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Abstract. For a character of the absolute Galois group of a complete discrete

valuation field, we define a lifting of the refined Swan conductor, using higher

dimensional class field theory.
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REFINED SWAN CONDUCTORS mod p 135

§1. Introduction

Let K be a complete discrete valuation field whose residue field F is of

characteristic p > 0. The Swan conductor

(1) Sw(χ) ∈ Z>0 for χ ∈H1(K,Qp/Zp) = Homcont(Gal(K̄/K),Qp/Zp)

generalizing the classical perfect residue field case, the subgroups

(2) FnH
1(K,Qp/Zp) = {χ ∈H1(K,Qp/Zp) | Sw(χ) 6 n}

of H1(K,Qp/Zp) for n> 0, and an injective homomorphism

rsw : FnH
1(K,Qp/Zp)/Fn−1H

1(K,Qp/Zp)

→m−nK /m−n+1
K ⊗OK Ω1

OK
(log)(3)

called the refined Swan conductor for n> 1, where Ω1
OK

(log) is the module

of differential forms with log poles, are defined in [20]. Let m= max(n− eK ,
[n/p]) where eK denotes the absolute ramification index ordK(p) of K (eK =

∞ if K is of characteristic p) and [n/p] = max{x ∈ Z | x6 n/p}. In this

paper, we define an injective homomorphism

Rsw : FnH
1(K,Qp/Zp)/FmH1(K,Qp/Zp)

→m−nK /m−mK ⊗OK Ω1
OK

(log)(4)

which is a lifting of (3). Note that m−mK = pm−nK + m
−[n/p]
K . We will call

the homomorphism (3) the refined Swan conductor mod mK and the

homomorphism (4) the refined Swan conductor mod p.

In the case K is of characteristic p (in this case, m= [n/p]), the

homomorphism Rsw is defined by using Artin–Schreier–Witt theory and

is already known [6, 30]. In the mixed characteristic case, we define Rsw by

using higher dimensional class field theory. See Section 3 for the definition

of Rsw.

In Section 4, we show that for a regular scheme X of finite type over Z
and for a divisor D on X with simple normal crossings, and for U =X rD

and χ ∈H1
et(U,Qp/Zp), the refined Swan conductors mod p of χ at generic

points of D defined in Section 3 glue to a global section of a certain sheaf

of differential forms on X.

We will give applications 3.6.1, 3.6.3 and 4.3.13 of our theory. Theo-

rem 3.6.1 (resp. 4.3.13) shows that the Swan conductor (1) is recovered from
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136 K. KATO, I. LEAL AND T. SAITO

pullbacks of χ to the perfect residue field cases (resp. to one-dimensional

subschemes in the situation of Section 4). Theorem 3.6.3 improves a result

of the second author in [29] concerning the change of the Swan conductor

(1) in a transcendental extension of local fields.

Shuji Saito played leading roles in the developments of higher dimensional

class field theory and its applications. We dedicate this paper to him with

admiration.

§2. Preliminaries

2.1 Differential forms and discrete valuations

2.1.1. Let K be a discrete valuation field with residue field F , valuation

ring OK and maximal ideal mK . Assume F is of characteristic p > 0.

Let eK = ordK(p) be the absolute ramification index of K (eK =∞ if K

is of characteristic p).

2.1.2. Let Ω1
OK

(log) = Ω1
OK/Z(log) be the module of differential forms

with log poles of OK over Z with respect to the standard log structure of OK
[21]. It is the OK-module defined by the following generators and relations.

Generators. dx for x ∈OK and d log(x) for x ∈K×.

Relations. d(x+ y) = dx+ dy and d(xy) = x dy + y dx for x, y ∈OK .

d log(xy) = d log(x) + d log(y) for x, y ∈K×. dx= x d log(x) for x ∈OK r
{0}.

Let

Ω̂1
OK

(log) = lim←−
n

Ω1
OK

(log)/mn
KΩ1

OK
(log).

Note that Ω̂1
OK

(log)/mn
KΩ̂1

OK
(log) = Ω1

OK
(log)/mn

KΩ1
OK

(log) for any n> 1

[9, Chapter 0, 7.2.8, 7.2.16].

The following (2) of 2.1.3 is the log version of [27, Lemma 1.1] and the

proof given below is essentially the same as that in [27, Lemma 1.1].

Lemma 2.1.3. Let (bλ)λ∈Λ be a p-base of F [12, Chapitre 0, 21.1.9] and

let b̃λ be a lifting of bλ to OK for each λ.

(1) Assume K is of characteristic p, and let π be a prime element of K.

Then Ω̂1
OK

(log) is the mK-adic completion of the free OK-module with

base db̃λ (λ ∈ Λ) and d log(π). If K is complete and [F : F p]<∞, we

have Ω̂1
OK

(log) = Ω1
OK

(log).
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REFINED SWAN CONDUCTORS mod p 137

(2) If K is of mixed characteristic, we have an isomorphism of topological

OK-modules

Ω̂1
OK

(log)∼=

(⊕̂
Λ

OK

)
⊕OK/ma

K ,

for some integer a> 1, where
⊕̂

ΛOK denotes the mK-adic completion

of the free OK-module
⊕

Λ OK with base Λ.

(3) If K is of mixed characteristic, OK/pOK ⊗OK Ω1
OK

(log) is a free

OK/pOK-module with base db̃λ (λ ∈ Λ) and d log(π).

