
Fluids 25 (8), 082003.

GIBSON, R.F., AYORINDE, E.O. & WEN, Y.-F. 2007 Vibrations of carbon nanotubes and their composites:
a review. Compos. Sci. Technol. 67 (1), 1–28.

GOLDSTEIN, H., POOLE, C. & SAFKO, J. 2002 Classical mechanics. 2. Addison-Wesley Reading, MA.
GUO, J.-G. & ZHAO, Y.-P. 2007 The size-dependent bending elastic properties of nanobeams with surface

effects. Nanotechnology 18 (29), 295701.
HOLT, J.K., PARK, H.G., WANG, Y., STADERMANN, M., ARTYUKHIN, A.B., GRIGOROPOULOS, C.P.,

NOY, A. & BAKAJIN, O. 2006 Fast mass transport through sub-2-nanometer carbon nanotubes. Science
312 (5776), 1034–1037.

HOU, X., GUO, W. & JIANG, L. 2011 Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40
(5), 2385–2401.

HUMMER, G., RASAIAH, J.C. & NOWORYTA, J.P. 2001 Water conduction through the hydrophobic channel
of a carbon nanotube. Nature 414 (6860), 188–190.

JI, B. & GAO, H. 2004 Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids
52 (9), 1963–1990.

JOSEPH, S. & ALURU, N.R. 2008 Why are carbon nanotubes fast transporters of water? Nano Lett. 8 (2),
452–458.

JUNG, Y., BAYLEY, H. & MOVILEANU, L. 2006 Temperature-responsive protein pores. J. Am. Chem. Soc.
128 (47), 15332–15340.

916 A16-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.176


U. Torres-Herrera and E. Corvera Poiré

KAGESHIMA, M. 2014 Layer-resolved relaxation dynamics of confined water analyzed through subnanometer
shear measurement. Europhys. Lett. 107 (6), 66001.

KANNAM, S.K., TODD, B.D., HANSEN, J.S. & DAIVIS, P.J. 2013 How fast does water flow in carbon
nanotubes? J. Chem. Phys. 138 (9), 094701.

KAPOOR, K., AMANDEEP, & PATIL, S. 2014 Viscoelasticity and shear thinning of nanoconfined water. Phys.
Rev. E 89 (1), 013004.

KELLY, S.AINA, BALHOFF, M.T. & TORRES-VERDÍN, C. 2015 Quantification of bulk solution limits for
liquid and interfacial transport in nanoconfinements. Langmuir 31 (7), 2167–2179.

KIM, S., CHEN, L., JOHNSON, J.K. & MARAND, E. 2007 Polysulfone and functionalized carbon nanotube
mixed matrix membranes for gas separation: theory and experiment. J. Membrane Sci. 294 (1–2),
147–158.

KORTABERRIA, G. & TERCJAK, A. 2016 Block Copolymer Nanocomposites. Pan Stanford.
KRISHNAN, A., DUJARDIN, E., EBBESEN, T.W., YIANILOS, P.N. & TREACY, M.M.J. 1998 Young’s

modulus of single-walled nanotubes. Phys. Rev. B 58 (20), 14013–14019.
KUMAR, V., PARASCHIVOIU, M. & NIGAM, K.D.P. 2011 Single-phase fluid flow and mixing in

microchannels. Chem. Engng Sci. 66 (7), 1329–1373.
KYOTANI, T., TSAI, L.-F. & TOMITA, A. 1996 Preparation of ultrafine carbon tubes in nanochannels of an

anodic aluminum oxide film. Chem. Mater. 8 (8), 2109–2113.
LANDAU, L.D., LIFSHITZ, E.M., KOSEVICH, A.M., SYKES, J.B., PITAEVSKII, L.P. & REID, W.H. 1986

Theory of Elasticity. Course of Theoretical Physics, vol. 7. Elsevier Science.
LANDAU, L.D. & LIFSHITZ, E.M. 1987 Fluid Mechanics. Course of Theoretical Physics, vol. 6. Elsevier

Science.
LEBON, G.J. & LAMBERMONT, J.H. 1973 Generalization of Hamilton’s principle to continuous dissipative

systems. J. Chem. Phys. 59 (6), 2929–2936.
LEECH, C.M. 1977 Hamilton’s principle applied to fluid mechanics. Q. J. Mech. Appl. Maths 30 (1), 107–130.
LI, D., WANG, Y., PAN, Y. & ZHAO, X. 2016 Measurements of slip length for flows over graphite surface

with gas domains. Appl. Phys. Lett. 109 (15), 151602.
LI, X., FUSTIN, C.-A., LEFÈVRE, N., GOHY, J.-F., DE FEYTER, S., DE BAERDEMAEKER, J., EGGER, W.

