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It is widely believed that statistical closure theories for dynamical systems provide
statistics equivalent to those of the governing dynamical equations from which the
former are derived. Here, we demonstrate counterexamples in the context of the widely
used mean-field quasi-linear approximation applied to both deterministic and stochastic
two-dimensional fluid dynamical systems. We compare statistics of numerical simulations
of a quasi-linear model (QL) with statistics obtained by direct statistical simulation via a
cumulant expansion closed at second order (CE2). We observe that although CE2 is an
exact statistical closure for QL dynamics, its predictions can disagree with the statistics
of the QL solution for identical parameter values. These disagreements are attributed to
instabilities, which we term rank instabilities, of the second cumulant dynamics within
CE2 that are unavailable in the QL equations.
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1. Introduction

A common problem in fluid dynamics, and indeed nonlinear physics in general, is to obtain
statistical descriptions for quantities whose master dynamical equations are known. One
approach is to accumulate statistics from numerical solutions of the master equations;
for example, one may solve the Navier–Stokes equations for a turbulent flow and gather
statistics via, for example, time averaging, ensemble averaging or averaging over a spatial
coordinate. An alternative approach, termed direct statistical simulation (DSS) seeks
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solutions of closed-form equations for the statistics themselves that are derived from the
dynamical equations; these may be equations that describe the probability density function
of the system or the low-order statistics thereof (Allawala & Marston 2016). In many
contexts, particularly in fluid dynamics, these statistical approaches are more favourable
computationally; they can alleviate the stringent requirements of spatial resolution and
sample sizes. The underlying expectation in this approach, however, is that solutions of the
statistical equations will match those obtained from solutions of the dynamical equation.

Here, we consider the specific case of quasi-linear theory, a type of mean-field
approximation that has been widely applied to a range of physical systems in fluids (and
indeed plasmas) (Malkus 1954; Vedenov, Velikhov & Sagdeev 1961; Herring 1963). In
recent years, quasi-linear model (QL) equations have been used to simulate zonal jets –
strong east–west mean flows – found in many astrophysical and geophysical situations
(Farrell & Ioannou 2007; Srinivasan & Young 2012; Galperin & Read 2019) as well as
to simulate flows in rotating dynamos (Calkins et al. 2015), plasmas (Parker & Krommes
2014), wall-bounded shear flows (Farrell et al. 2016) and convection (O’Connor, Lecoanet
& Anders 2021). The simplest non-trivial statistical closure – a cumulant expansion closed
at second order, denoted CE2 – naturally follows the assumption of the QL by retaining
only up to second-order cumulants, and has enabled efficient DSS (Marston, Conover &
Schneider 2008; Marston 2010; Tobias, Dagon & Marston 2011; Marston, Qi & Tobias
2019). Also see Farrell & Ioannou (2007, 2013) for the closely related closure stochastic
structural stability theory, where stochastic forcing replaces the neglected cumulants.

It is often supposed (usually implicitly) that the solution of the statistical equations
should mirror those of the dynamical system from which they are derived if no
approximation or truncation is made. In this paper, we demonstrate that this is not always
the case for QL dynamics in a range of fluid problems, solved via numerical computation.
We associate the discrepancy between the statistical theory (CE2) and a given realisation
of the QL dynamics with a ‘rank instability’ of the CE2 system that is not available to QL
dynamics.

This paper is organised as follows. In § 2, the fluid models used as a test bed are
described, and the numerical framework is set up. In § 3, results are presented for
deterministic and stochastically forced systems, showing the potential discrepancy between
the QL and CE2. Theory for the origin of the discrepancy, including an exactly solvable
illustration, is given in § 4, and conclusions are drawn in § 5.