Proof. We may assume that K is complete (and so we assume it).

(1) follows from the fact that OK ∼= F [[T ]] in this case.

Assume K is of characteristic 0. Then K is a finite extension of a complete

discrete valuation field K0 such that p is a prime element in K0 and the

residue field of K0 coincides with that of K. We may assume b̃λ ∈OK0

for all λ. As is easily seen, there is an isomorphism between the mK0-

adic completion Ω̂1
OK0

of the differential module Ω1
OK0

/Z (without log) and⊕̂
ΛOK0 which sends the λth base of

⊕
Λ OK0 to db̃λ. Let π be a prime

element of K and let f(T ) =
∑e

i=0 aiT
i be the irreducible polynomial of π

over K such that ae = 1. Then a0 is a prime element of K0 and p|ai for all

0 6 i < e. We have OK0 [T ]/(f(T ))
∼=→OK ; T 7→ π. From this, we see that

Ω̂1
OK

(log) has the presentation with generators the OK-module OK ⊗OK0

Ω̂1
OK0

and d log(π) and with the relation f ′(π)π d log(π) +
∑e−1

i=0 π
idai = 0.

This proves (2).

We prove (3). The last relation is written as(
e∑
i=1

iaiπ
i d log(π)

)
+

e−1∑
i=0

(πia0d(ai/a0) + πiai d log(a0)) = 0

which is trivial mod p.

Remark 2.1.4. Note that the version of (3) of 2.1.3 without log poles

is false. For example, if F is perfect and p is a prime element of K,

OK/pOK ⊗OK Ω1
OK

= 0 whereas OK/pOK ⊗OK Ω1
OK

(log)∼=OK/pOK with

base d log(p). Our theory will go well with log poles.

Lemma 2.1.5. Let L/K be a separable extension of complete discrete

valuation fields. Assume that the residue field of K is perfect. Then the map

OL ⊗OK Ω̂1
OK

(log)→ Ω̂1
OL

(log) is injective.
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138 K. KATO, I. LEAL AND T. SAITO

Proof. Assume first K is of characteristic p. Let πK be a prime element

of K. By (1) of 2.1.3, Ω̂1
OK

(log) is a free OK-module of rank 1 with base

d log(πK). As is easily seen, if f ∈OL and df = 0 in Ω̂1
OL

(log), then f is a

pth power in OL. Hence by the assumption that L/K is separable, we have

dπK 6= 0 in Ω̂1
OL

(log). By 2.1.3, this proves the injectivity in question.

Assume next K is of characteristic 0. We have K ⊂ L′ ⊂ L where L′ is a

complete discrete valuation field such that L is a finite extension of L′, the

residue field of L′ coincides with that of L, and a prime element of K is still a

prime element of L′. Take a p-base (bλ)λ∈Λ of the residue field of L and let b̃λ
be a lifting of bλ to OL′ for each λ. Then the proof of (2) of 2.1.3 shows that

Ω̂1
OL′

(log) =OL′ ⊗OK Ω̂1
OK

(log)⊕ (
⊕̂

ΛOL′). Let π be a prime element of L

and let f(T ) =
∑e

i=0 aiT
i be the irreducible polynomial of π over L′ with

ae = 1. Then a0 is a prime element of L′ and a0|ai for 0 6 i6 e− 1. From the

fact OL′ [T ]/(f(T ))
∼=→OL ; T 7→ π, we have that Ω̂1

OL
(log) has a presentation

with the generators the OL-module OL ⊗OL′ Ω̂1
OL′

(log) and d log(π) and

with the relation

(f ′(π)π/a0) d log(π) +
e−1∑
i=0

πi(ai d log(a0) + a0d(ai/a0)) = 0

(note f ′(π)π/a0 ∈OL r {0}). This proves 2.1.5.

2.1.6. Let a be an integer such that 0 6 a6 eK . Take a ring homo-

morphism ι : F →OK/m
a
K which lifts the identity map of F (ι exists by a

theorem of Cohen [12, Chapitre 0, 19.6.1] and a prime element π of K).

Then we have an isomorphism

(5) F [T ]/(T a)
∼=→OK/m

a
K ;

∑
i

aiT
i 7→

∑
i

ι(ai)π
i

of rings with log structures given by T and π, respectively, which sends T

to π in the log structures. (See [21] for log structures.) Since OK/m
a
K ⊗OK

Ω1
OK

(log) coincides with the module of differential forms with log poles [21]

of the ring OK/m
a
K with the log structure given by π, it is isomorphic to

the module of differential forms with log poles of the ring F [T ]/(T a) with

the log structure given by T . In the case K is of mixed characteristic and

a= eK , this gives another proof of (3) of 2.1.3.
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REFINED SWAN CONDUCTORS mod p 139

In the rest of Section 2.1, we consider the case [F : F p] = pr <∞ and

consider a residue map whose target is the one-dimensional F -vector space

Ωr
F = ∧rFΩ1

F .

Proposition 2.1.7. Assume K is complete and of characteristic p,

and that [F : F p] = pr <∞. Consider a prime element π of K, a ring

homomorphism ι : F →OK which lifts the identity map of F , and the residue

map

Res : Ωr+1
K → Ωr

F ;
∑
i�−∞

πiι(ωi) ∧ d log(π) 7→ ω0 (ωi ∈ Ωr
F ).