& VANKELECOM, I.F.J. 2010 Ordered nanoporous membranes based on diblock copolymers with high
chemical stability and tunable separation properties. J. Mater. Chem. 20 (21), 4333–4339.

LIU, H., LIU, Y., DAI, J. & CHENG, Q. 2018 An improved model of carbon nanotube conveying flow by
considering comprehensive effects of Knudsen number. Microfluid Nanofluid 22 (6), 66.

LOURIE, O. & WAGNER, H.D. 1998 Evaluation of Young’s modulus of carbon nanotubes by micro-Raman
spectroscopy. J. Mater. Res. 13 (9), 2418–2422.

LU, J.P. 1997 Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79 (7), 1297–1300.
MACHÓN, M., REICH, S., TELG, H., MAULTZSCH, J., ORDEJÓN, P. & THOMSEN, C. 2005 Strength of

radial breathing mode in single-walled carbon nanotubes. Phys. Rev. B 71 (3), 035416.
MAJUMDER, M., CHOPRA, N., ANDREWS, R. & HINDS, B.J. 2005a Nanoscale hydrodynamics: enhanced

flow in carbon nanotubes. Nature 438 (7064), 44.
MAJUMDER, M., CHOPRA, N. & HINDS, B.J. 2005b Effect of tip functionalization on transport through

vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127 (25), 9062–9070.
MARTIN, F., WALCZAK, R., BOIARSKI, A., COHEN, M., WEST, T., COSENTINO, C. & FERRARI, M. 2005

Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics.
J. Control. Release 102 (1), 123–133.

MATTIA, D., BAU, H.H. & GOGOTSI, Y. 2006a Wetting of CVD carbon films by polar and nonpolar liquids
and implications for carbon nanopipes. Langmuir 22 (4), 1789–1794.

MATTIA, D., ROSSI, M.P., KIM, B.M., KORNEVA, G., BAU, H.H. & GOGOTSI, Y. 2006b Effect of
graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J. Phys.
Chem. B 110 (20), 9850–9855.

MILLER, S.A., YOUNG, V.Y. & MARTIN, C.R. 2001 Electroosmotic flow in template-prepared carbon
nanotube membranes. J. Am. Chem. Soc. 123 (49), 12335–12342.

MOHAMED, K.M. & MOHAMAD, A.A. 2010 A review of the development of hybrid atomistic–continuum
methods for dense fluids. Microfluid Nanofluid 8 (3), 283–302.

NAKAMURA, Y. & OHNO, T. 2012 Structure of water confined inside carbon nanotubes and water models.
Mater. Chem. Phys. 132 (2–3), 682–687.

NIVEDITA, N., LIGRANI, P. & PAPAUTSKY, I. 2017 Dean flow dynamics in low-aspect ratio spiral
microchannels. Sci. Rep. 7 (1), 44072.

PIT, R., HERVET, H. & LÉGER, L. 2000 Direct experimental evidence of slip in hexadecane: solid interfaces.
Phys. Rev. Lett. 85 (5), 980–983.

916 A16-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.176


Model for fluid dynamics within oscillating nanotubes

PONCHARAL, P., WANG, Z.L., UGARTE, D. & DE HEER, W.A. 1999 Electrostatic deflections and
electromechanical resonances of carbon nanotubes. Science 283 (5407), 1513–1516.

QIN, X., YUAN, Q., ZHAO, Y., XIE, S. & LIU, Z. 2011 Measurement of the rate of water translocation
through carbon nanotubes. Nano Lett. 11 (5), 2173–2177.

QIU, S., WU, L., PAN, X., ZHANG, L., CHEN, H. & GAO, C. 2009 Preparation and properties of
functionalized carbon nanotube/PSF blend ultrafiltration membranes. J. Membrane Sci. 342 (1), 165–172.

RAHMAN, M.R. 2018 Silica and Clay Dispersed Polymer Nanocomposites: Preparation, Properties and
Applications. Woodhead Publishing Series in Composites Science and Engineering, vol. 0. Elsevier
Science.

RITOS, K., BORG, M.K., LOCKERBY, D.A., EMERSON, D.R. & REESE, J.M. 2015 Hybrid
molecular-continuum simulations of water flow through carbon nanotube membranes of realistic thickness.
Microfluid Nanofluid 19 (5), 997–1010.

RITOS, K., MATTIA, D., CALABRÒ, F. & REESE, J.M. 2014 Flow enhancement in nanotubes of different
materials and lengths. J. Chem. Phys. 140 (1), 014702.

ROSSI, M.P., YE, H., GOGOTSI, Y., BABU, S., NDUNGU, P. & BRADLEY, J.-C. 2004 Environmental
scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 4 (5), 989–993.