2. Set-up of the models and numerical framework

2.1. The fully nonlinear model
We conduct two-dimensional simulations of a rotating, incompressible fluid with velocity
u on a doubly periodic β-plane [0, 2π]2. The time evolution of the relative vorticity
ζ ≡ ẑ · (∇ × u) is given by

∂tζ = β ∂xψ − κζ + ν ∇2ζ + J[ψ, ζ ] + F, (2.1)

where the Jacobian is J[ψ, ζ ] ≡ ∂xψ ∂yζ − ∂xζ ∂yψ , and the streamfunction ψ is given by
ψ ≡ ∇−2ζ . Gradients of rotation are included via the β term, ‘bottom’ friction via the κ
term, and viscosity via the ν term. We adopt three different forcing models to enable the
comparison of the QL and CE2 with different dynamics. The first two forcings considered
are deterministic. In the first, the flow is made to relax to an unstable jet profile (Marston
et al. 2008); see § 3.1.1. In the second, a steady, two-scale Kolmogorov-type forcing is used

1005 A4-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

57
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.578


Non-equivalence of QL and CE2

(Tobias & Marston 2017); see § 3.1.2. The third forcing that we consider is stochastic in
nature (Constantinou, Farrell & Ioannou 2016); see § 3.2.

2.2. The quasi-linear model
The QL of the fully nonlinear system is obtained by decomposing the variables into a mean
part and a fluctuating part, i.e. we write

ζ = ζ̄ + ζ ′, ψ = ψ̄ + ψ ′, (2.2a,b)

where an overbar indicates a zonal average given by

f̄ ( y) = 1
2π

∫ 2π

0
f (x, y) dx, f ′(x, y) = f (x, y)− f̄ ( y). (2.3a,b)

It is then possible to derive the QL by considering the interactions between the means and
the fluctuations so that

∂tζ̄ = −κζ̄ + ν ∂yyζ̄ + J[ψ ′, ζ ′] + F̄ (2.4)

and

∂tζ
′ = β ∂xψ

′ − κζ ′ + ν ∇2ζ ′ + J[ψ̄, ζ ′] + J[ψ ′, ζ̄ ] + (J[ψ ′, ζ ′] − J[ψ ′, ζ ′])+ F′,
(2.5)

and then removing the fluctuation–fluctuation (or ‘eddy–eddy’) interactions (in round
brackets) to yield the QL

∂tζ̄ = −κζ̄ + ν ∂yyζ̄ + J[ψ ′, ζ ′] + F̄, (2.6)

∂tζ
′ = β ∂xψ

′ − κζ ′ + ν ∇2ζ ′ + J[ψ̄, ζ ′] + J[ψ ′, ζ̄ ] + F′. (2.7)

It is this system that will be compared with the cumulant expansion (CE2) described below.

2.3. The cumulant expansion at second order (CE2)
The CE2 system is derived by first defining the equal-time cumulants. The first cumulant
for the vorticity is given by cζ ( y) = ζ̄ , whilst the second cumulants are defined by

cζ ζ (ξ, y1, y2) = ζ ′(x1, y1) ζ ′(x1 − ξ, y2), (2.8)

where ξ = x1 − x2 as the system is translationally invariant in x. Here, cζ ζ can be directly
related to cζψ and cψζ by differentiation; for example, cζψ = ∇2

1 cψψ , with the differential
operators ∇2

1 = ∂2
ξ + ∂2

y1
and ∇2

2 = ∂2
ξ + ∂2

y2
(for more detail, see Tobias et al. 2011).

We can then proceed by writing the equations in terms of ζ cumulants as follows.
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With these definitions, the dynamical equations for the first cumulant cζ may be found
immediately from (2.6):

∂cζ
∂t

= −κcζ + ν
∂2cζ
∂y2

1
−

(
∂

∂y1
+ ∂

∂y2

)
∂cψζ
∂ξ

∣∣∣∣
y1→y2

ξ→0
+ F̄. (2.9)

Likewise, the equation of motion for the second cumulant cζ ζ is obtained by multiplying
(2.7) by ζ followed by a zonal average:

∂cζ ζ
∂t

= ∂cψ
∂y1

∂cζ ζ
∂ξ

−
(
∂cζ
∂y1

− β

)
∂cψζ
∂ξ

− ∂cψ
∂y2

∂cζ ζ
∂ξ

+
(
∂cζ
∂y2

− β

)
∂cζψ
∂ξ

+ ν(∇2
1 + ∇2

2 )cζ ζ − κcζ ζ + Γ. (2.10)