Let C : Ωr
F → Ωr

F be the Cartier operator [16, Chapter 0, Section 2]. Then

for integers a, b such that a> 1 and pb > a, the restriction of Cb ◦ Res to

m1−a
K Ωr+1

OK
(log) is independent of the choices of π and ι.

Proof. Note that the Cartier operator C : Ωr
F → Ωr

F is characterized by

the properties C(xp d log y1 ∧ · · · ∧ d log yr) = x d log y1 ∧ · · · ∧ d log yr for

x ∈ F and yi ∈ F× and C(dω) = 0 for ω ∈ Ωr−1
F . Using also the Cartier

operator C : Ωr+1
K → Ωr+1

K , we have

Res ◦ C = C ◦ Res : Ωr+1
K → Ωr

F .

We have Cb(m1−a
K Ωr+1

OK
(log))⊂ Ωr+1

OK
(log). On Ωr+1

OK
(log), the residue map is

the unique map which sends ω ∧ d log(t) for any ω ∈ Ωr
OK

and any t ∈K×
to ordK(t)ω̄ where ω̄ is the image of ω in Ωr

F .

2.1.8. Assume [F : F p] = pr <∞. Let a be an integer such that 1 6 a6
eK .

Fix a ring homomorphism ι : F →OK/m
a
K which lifts the identity map

of F . Fix a prime element π of K. Then by the isomorphism (5), we have

an isomorphism

(6)

a−1⊕
i=0

Ωr
F

∼=→OK/m
a
K ⊗OK Ωr+1

OK
(log)

which sends (ωi)06i6a−1 to
∑a−1

i=0 π
iι(ωi) ∧ d log(π).

Proposition 2.1.9. Assume [F : F p] = pr <∞. Let a, b be integers such

that 1 6 a6 eK and pb > a.
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140 K. KATO, I. LEAL AND T. SAITO

(1) The map

Rb : m1−a
K /mK ⊗OK Ωr+1

OK
(log)→ Ωr

F ;

a−1∑
i=0

π−i ⊗ ι(ωi) ∧ d log(π) 7→ Cb(ω0)

(ωi ∈ Ωr
F ), which is defined by fixing ι and π as in 2.1.8 using the

isomorphism (6), is independent of the choices of ι and π.

(2) Let ιb : F →OK/m
a
K be the ring homomorphism which sends x ∈ F to

(x̃)p
b

where x̃ is a lifting of x to OK/m
a
K . Then for integers i, j such that

i> 0, j > 0 and i+ j = r + 1 and for integers m, n such that a= n−m,

the pairing

(m−nK /m−mK ⊗OK Ωj
OK

(log))× (mm+1
K /mn+1

K ⊗OK Ωi
OK

(log))→ Ωr
F

sending (x, y) to Rb(x ∧ y) is a perfect duality of finite-dimensional

F -vector spaces, where F acts on the two OK/m
a
K-modules on the left

hand side via ιb.

Proof. We prove (1). If K is of characteristic p, this follows from 2.1.7.

Using the isomorphism (5), the mixed characteristic case is reduced to the

positive characteristic case.

We prove (2). The pairing (OK/m
a
K ⊗OK Ωj

OK
(log))× (OK/m

a
K ⊗OK

Ωi
OK

(log))→OK/m
a
K ⊗OK Ωr+1

OK
(log) ; (x, y) 7→ x ∧ y is a perfect duality

of finitely generated free OK/m
a
K-modules. Hence we are reduced to the

case i= 0 and j = r + 1. Then by induction on a, we are reduced to the

statement that F × Ωr
F → Ωr

F ; (x, y) 7→ Cb(xy) is a perfect duality of finite-

dimensional vector spaces over F which acts on these three spaces as follows.

An element c of F acts on F (resp. on the first Ωr
F , resp. on the second Ωr

F )

as cp
b

(resp. cp
b
, resp. c).

2.2 Truncated exponential maps for Milnor K-groups

Kurihara [28] defined exponential maps of (completed) Milnor K-groups

of complete discrete valuation fields in mixed characteristic.

Proposition 2.2.4 is a truncated version of it but works also in the positive

characteristic case and outside the area of the convergence of the usual

exponential map.
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REFINED SWAN CONDUCTORS mod p 141

2.2.1. Let p be a prime number. Let

E(T ) =

p−1∑
i=0

T i

i!
∈ Z(p)[T ].

The following 2.2.2 is well known. (In (2) of 2.2.2, note that for an

integer i> 1 which is coprime to p, the map 1 + TZ(p)[[T ]]→ 1 + TZ(p)[[T ]];

x 7→ xi is bijective and hence the converse map x 7→ x1/i is defined on

1 + TZ(p)[[T ]].)

Lemma 2.2.2.

(1) E(T1 + T2)≡ E(T1)E(T2) mod (T1, T2)pZ(p)[T1, T2].

(2) E(T )≡
∏p−1
i=1 (1− T i)−µ(i)/i mod T pZ(p)[[T ]]. Here µ is the Möbius

function.

(3) (T/E(T ))(dE(T )/dT )≡ T mod T pZ(p)[[T ]].