RUOFF, R.S., QIAN, D. & LIU, W.K. 2003 Mechanical properties of carbon nanotubes: theoretical predictions
and experimental measurements. C. R. Phys. 4 (9), 993–1008.

SAARENRINNE, P. & PIIRTO, M. 2000 Turbulent kinetic energy dissipation rate estimation from PIV velocity
vector fields. Exp. Fluids 29 (1), S300–S307.

SALMON, R. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431–444.
SALVETAT, J.-P., BONARD, J.-M., THOMSON, N.H., KULIK, A.J., FORRO, L., BENOIT, W. & ZUPPIROLI,

L. 1999 Mechanical properties of carbon nanotubes. Appl. Phys. A 69 (3), 255–260.
SEARS, K., DUMÉE, L., SCHÜTZ, J., SHE, M., HUYNH, C., HAWKINS, S., DUKE, M. & GRAY, S. 2010

Recent developments in carbon nanotube membranes for water purification and gas separation. Materials
3 (1), 127–149.

SHEPHERD, T.G. 1990 Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid
dynamics. In Advances in Geophysics (ed. R. Dmowska & B. Saltzman), vol. 32, pp. 287–338. Elsevier.

SIENIUTYCZ, S. & BERRY, R.S. 1989 Conservation laws from Hamilton’s principle for nonlocal
thermodynamic equilibrium fluids with heat flow. Phys. Rev. A 40 (1), 348–361.

STIRLING, D.A. 2018 Nanotechnology applications. In The Nanotechnology Revolution, pp. 281–434. Pan
Stanford.

STOECKLEIN, D. & DI CARLO, D. 2018 Nonlinear microfluidics. Anal. Chem. 91 (1), 296–314.
STORM, A.J., CHEN, J.H., LING, X.S., ZANDBERGEN, H.W. & DEKKER, C. 2003 Fabrication of solid-state

nanopores with single-nanometre precision. Nat. Mater. 2 (8), 537–540.
SUN, Q., ZHOU, J.-X. & ZHANG, L. 2003 An adaptive beam model and dynamic characteristics of

magnetorheological materials. J. Sound Vib. 261 (3), 465–481.
TANAHASHI, M., KANG, S.-J., MIYAMOTO, T., SHIOKAWA, S. & MIYAUCHI, T. 2004 Scaling law of fine

scale eddies in turbulent channel flows up to Re = 800. Intl J. Heat Fluid Flow 25 (3), 331–340.
TESHUKOV, V.M. & GAVRILYUK, S.L. 2002 Kinetic model for the motion of compressible bubbles in a

perfect fluid. Eur. J. Mech. B/Fluids 21 (4), 469–491.
THOMAS, J.A. & MCGAUGHEY, A.J.H. 2008 Reassessing fast water transport through carbon nanotubes.

Nano Lett. 8 (9), 2788–2793.
THOMAS, J.A. & MCGAUGHEY, A.J.H. 2009 Water flow in carbon nanotubes: transition to subcontinuum

transport. Phys. Rev. Lett. 102 (18), 184502.
THOMPSON, P.A. & TROIAN, S.M. 1997 A general boundary condition for liquid flow at solid surfaces.

Nature 389 (6649), 360–362.
TILLMARK, N. & ALFREDSSON, P.H. 1996 Experiments on rotating plane Couette flow. In Advances in

Turbulence VI (ed. S. Gavrilakis, L. Machiels & P.A. Monkewitz), pp. 391–394. Springer.
TORRES-HERRERA, U. & CORVERA POIRÉ, E. 2018 An analytical framework to determine flow velocities

within nanotubes from their vibration frequencies. Phys. Fluids 30 (12), 122001.
URANGA, A., PERSSON, P.-O., DRELA, M. & PERAIRE, J. 2011 Implicit large eddy simulation of transition

to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Intl J. Numer. Meth. Engng
87 (1–5), 232–261.

WALCZAK, R.J., BOIARSKI, A., COHEN, M., WEST, T., MELNIK, K., SHAPIRO, J., SHARMA, S. &
FERRARI, M. 2005 Long-term biocompatibility of nanogate drug delivery implant. Nanobiotechnology
1 (1), 35–42.

WANG, G., YANG, F., ZHAO, W. & CHEN, C.-P. 2016 On micro-electrokinetic scalar turbulence in
microfluidics at a low Reynolds number. Lab on a Chip 16, 1030–1038.

916 A16-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.176


U. Torres-Herrera and E. Corvera Poiré

WANG, G.R., YANG, F. & ZHAO, W. 2014 There can be turbulence in microfluidics at low Reynolds number.
Lab on a Chip 14, 1452–1458.

WANG, L. & NI, Q. 2008 On vibration and instability of carbon nanotubes conveying fluid. Comput. Mater.
Sci. 43 (2), 399–402.