Here, Γ is given by the covariance of the forcing, i.e. Γ (ξ, y1, y2) =
F′(x1, y1)F′(x1 − ξ, y2), with the zonal average over x1 combined with a short time
average over the fast stochastic fluctuations. The QL defined by (2.6) and (2.7) can be
transformed into wavevector space in a basis of Fourier harmonics. Similarly, the CE2
system defined by (2.9) and (2.10) can be solved in Fourier space by time-evolving
ĉζ (n) and ĉζ ζ (m, n1, n2) for the first and second cumulants, respectively. Here, m is
the wavenumber in the zonal (x) direction, and n, n1 and n2 are wavenumbers in
the non-zonal (y) direction. For convenience in the following, we define the matrix
C(m) to be the zonal decomposition of the second cumulant: C(m) = ĉζ ζ (m, n1, n2) =
(1/(2π)3)

∫ 2π

0

∫ 2π

0

∫ 2π

0 cζ ζ (ξ, y1, y2) e−imξ−in1y1−in2y2 dξ dy1 dy2 for m ∈ [1,M], where
M is the spectral cutoff in the zonal wavenumber.

2.4. Forcing and numerical scheme
We first examine cases that demonstrate divergences between QL and CE2 in deterministic
systems, before adopting a stochastic forcing model (Srinivasan & Young 2012; Farrell &
Ioannou 2013; Tobias & Marston 2013; Constantinou et al. 2016; Marston et al. 2019). This
enables us to highlight that disagreements between QL and CE2 may also appear in this
commonly utilised scenario.

The spectral solver ZonalFlow.jl written in the Julia programming language
(Bezanson et al. 2017) and available online (Nivarti, Marston & Tobias 2021) is used to
obtain QL and CE2 solutions of (2.1). Time-stepping algorithms are imported from the
well-tested ecosystem of the DifferentialEquations.jl package (Rackauckas &
Nie 2017); here, we use the explicit 5/4 Runge–Kutta method of Dormand and Prince, with
a fixed time step for the deterministic cases, and an SRIW1 method of order 1.5 for the
stochastic cases. For the purpose of comparing QL and CE2 solutions, the key is to use the
same spatial resolution for each model. We use small numbers of spectral modes – here,
M × N = 8 × 8, 16 × 16 and 12 × 20 – for the Kolmogorov flow, pointjet and stochastic
cases, respectively. This allows us to demonstrate clearly the differences between QL and
CE2. We have verified that the solution behaviour remains qualitatively similar for higher
resolutions.
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Figure 1. Energy in zonal wavenumbers Em for unit-rank initialisation in the pointjet case up to a spin-up of
1000 days, for (a) QL, (b) CE2 initialised with the QL IC, and (c) CE2 initialised with the QL fixed point
solution (QL FP). Rank of cumulant submatrices (d) C(1) and (e) C(4) as found in the two CE2 solutions.

3. Results

3.1. Deterministic forcing

3.1.1. Relaxation to a pointjet
We begin with the case of relaxation to a pointjet. Here, the forcing is chosen to be
F( y) = −(Ξ/τ) tanh[(π − y)/�y]. The β-plane is equatorial, i.e. β = 2Ω cos(0◦) = 4π,
where the period of rotation is Ω = 2π. Following Marston et al. (2008) and Allawala,
Tobias & Marston (2020), the viscosity is ν = 0, and the relaxation time scale τ is set
equal to the friction time scale κ−1. The jet strength is Ξ = Ω = 2π, and the jet width is
�y = 0.1. For the results shown, τ = 20 days, though we stress that the comparisons hold
for a wider range of τ .

Figure 1 shows both QL and CE2 solutions obtained for this case. Figures 1(a–c) show
the time evolution of the energy in zonal modes m, given by Em = ∑

n ζ̂
∗
m,nζ̂m,n/(m2 + n2),

where ζ̂m,n is the relevant Fourier coefficient of vorticity ζ(x, y), which can be calculated
in the QL using ζ = ζ̄ + ζ ′. In CE2, Em can be calculated as Em = ∑

n |ĉζ (n)|2/n2 for
m = 0, and Em = ∑

n C(m)(n, n)/(m2 + n2) for m ≥ 1. The QL solution, initialised with
a random noise of strength 10−6, predicts a fixed point (FP) with significant energy in the
zonal mean (m = 0) mode and energy in two further non-zero zonal wavenumbers (m = 1
and m = 4). We construct two different initial conditions (ICs) for CE2; in the first, the
cumulants are constructed using the QL IC (figure 1b). For the second IC, we initialise the
CE2 evolution using the stable QL FP (figure 1c) (Marston et al. 2019). Evidently, for this
case, CE2 solutions for both ICs agree with the QL FP as expected.