Proof. (1) (resp. (2)) follows from the property exp(T1 + T2) = exp(T1) ·
exp(T2) in Q[[T1, T2]] (resp. exp(

∑
i>0 (T p

i
/pi)) =

∏
i>1,(i,p)=1(1− T i)−µ(i)/i

in Q[[T ]]) of the usual exponential (resp. of Artin–Hasse exponential)

and the injectivity of Z(p)[T1, T2]/(T1, T2)p→Q[[T1, T2]]/(T1, T2)p (resp. of

Z(p)[[T ]]/(T p)→Q[[T ]]/(T p)).

(3) is straightforward.

2.2.3. For a field K, let KM
r (K) be the rth Milnor K-group of K.

For a discrete valuation field K and for i> 1, we denote by U iKM
r (K) the

subgroup of KM
r (K) generated by elements of the form {u1, . . . , ur} where

ui ∈K× (1 6 i6 r) and u1 ∈Ker(O×K → (OK/m
i
K)×).

Proposition 2.2.4. Let K be a discrete valuation field whose residue

field is of characteristic p > 0 and let r > 0, t> 1.

(1) We have a well-defined homomorphism

E : mt
K/m

pt
K ⊗OK Ωr

OK
(log)→ U tKM

r+1(K)/UptKM
r+1(K)

x⊗ d log(y1) ∧ · · · ∧ d log(yr) 7→ {E(x), y1, . . . , yr}

(x ∈mi
K , yj ∈K×). Here Ωr

OK
(log) = ∧rOKΩ1

OK
(log).

(2) This map E is surjective.

(3) This map E kills the image of

(7) d : mt
K/m

pt
K ⊗OK Ωr−1

OK
(log)→mt

K/m
pt
K ⊗OK Ωr

OK
(log).
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Proof. We prove (1). The OK-module Ω1
OK

(log) has the following

presentation by generators and relations.

Generators. d log(x) for x ∈OK r {0}.
Relations. d log(xy) = d log(x) + d log(y) for x, y ∈OKr{0}. x0 d log(x0)

=
∑n

i=1 xi d log(xi) if n> 1, xi ∈OK r {0}, and x0 =
∑n

i=1 xi.

Let h be a generator of the ideal mt
K of OK . By the above pre-

sentation of Ω1
OK

(log), in the case r = 1, it is sufficient to prove that

{E(hx0), x0} ≡
∑n

i=1{E(hxi), xi} mod UptKM
2 (K) if xi ∈OK r {0} and

x0 =
∑n

i=1 xi. (Here we denote the group law of KM
2 (K) additively.)

Since {E(hxi), xi}= {E(hxi), hxi} − {E(hxi), h} and since {E(hx0), h} ≡∑n
i=1{E(hxi), h} by (1) of 2.2.2, it is sufficient to prove that

(8) {E(hx), hx} ∈ UptKM
2 (K) for x ∈OK r {0}.

From (2) of 2.2.2 we have, modulo UptKM
2 (K),

{E(hx), hx} ≡

{
p−1∏
i=1

(1− (hx)i)−µ(i)/i, hx

}

≡ −
p−1∑
i=1

µ(i)i−2{1− (hx)i, (hx)i}= 0.

The case r > 2 is reduced to the case r = 1 and to {E(hx), y, y} ≡
0 mod UptKM

3 (K) for x ∈OK and y ∈K×. Since {y, y}= {−1, y} in

KM
2 (K), it is sufficient to prove that {E(hx),−1} ∈ UptKM

2 (K). But this

follows from the case r = 1 because d log(−1) = 0 in Ω1
OK

(log).

(2) is clear.

We prove (3). For x ∈OK r {0} and y1, . . . , yr−1 ∈K×, E sends

d(h⊗ x d log(y1) ∧ · · · ∧ d log(yr−1)) to {E(hx), hx, y1, . . . , yr−1}. Hence

(3) follows from (8).

2.3 Cohomology of the highest degree

2.3.1. Let X be a Noetherian scheme of dimension d <∞. Let F be a

sheaf of abelian groups onX for Zariski topology. In 2.3.4 (resp. 2.3.5), for an

abelian group A, we give an elementary understanding of a homomorphism

Hd(X, F)→A (resp. Hd
x(X, F)→A for a closed point x of X), where Hd is

the cohomology for Zariski topology and Hd
x is the cohomology with support

in x.

2.3.2. Let P (X) be the set of all (d+ 1)-tuples p = (x0, . . . , xd) of

points of X such that {xi}( {xi+1} for all 0 6 i6 d− 1.
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REFINED SWAN CONDUCTORS mod p 143

For an integer s such that 0 6 s6 d, let Qs(X) be the set of all d-tuples

q = (x0, . . . , xs−1, xs+1, . . . , xd) of points of X such that the set Pq(X) :=

{(x′i)i ∈ P (X) | x′i = xi if i 6= s} is not empty.

2.3.3. For any p = (xi)i ∈ P (X), we have a homomorphism ιp : Fη(p)→
Hd(X, F) with η(p) = xd defined as the composition Fη(p) =H0

xd
(X, F)→

H1
xd−1

(X, F)→ · · · →Hd
x0

(X, F)→Hd(X, F). (See [13, Chapter IV] for

these cohomology groups with support {xi}.)
Hence for an abelian group A, a homomorphism h :Hd(X, F)→A

induces a homomorphism hp = h ◦ ιp : Fη(p)→A for each p ∈ P (X).