WATERS, S.L. & CUMMINGS, L.J. 2005 Coriolis effects in a rotating Hele-Shaw cell. Phys. Fluids 17 (4),
048101.

WEI, X. & LUO, T. 2018 Effects of electrostatic interaction and chirality on the friction coefficient of
water flow inside single-walled carbon nanotubes and boron nitride nanotubes. J. Phys. Chem. C 122 (9),
5131–5140.

WERDER, T., WALTHER, J.H., JAFFE, R.L., HALICIOGLU, T. & KOUMOUTSAKOS, P. 2003 On the
water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes.
J. Phys. Chem. B 107 (6), 1345–1352.

WERDER, T., WALTHER, J.H. & KOUMOUTSAKOS, P. 2005 Hybrid atomistic–continuum method for the
simulation of dense fluid flows. J. Comput. Phys. 205 (1), 373–390.

WHITBY, M., CAGNON, L., THANOU, M. & QUIRKE, N. 2008 Enhanced fluid flow through nanoscale carbon
pipes. Nano Lett. 8 (9), 2632–2637.

WHITBY, M. & QUIRKE, N. 2007 Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2 (2), 87.
WU, K., CHEN, Z., LI, J., LI, X., XU, J. & DONG, X. 2017 Wettability effect on nanoconfined water flow.

Proc. Natl Acad. Sci. USA 114 (13), 3358–3363.
YAMEEN, B., ALI, M., NEUMANN, R., ENSINGER, W., KNOLL, W. & AZZARONI, O. 2009 Synthetic

proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes.
Nano Lett. 9 (7), 2788–2793.

YANG, S.Y., YANG, J.-A., KIM, E.-S., JEON, G., OH, E.J., CHOI, K.Y., HAHN, S.K. & KIM, J.K. 2010a
Single-file diffusion of protein drugs through cylindrical nanochannels. ACS Nano 4 (7), 3817–3822.

YANG, Y., LI, X., JIANG, J., DU, H., ZHAO, L. & ZHAO, Y. 2010b Control performance and biomembrane
disturbance of carbon nanotube artificial water channels by nitrogen-doping. ACS Nano 4 (10), 5755–5762.

YOON, J., RU, C.Q. & MIODUCHOWSKI, A. 2005 Vibration and instability of carbon nanotubes conveying
fluid. Compos. Sci. Technol. 65 (9), 1326–1336.

YUSKO, E.C., JOHNSON, J.M., MAJD, S., PRANGKIO, P., ROLLINGS, R.C., LI, J., YANG, J. &
MAYER, M. 2011 Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat.
Nanotechnol. 6 (4), 253–260.

ZHANG, Y., ZHANG, R., CHANG, Q. & LI, H. 2019 Study on the role of solid surface on nanochannel flow
with molecular dynamics simulation. In 2019 4th International Conference on Mechanical, Control and
Computer Engineering (ICMCCE) (ed. L. O’Conner), pp. 138–141. IEEE.

ZHAO, L., SUN, J., WANG, X., ZENG, L., WANG, C. & TU, Y. 2020a System-size effect on the friction at
liquid-solid interfaces. Appl. Maths Mech. 41 (3), 471–478.

ZHAO, X., ANDO, Y., QIN, L.-C., KATAURA, H., MANIWA, Y. & SAITO, R. 2002 Radial breathing modes
of multiwalled carbon nanotubes. Chem. Phys. Lett. 361 (1–2), 169–174.

ZHAO, X., WEI, C. & YUAN, S.-H. 2020b Slip in Couette flow with pressure gradient: theoretical and
experimental investigation of hydrodynamic characteristics considering slip effect. J. Hydrodyn. 32 (1),
107–115.

ZHEN, Y. & FANG, B. 2010 Thermal–mechanical and nonlocal elastic vibration of single-walled carbon
nanotubes conveying fluid. Comput. Mater. Sci. 49 (2), 276–282.

ZHIANI, R., RAZAVIPANAH, I. & EMRANI, S. 2018 Functionalized single-walled carbon nanotube for
ketamine sensing: DFT and MD studies. Struct. Chem. 29 (6), 1807–1815.

ZHU, Y. & GRANICK, S. 2001 Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett.
87, 096105.

916 A16-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.176

	1 Introduction
	2 Methodology
	2.1 Principle of least action
	2.2 Constraints
	2.3 Governing equations

	3 Influence of fluid motion on the tube dynamics
	4 Influence of tube vibration on fluid dynamics
	5 Experimental perspectives
	6 Conclusion
	Appendix A. List of symbols
	Appendix B. Mathematical details of the static and dynamic frames of reference
	Appendix C. Boundary conditions for tube dynamics
	References