Since both ICs are constructed from a specific QL solution, the cumulant submatrices
C(m) have rank unity at initialisation for all m ≤ M. Numerically, we calculate this rank
as the number of eigenvalues of the second cumulant larger than a small cutoff 10−12

of the order of the initial power. Notably, the ranks of C(m) for m = 1, 4 remain unity
for both CE2 solutions for all t ≥ 0, as shown in figures 1(d,e), respectively, indicating
that the statistical solutions are consistent with those of a single realisation of the QL
system for the pointjet solution. Thus this is an example where the QL and CE2 are
consistent. This agreement persists even if the second cumulant is initialised to be full
rank in CE2 by assigning a value 10−6 to diagonal entries in C(m) for all m ≤ M. The
first cumulant is initialised at zero. Figure 2(a) shows Em, with the zonal mean (m = 0)
and first harmonic (m = 1) rapidly attaining values close to the QL time mean solution.
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Figure 2. (a) Energy in zonal wavenumbers Em. (b) Evolution of the rank of cumulant submatrix C(4) with
full-rank initialisation for the pointjet case (inset shows evolution of its two largest eigenvalues, λ0 and λ1). The
stability of the unit rank solution is consistent with the agreement of the CE2 and QL (figure 1a).

The second harmonic (m = 4), however, goes through an initially prolonged period of
decay, unlike the unity rank initialisation in figure 1(b). After approximately t = 150 days,
the m = 4 mode finally drops to unit rank (the figure 2(b) inset shows evolution of the
largest two eigenvalues for C(4)). This prompts the QL time mean solution to become
stable once again. Thus, despite an initial full rank perturbation, CE2 is able to ‘find’
agreement with the QL by virtue of the stability of the unit rank solution; the solution
drops rank until its rank is unity, and thereafter the agreement between CE2 and the QL is
ensured. We stress that all the DSS solutions remain realisable, with positive eigenvalues
for the second cumulant.

3.1.2. Kolmogorov forcing
Now we give what we believe is the first example of disagreement. Figure 3 shows
solutions for a case with Kolmogorov flow forcing F( y) = − cos y − 8 cos 4y, where
we choose ν = 0.02 and β = κ = 0 in (2.1), which yields non-trivial dynamics in the
resulting system (Tobias & Marston 2017). The QL (figure 3a) predicts a long-time
solution with non-zero mean and two harmonics, i.e. m = 1 (blue) and m = 2 (orange).
As for the pointjet case, CE2 simulations are performed with unit rank initialisations
of the second cumulant using the QL IC (figure 3b) and the QL endpoint (EP) solution
(figure 3c). Here, CE2 finds a single harmonic m = 1 in both cases, which disagrees with
the QL (figure 3(e) shows the rank of C(2) collapsing to zero). The disagreement is caused
by the increase in rank of C(1) from unity to nearly fully rank, as shown in figure 3(d),
indicative of a ‘rank instability’.

To probe this disagreement, we re-run the CE2 simulation initialised using the QL EP
solution with three separate modifications.

First, in case I (figures 4a,b), energy is removed from the zonal wavenumber m = 2 in
the IC so that the submatrix C(2) has zero rank initially with the rest of the ICs unchanged.
Further, a unit rank random noise (power 10−12) is added to wavenumbers with m > 2. The
resulting CE2 solution (figure 4a) disagrees with the QL EP (figure 3a), the rank instability
appearing again in m = 1; see figure 4(b). Eigenvalue spectra of C(1) (inset of figure 4b)
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Figure 3. Energy in zonal wavenumbers for the Kolmogorov flow case with unity rank initialisation, for
(a) QL and (b) CE2 initialised with the QL initial solution (QL IC), and (c) CE2 initialised with the QL
endpoint solution (QL EP). Rank of second cumulant submatrices (d) C(1) and (e) C(2) as found in the CE2
solutions.

confirm that the additional eigenvalues contributing to its higher rank are non-zero. Hence
the disagreement observed between the CE2 solution and the QL solution in case I is
attributable to a rank instability in m = 1.