Lemma 2.3.4. Let the notation be as above. Then for an abelian group

A, the map

Hom(Hd(X, F), A)→
∏

p∈P (X)

Hom(Fη(p), A) ; h 7→ (hp)p∈P (X)

defined above is an injection and the image consists of all elements

(hp)p∈P (X) satisfying the following conditions (i) and (ii).

(i) Let 0 6 s6 d− 1, q = (xi)i ∈Qs(X), and let a ∈ Fxd. Then hp(a) = 0

for almost all p ∈ Pq(X) and
∑

p∈Pq(X) hp(a) = 0.

(ii) Let q = (xi)i ∈Qd(X) and let a ∈ Fxd−1
. Then

∑
p∈Pq(X) hp(a) = 0.

(Note that Pq(X) is a finite set in this situation.)

A version of 2.3.4 for Nisnevich topology (not Zariski topology) is stated

and proved in [23, Section 1.6].

Lemma 2.3.5. Let the notation be as above. Let x be a closed point

of X. Let Px(X) = {p = (xi)i | x0 = x} and Qs,x(X) = {q = (xi)i ∈Qs(X) |
x0 = x} for 1 6 s6 d. Then for an abelian group A, the map

Hom(Hd
x(X, F), A)→

∏
p∈Px(X)

Hom(Fη(p), A) ; h 7→ (hp)p∈Px(X)

(hp = h ◦ ιx,p where ιx,p : Fη(p)→Hd
x(X, F) is defined as in 2.3.3) is an

injection and the image consists of all elements (hp)p∈Px(X) satisfying the

following conditions (i) and (ii).

(i) Let 1 6 s6 d− 1, q = (xi)i ∈Qs,x(X), and let a ∈ Fxd. Then hp(a) = 0

for almost all p ∈ Pq(X) and
∑

p∈Pq(X) hp(a) = 0.

(ii) Let q = (xi)i ∈Qd,x(X), and let a ∈ Fxd−1
. Then

∑
p∈Pq(X) hp(a) = 0.
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2.3.6. Lemmas 2.3.4 and 2.3.5 are proved together by induction on

d= dim(X) as follows, by using the localization theory of cohomology with

supports explained in [13, Chapter IV].

Let Xi be the set of all x ∈X such that dim({x}) = i. Let Xi be the set

of all x ∈X such that dim(Spec(OX,x)) = i. By using the spectral sequence

Eij1 =
⊕
x∈X−i

H i+j
x (X, F)⇒H i+j(X, F)

and using H i
x(X, F) =H i

x(Spec(OX,x), F), where we denote the pullback of

F to Spec(OX,x) also by F , we obtain the following (1)–(5) by induction on

dim(X).

(1) If i > d, H i(X, F) = 0 and H i
x(X, F) = 0 for any x ∈X.

(2) We have an exact sequence
⊕

x∈X1
Hd−1
x (X, F)→

⊕
x∈X0

Hd
x(X, F)→

Hd(X, F)→ 0.

(3) If x ∈Xi and i> 2, H i
x(X, F)∼=H i−1(Spec(OX,x) r {x}, F) and

Spec(OX,x) r {x} is of dimension i− 1.

(4) If x ∈X1, we have an exact sequence Fx→
⊕

η∈Spec(OX,x)r{x} Fη→
H1
x(X, F)→ 0.

(5) If x ∈X0, H0
x(X, F) = Fx.

By (1)–(5) and by induction on d= dim(X), we have the map h 7→ (hp)p
from the left hand side of 2.3.4 (resp. 2.3.5) to the right hand side of 2.3.4

(resp. 2.3.5), that Hd(X, F) (resp. Hd
x(X, F) for x ∈X0) is generated by the

images of ιp : Fη(p)→Hd(X, F) for p ∈ P (X) (resp. ιx,p : Fη(p)→Hd
x(X, F)

for p ∈ Px(X)), and hence that this map h 7→ (hp)p is injective. We give the

proof of the surjectivity of this map.

Let x ∈X0 and let (hp)p be an element of the set on the right hand

side of 2.3.5. If x ∈Xi with i < d, Px(X) is empty. So we may assume

x ∈Xd. Let U = Spec(OX,x) r {x}. We have the bijection Px(X)→
P (U) ; p = (xi)06i6d 7→ p′ = (xi+1)06i6d−1. By induction on d, (hp′)p′∈P (U)

corresponds to a homomorphism Hd−1(U, F)→A. If d> 2, by the

above (3), (hp)p corresponds to a homomorphism h :Hd
x(X, F)→A. The

proof for the case d= 1 (resp. d= 0) is similar by using the above (4)

(resp. (5)).

Next let (hp)p be an element of the set on the right hand side of 2.3.4. The

case d= 0 is trivial and so assume d> 1. Since P (X) is the disjoint union of

Px(X) for x ∈X0, (hp)p induces a homomorphism
⊕

x∈X0
Hd
x(X, F)→A.
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Consider the exact sequence in the above (2). For x ∈X1, Hd−1
x (X, F) is

zero unless x ∈Xd−1 by the above (1), and is generated by the images of

hx,q : Fη(q)→Hd−1
x (X, F) if x ∈Xd−1 where q ranges over all elements of

Px(Spec(OX,x)). By this fact and by the fact Q0(X) is the disjoint union of

Px(Spec(OX,x)) for x ∈X1 ∩Xd−1, the homomorphism
⊕

x H
d
x(X, F)→A

kills the image of
⊕

x∈X1
Hd−1
x (X, F) by the property (i) with s= 0 of (hp)p

in 2.3.4. Hence (hp)p corresponds to a homomorphism Hd(X, F)→A.

2.4 Higher dimensional class field theory (review)

We review higher dimensional local class field theory in [31], [17], etc.

in 2.4.1–2.4.5 and higher dimensional global class field theory in [23],

etc. in 2.4.10–2.4.12 briefly, giving complements 2.4.6–2.4.9 to the relation

between local theory and global theory.

We first review the higher dimensional local class field theory.

2.4.1. Recall that the notion d-dimensional local field is as follows.

A 0-dimensional local field is a finite field. For d> 1, a d-dimensional

local field is a complete discrete valuation field whose residue field is a

d− 1-dimensional local field.

2.4.2. The following remark is used in 2.4.8 later.

To give a d-dimensional local field K is equivalent to giving a valuation

ring V having the following properties (i)–(iii). (i) The residue field of V

is a finite field. (ii) The value group of V is isomorphic to Zd with the

lexicographic order. (iii) If P0 ) · · ·) Pd = (0) are all prime ideals of V , for

each 1 6 i6 d, the local ring of V/Pi at the prime ideal Pi−1/Pi (which is a

discrete valuation ring) is complete.

In fact, K is obtained from V as the field of fractions of V . V = VK is a

subring of K defined by induction on d as follows. If d= 0, then VK =K. If

d> 1, VK is the subring of the discrete valuation ring OK consisting of all

elements whose images in the residue field F of K belong to VF .

2.4.3. By higher dimensional local field theory (see [17, 31]), for a

d-dimensional local field K, we have a canonical homomorphism KM
d (K)→

Gal(Kab/K) called the reciprocity map, where Kab is the maximal abelian

extension of K.

2.4.4. For n> 0, define the category Fn inductively as follows. F0 is

the category of finite sets. For n> 1, Fn = ind(pro(Fn−1)) where pro( ) is

the category of pro-objects and ind( ) is the category of ind-objects. Let

F∞ =
⋃
n Fn.
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2.4.5. For a d-dimensional local field K, we can regard K and

K× as objects of F∞ (actually of Fd) canonically [22, Introduction]. A

homomorphism KM
d (K)→Q/Z is said to be continuous if the composition

K× × · · · ×K× (d times)
{ }→KM

d (K)→Q/Z is a morphism of F∞.

A main result of higher dimensional local class field theory formulated

in [22, Theorem 2] is the following. Via the reciprocity map in 2.4.3,

H1(K,Q/Z) = Homcont(Gal(Kab/K),Q/Z) is isomorphic to the group of

continuous homomorphisms KM
d (K)→Q/Z of finite orders.

We now consider the global theory. In the higher dimensional global

class field theory in [23], “henselian variants of higher dimensional local

fields” (the fields Kh
v below) are used. But we use in this paper the higher

dimensional local fields Kv (see below). We give complements to relate Kv

to the global class field theory in [23].

2.4.6. Let X be an integral scheme of finite type over Z of dimension

d, and let K be the function field of X. By a place of K along X, we mean

a subring v of K satisfying the following conditions (i)–(iii).

(i) K is the field of fractions of v.

(ii) v is a valuation ring and the value group is isomorphic to Zd with the

lexicographic order.

(iii) There is an element p = (xi)06i6d ∈ P (X) such that if P0 ) · · ·) Pd
denotes the set of all prime ideals of v, then for 0 6 i6 d, the local ring

of v at Pi (which is a valuation ring) dominates xi.

Let Pl(X) be the set of all places of K along X. We have a canonical

map Pl(X)→ P (X) which sends v ∈ Pl(X) to p in (iii).

For v ∈ Pl(X), we will define a d-dimensional local field Kv ⊃K called

the local field of K at v. The class field theory of K is related to the local

class field theory of Kv as is explained below.

2.4.7. To obtain local fields Kv of K for v ∈ Pl(X) and their henselian

versions Kh
v , we use the following iterated completion and iterated henseliza-

tion.

For 0 6 i6 d and for a sequence (x0, . . . , xi) of points of X such that

{x0} ⊂ · · · ⊂ {xi} and such that dim({xj}) = j for 0 6 j 6 i, we define the

rings ÔX,x0,...,xi and OhX,x0,...,xi
over OX,xi as follows, inductively.

In the case i= 0, ÔX,x0 (resp. OhX,x0
) is the completion (resp. henseliza-

tion) of OX,x0 .
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For i> 1, let

ÔX,x0,...,xi =
∏
P

(ÔX,x0,...,xi−1)∧P , OhX,x0,...,xi =
∏
P

(OhX,x0,...,xi−1
)hP

where P ranges over all prime ideals of ÔX,x0,...,xi−1 (resp. OhX,x0,...,xi−1
) lying

over the prime ideal of OX,xi−1 corresponding to xi, and ( )∧P (resp. ( )hP )

denotes the completion (resp. henselization) of the local ring ( )P of the ring

( ) at P . By induction on i, we see that the set of such P is a nonempty

finite set and that ÔX,x0,...,xi and OhX,x0,...,xi
are finite products of complete

(resp. henselian) local integral domains of dimension d− i.
For p = (xi)i ∈ P (X), let

Kp = ÔX,x0,...,xd , Kh
p =OhX,x0,...,xd

.