Second, in case II (figures 4c,d) starting with the QL EP solution, the m = 0 and m = 1
components are frozen, thereby ensuring their unit ranks, while the m = 2 harmonic is
assigned a small full rank perturbation. As previously, for CE2, the m = 2 component
decays away (figure 4c). Repeating the same experiment for the QL (figure 4d) also now
sees the m = 2 component decay in agreement with CE2. This indicates that if the same
base state is considered for both systems, then the zonal stability characteristics are the
same.

Third, in case III (figures 4e, f ), the QL EP is again used as the IC, but during time
integration, only the largest eigenvalue is retained for each second cumulant submatrix
C(m) for all m ≤ M. This ensures that unit rank is maintained at all times for the entire
second cumulant (eigenvalue spectra in the inset of figure 4( f ) confirm that the initially
observed departures are trivial). The resulting CE2 solution for case III (figure 4e) is
now in agreement with the QL solution (figure 3a). Thus the CE2 solutions in cases
II and III, though exhibiting different zonal stability characteristics, agree with their
corresponding QL solutions if the rank of the second cumulant is artificially kept at unity;
it is the rank instability in m = 1 that causes the observed divergence between CE2 and
QL. As the rank of the m = 1 harmonic grows beyond unity, there are more channels
available for wave energy to flow, depriving the m = 2 harmonic of any energy. As a
check on our simulations, we have reproduced the rank and zonal instabilities on the sphere
with independently developed code that uses an adaptive RK4 time integration algorithm
(Plummer, Marston & Tobias 2019; Marston & Tobias 2023). The Kolmogorov forcing
employed is F(θ) = −P2(cos θ)− 8P8(cos θ), where P� are Legendre polynomials, and
θ is the co-latitude.

3.2. Stochastic forcing
The above examples indicate that there may be disagreement between the numerical
solutions of the QL and CE2 systems. Relying on the determinism of the cases considered
thus far, we have linked the disagreement to (1) a rank instability permitted only in CE2,
and (2) a possible subsequent zonal mode instability arising in the QL but not in CE2. Our
example shows both causes of divergence, but the rank instability is the key that may or
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Figure 4. (a,c,e) Energy Em in zonal wavenumbers for CE2 cases I, II and III. (b, f ) Rank of cumulant
submatrices C(m) with m = 1, 2. (d) The QL solution for case II. The rank instability is isolated in case I,
which disagrees with the QL EP of figure 3(a). Case II suppresses the rank instability by locking the base state,
resulting in consistent QL and CE2 solutions. Case III recovers the QL EP using eigenvalue truncation (insets
in (b) and ( f ) show spectra at the indicated time).

may not trigger a subsequent difference in the zonal instability characteristics of the two
systems.

We now show that divergences arising from rank instabilities are not limited to
deterministic systems. Adopting the stochastic forcing strategy detailed in Constantinou
(2015) and Constantinou et al. (2016), the forcing term in (2.1) becomes F = √

ε η(x, y),
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Figure 5. Energy in zonal wavenumbers for the stochastically forced case with unit rank and full
rank initialisation, for (a) QL and (b) CE2 initialised using the QL initial solution (QL IC), and
(c) CE2 initialised using the QL endpoint solution (QL EP). (d) The corresponding rank of second cumulant
submatrices.

where ε is the energy injection rate, and η is the stochastic noise with variance
Q(x, y). Hence F̄ = η̄ = 0, and the forcing term F′ = F = √

ε η(x, y) in (2.4) drives
the QL. The CE2 system is driven by the forcing term in (2.10), which becomes
Γ = εQ(x, y), where Q(x, y) = Q(x1 − x2, y1 − y2) = η̂(x1, y1) η̂(x2, y2) due to the
statistical homogeneity of the Gaussian noise η̂. Following Constantinou (2015) (see
H.4 there), the covariance Q(x, y) is specified on the Fourier domain by the forcing
spectrum Q̂(m, n) = c(m)2d2 e−n2d2

, which is non-zero for zonal wavenumbers m ∈
[mf ,mf + δm), where d = 0.1, and c(m) is such that the net energy injection rate
is ε.

Figure 5 shows the time-dependent zonal energy obtained when the stochastic forcing
described above is applied to two zonal modes, m = 8, 9 (i.e. kf = 8 and δk = 2). The QL
initialised with random noise (figure 5a) predicts three unstable zonal modes m = 3, 4, 5
and a stronger mean (m = 0, black line). Alongside the forced zonal modes (m = 8, 9),
these are the only significantly energetic zonal modes at t = 1000 days. The CE2 system
initialised with the same IC (figure 5b) diverges from the QL solution, predicting a
significantly weaker m = 5 mode. In contrast to the QL, the m = 6 mode is among the
most energetic modes in CE2. This feature is also reproduced when CE2 is initialised
with the QL EP solution (figure 5c). Once again, the complete picture emerges when
ranks achieved by second cumulant submatrices are plotted for the diverging solutions.
Figure 5(d) compares the ranks of cumulant submatrices for the two CE2 solutions against
the unit ranks seen in the QL. The forced modes m = 8, 9 in CE2 take on full ranks as
prescribed by the method of forcing, while the remaining modes depart significantly from
unity. Once again, we note a departure in the CE2 second cumulant rank from unity in
tandem with a divergence between QL and CE2 solutions.

We now modify the CE2 solution obtained above (as diverged from the QL) to include
a full rank initialisation of the second cumulant (power 10−4) coupled with a weakly
energetic first cumulant (power 10−8). The zonal energy evolution in figure 6(a) indicates
that such a CE2 solution returns to the CE2 solutions obtained with unity rank initialisation
(figures 5b,c), i.e. with a relatively weak m = 5 mode (purple) and significant energy
in m = 6 mode (brown). Hence CE2 with full rank initialisation also differs from the
corresponding QL solution (figure 5a). Figure 6(b) shows that the m = 5 mode, though
considerably weaker than in the QL, initially evolves to a unity rank up until t = 500 days
– but the m = 6 mode retains a high rank, leading it to be considerably more energetic
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Figure 6. (a) Energy in zonal wavenumbers Em. (b) Evolution of the rank of cumulant submatrices C(5) and
C(6) with full rank initialisation for the stochastically forced case. Despite the initialisation and forcing being
full rank, the CE2 solution does not correspond to the QL solution (figure 5a).

than in the QL. These results confirm that the correspondence between the QL state and
CE2 statistical dynamics is not restored in a system with stochastic (full rank) noise and/or
full rank initialisation.

4. Theory

A CE2 solution can stay coincident with a QL solution only if each second cumulant
across the same excited zonal wavenumbers stays unit rank. The possibility of a rank
instability, which converts a unit rank second cumulant into one that is multi-rank, is most
clearly illustrated with a simple idealisation of the stability problem. (Nonlinear feedback
on the mean, which would control these instabilities, is ignored here; for a more detailed
discussion see Appendix A of Markeviciute & Kerswell (2023).) Let the linear stability
problem for the QL problem at a given zonal wavenumber be

∂tu = Au, (4.1)

where A is an N × N real matrix, and N measures the discretisation in y. If λi and e(i)
are the 1 ≤ i ≤ N eigenvalues and corresponding right eigenvectors of A, then there will
be as many unstable directions as eigenvalues for which Re(λi) > 0. The corresponding
cumulant perturbation equation for Cij := uiuj is

∂tC = AC + CAT, (4.2)

which has a corresponding matrix eigenvalue problem with N2 eigenvalues. It is
straightforward to show that these are made up of all possible (ordered) pairings λi + λj
with corresponding eigenmatrix C(i, j) = e(i) e( j). (Building in the symmetry Cij = Cji,
as is commonly done, reduces the eigenvalue count to N(N + 1)/2 by not counting λi + λj
and λj + λi separately.) The key observation is that if λi + λj has a positive real part with
i /= j, then there is a new instability direction excitable in CE2 that is not available to the
QL computation because the corresponding eigenvector has no counterpart there, i.e. it is
uninterpretable in the QL. This is always the case when λi and λj have positive real parts,
but the associated degrees of freedom are already excited separately due to the individual
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unstable eigenvalues, and may not be dynamically important. The situation is different,
however, if one unstable eigenvalue partnered with a stable eigenvalue makes the pair
unstable in CE2. This is significant because it could lead to stable degrees of freedom in
the QL being stimulated in CE2. In practice, numerical errors will inevitably excite these
new modes – or rank instabilities – in CE2, increasing the rank of the cumulant above
unity.