Then Kp and Kh
p are finite products of fields.

2.4.8. Let X and K be as above. The following statements are proved

in 2.4.9 by induction on d.

(1) Let p ∈ P (X), and let Pl(p) = Pl(X, p) be the inverse image of p in

Pl(X). Then each field factor of Kp has canonically a structure of a

d-dimensional local field. We have a bijection Spec(Kp)→ Pl(p) which

sends the point of Spec(Kp) corresponding to a field factor L of Kp to

the valuation ring VL ∩K, where VL ⊂ L is the valuation ring of rank

d associated to L by 2.4.2. In particular, the set Pl(p) is a nonempty

finite set.

(2) Let p ∈ P (X). Then the map Spec(Kp)→ Spec(Kh
p ) induced by the

inclusion map Kh
p →Kp is bijective.

(3) Let X ′→X be a finite surjective morphism of integral schemes of finite

type over Z and let K ′ be the function field of X ′. Then we have

canonical isomorphisms

K ′ ⊗K Kv =
∏
v′|v

K ′v′ , K ′ ⊗K Kh
v =

∏
v′

(K ′)hv′

where v′|v means that v′ ranges over all elements of Pl(X ′) such that

v′ ∩K = v.

2.4.9. We prove statements in 2.4.8 by induction on d.

We prove (1). Let p = (xi)i ∈ P (X), and let Y ⊂X be the closure of xd−1

in X with the reduced scheme structure. Let q = (x0, . . . , xd−1) ∈ P (Y ).
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Let F be the residue field of xd−1, that is, the function field of Y . Let

A be the normalization of OX,xd−1
and let ∆ be the set of all maximal

ideals of A. Then ∆ is finite. For z ∈∆, let κ(z) be the residue field of

z which is a finite extension of F , let Y (z) be the integral closure of Y

in κ(z) and let Pl(Y (z), q)⊂ Pl(Y (z)) be the inverse image of q under the

map Pl(Y (z))→ P (Y ). Then we have a bijection
∐
z∈∆ Pl(Y (z), q)→ Pl(p)

which sends w ∈ Pl(Y (z), q) with z ∈∆ to the valuation ring consisting

of all elements of the local ring of A at z whose residue classes in κ(z)

belong to w. The ring A is Noetherian normal one-dimensional semilocal

integral domain, and hence is a principal ideal domain. Let t be a generator

of the intersection of all maximal ideals of A. Let B = ÔX,x0,...,xd−1
and

let C =A⊗OX,xd−1
B. Then C is a finite product of one-dimensional local

integral domains, C/tC = (
∏
z∈∆ κ(z))⊗F B/mB where m is the maximal

ideal of OX,xd−1
, and B/mB = ÔY,x0,...,xd−1

=
∏
λ∈Pl(q) Fλ where the last =

is by the statement 1 for dimension d− 1. Hence κ(z)⊗F B/mB = κ(z)⊗F∏
λ∈Pl(q) Fλ =

∏
w∈Pl(Y (z),q) κ(z)w by the statement (3) for dimension d− 1.

This shows that Spec(Kp) is identified with
∐
z∈∆ Pl(Y (z), q). Hence

Spec(Kp) is identified with Pl(p), and for v ∈ Pl(p) corresponding to

w ∈ Pl(Y (z), q), Kv is the field of fractions of a complete discrete valuation

ring whose residue field is κ(z)w. This proves (1).

We prove (2). Replacing the iterated completion in the above arguments

by the iterated henselization, and by using the induction on d, we obtain

similarly a bijection between Spec(Kh
p ) and Pl(p). This shows that the map

Spec(Kp)→ Spec(Kh
p ) is bijective.

We prove (3) for Kv. Let f be the morphism X ′→X. By induction on

i, we have that (f∗OX′)xi ⊗OX,xd−1
ÔX,x0,...,xi

∼=→
∏
x′0,...,x

′
i
ÔX′,x′0,...,x′i where

(x′0, . . . , x
′
i) ranges over all sequences of points of X ′ such that x′j lies

over xj for 0 6 j 6 i and such that {x′0} ⊂ · · · ⊂ {x′i}. The case i= d gives

an isomorphism K ′ ⊗K Kp
∼=→
∏

p′ K
′
p′ where p′ ranges over all elements of

P (X ′) lying over p. By looking at the v-factor of this isomorphism, we

have (3) for Kv.

The proof of (3) for Kh
v is similar to that for Kv.

2.4.10. In 2.4.10–2.4.12, let X be a proper normal integral scheme over

Z and let K be the function field of X. We assume X(R) = ∅.
The following is what we use in this paper from the higher dimensional

global class field theory.
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We have a unique continuous homomorphism

(9) lim←−
I

Hd(X, KM
d (OX , I))→Gal(Kab/K)

called the reciprocity map, where I ranges over all nonzero coherent ideals

of OX , KM
d (OX , I) denotes the kernel of KM

d (OX)→KM
d (OX/I) with KM

d

the sheaf of dth Milnor K-groups, the cohomology groups are the Zariski

cohomology groups, and the left hand side is regarded as a topological space

for the projective limit of the discrete topologies of Hd(X, KM
d (OX , I)),

which is characterized by the following property. For χ ∈H1(K,Q/Z) =

Homcont(Gal(Kab/K),Q/Z), the homomorphism

Hd(X, KM
d (OX , I))→Q/Z

induced by χ for some I corresponds to (hp)p∈P (X) via 2.3.4 where hp :

KM
d (K)→Q/Z is the composition

KM
d (K)→

⊕
v∈Pl(p)

KM
d (Kv)

χ→Q/Z

where Pl(p) is as in 2.4.8, the first arrow is the diagonal map, and the map

KM
d (Kv)→Q/Z is induced by the image of χ in H1(Kv,Q/Z) and by the

d-dimensional local class field theory of Kv.