A simple example makes this phenomenon clear. Consider the QL u′
1 = 2u1 and u′

2 =
−u2, which has one stable and one unstable direction. The second cumulant is given by

C =
(

u1
u2

)
⊗ (u1 u2) =

(
u2

1 u1u2
u2u1 u2

2

)
, (4.3)

and it has one eigenvector with non-zero eigenvalue u2
1 + u2

2,
(

u1
u2

)
, (4.4)

and a second eigenvector with zero eigenvalue,
(−u2

u1

)
. (4.5)

The second cumulant therefore has a rank 1, reflecting the fact that it is constructed from
the outer product of a single vector with itself (see (4.3)).

The equivalent CE2 system where C11 := u2
1, C12 = C21 := u1u2 and C22 := u2

2 (and
the symmetry C12 = C21 is built in), i.e.

∂t

⎛
⎝C11

C12
C22

⎞
⎠ =

⎛
⎝4 0 0

0 1 0
0 0 −2

⎞
⎠

⎛
⎝C11

C12
C22

⎞
⎠ , (4.6)

has two unstable directions and one stable direction. It is possible to have a perturbation
of form (0 1 0)T in the extra unstable direction, but this perturbation has no equivalent in
the QL problem as it is inconsistent with any one choice of u1 and u2. In other words, C2

12
need not equal C11 C22 as it must for the QL (4.3).

Importantly, a rank instability in CE2 will generally cause the mean flow to diverge away
from its QL equivalent, as seen in the numerical experiments. If this effect is sufficiently
strong, it is possible that one system may have different zonal stability properties to the
other. In particular, one may be unstable to a new zonal wavenumber, whereas the other
may not, at the same parameter values (e.g. see figure 3). This zonal instability would
further increase the divergence between the two systems.

Finally, it is worth remarking that the divergence of QL and CE2 dynamics can occur
even if ensemble rather than spatial averaging is used. The only prerequisite is that the QL
dynamics are not full ranked (so there are damped degrees of freedom), giving ‘headroom’
for a rank instability in CE2. This is, for example, always the case for a properly resolved
QL representation of a dissipative system. To be specific, a QL consisting of N ordinary
differential equations that tracks an n-dimensional attractor will typically have n 
 N for
a well-resolved computation (otherwise N needs to be increased). As a result, an ensemble
of all possible ICs in R

N will evolve over time in the QL to give a second cumulant of
rank O(n) < N. This opens up the possibility of a rank instability occurring in CE2 so
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that the propagated cumulant has a higher rank than that in the QL computation, thus
producing divergence between the systems. Adding stochastic forcing will not change the
situation unless the QL dynamics is forced to have a full ranked second cumulant and
all singular values are significant (i.e. the forcing is strong). The latter condition excludes
a situation where QL is weakly forced so that the singular values are partitioned into
significant values relevant for the inherent dynamical attractor, and much weaker values
that reflect the passive response to the forcing in otherwise damped degrees of freedom.

5. Conclusion

Our work indicates that care needs to be taken in interpreting the results of the statistical
representation of QL. The instabilities described above, which can be triggered either by
numerical errors, or more physically, by any of the ubiquitous sources of noise such as
thermal fluctuations (Bandak et al. 2021) present in real systems can lead to solutions
emerging for the statistical representation different to those that describe any single
realisation of a QL flow. Perhaps implicitly recognising this issue, researchers have often
initialised CE2 with a full rank second cumulant (Plummer et al. 2019) – often termed
a ‘maximum ignorance’ initial condition – and accepted that the resulting statistical
description may not agree with that of any realisation of the underlying QL theory. The
instabilities described above indicate that care must be taken in comparing direct statistical
simulation (DSS) with the results from single realisations of a QL. We note that both the
QL and CE2 systems are approximations to the full underlying dynamics, and it is not a
priori obvious which choice better approximates the statistics of the fully nonlinear system.
Higher-order truncations of cumulant expansions (such as CE2.5 and CE3) lead naturally
to a higher-rank second cumulant, owing to the feedback of the higher cumulants on the
evolution of the second cumulant (see e.g. Marston et al. 2019). We conclude by stressing
that these results are in no way a criticism of either DSS at CE2 or investigations utilising
a single realisation of a QL. We simply emphasise that these types of investigation can
only elucidate different processes. Realisations of a QL model are useful for determining
which nonlinear processes may be important in the dynamics of a turbulent flow, whilst
statistical models such as CE2 yield information about the expected (in a statistical sense)
response of a system.
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