2.4.11. In [23], a continuous map

(10) lim←−
I

Hd(XNis, K
M
d (OX , I))→Gal(Kab/K)

called the reciprocity map is defined, where the cohomology groups are

Nisnevich cohomology, instead of Zariski cohomology, and the left hand

side is endowed with the topology of the projective limit of the discrete

sets.

The map (9) is induced from the map (10) and the canonical map

Hd(X, KM
d (OX , I))→Hd(XNis, K

M
d (OX , I)).

In fact, by the definition of the reciprocity map (10) in [23], for χ ∈
H1(K,Q/Z), the induced homomorphism (9) corresponds to (hp)p∈P (X)

where hp :KM
d (K)→Q/Z is the composition KM

d (K)→
⊕

v∈Pl(p) K
M
d (Kh

v )
χ→Q/Z with KM

d (Kh
v )→Q/Z a homomorphism defined in [23]. This last

homomorphism coincides with the composition KM
d (Kh

v )→KM
d (Kv)→

Q/Z where the last map is that in 2.4.10.

https://doi.org/10.1017/nmj.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.13


150 K. KATO, I. LEAL AND T. SAITO

2.4.12. The main result of [23] concerning the class field theory of K is

as follows. (In [23], we do not need to assume X(R) = ∅, but if we do not

assuming X(R) = ∅, the left hand side of (10) should be modified by adding

archimedean objects to have results below.)

In the case K is of characteristic 0, the map (10) is an isomorphism of

topological groups.

In the case K is of characteristic p > 0, the map (10) induces an

isomorphism of topological groups from the left hand side of (10) to the

fiber product of Gal(Kab/K)→Gal(Fab
p /Fp)← Z, where Z is discrete and

the right arrow sends 1 ∈ Z to the Frobenius Fab
p → Fab

p ; x 7→ xp.

By Raskind [32] and Kerz and Saito [26], these results on the class

field theory of K hold also for Zariski cohomology lim←−IH
d(X, Km

d (OX , I))

(replacing Nisnevich cohomology) if K is of characteristic 6= 2.

2.4.13. There is another formulation of higher dimensional class field

theory due to Wiesend [34] which was studied more in [26]. But we do not

use it in this paper.

Remark 2.4.14. The first author would like to take this opportunity to

express that the both authors of [23] regret that Nisnevich topology is called

henselian topology in [23] due to their ignorance of the preceding works of

Nisnevich.

§3. Refined Swan conductors mod p

3.1 The subject

3.1.1. Let K be a complete discrete valuation field with residue

field F , and assume F is of characteristic p > 0. Let n> 1 and let m=

max(n− eK , [n/p]).
We define a homomorphism

Rsw : FnH
1(K,Q/Z)→m−nK /m−mK ⊗OK Ω1

OK
(log)

which we call the refined Swan conductor modulo p.

3.1.2. The homomorphism Rsw in 3.1.1 is characterized by the following

properties (i) and (ii).

(i) Rsw is compatible with any homomorphisms of cdvf. That is, the

following diagram is commutative for an extension of complete discrete
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valuation fields K ′/K, where n′ = e(K ′/K)n with e(K ′/K) the ramifi-

cation index of the extension K ′/K and m′ = max(n′ − eK′ , [n′/p]).

FnH
1(K,Q/Z) → m−nK /m−mK ⊗OK Ω1

OK
(log)

↓ ↓
Fn′H

1(K ′,Q/Z) → m−n
′

K′ /m
−m′
K′ ⊗OK′ Ω1

OK′
(log)

(The fact FnH
1(K,Qp/Zp) is sent to Fn′H

1(K ′,Qp/Zp) is proved

in [20].)

(ii) If F is an r-dimensional local field (r > 0), Rsw is characterized by the

property

χ(E(α)) = ResF (Rb(α ∧ Rsw(χ)))

for χ ∈ FnH1(K,Qp/Zp), α ∈mm+1
K /mn+1

K ⊗OK Ωr
OK

(log). Here E(α)

denotes the image of α under the truncated exponential map

mm+1
K /mn+1

K ⊗OK Ωr
OK

(log)→ Um+1KM
r+1(K)/Un+1KM

r+1(K),

χ(E(α)) denotes the image of E(α) under the composition KM
r+1(K)→

Gal(Kab/K)
χ→Qp/Zp of the reciprocity map of the r + 1-dimensional

local field K and χ, which kills Un+1KM
r+1(K) by the condition Sw(χ) 6

n, and

ResF : Ωr
F → Fp

is the residue map (3.3.2). Note that α ∧ Rsw(χ) ∈mm+1−n
K /mK ⊗OK

Ωr+1
OK

(log) and n−m6 eK and hence its Rb is defined in Ωr
F .

3.1.3. If char(K) = p > 0,

Rsw : FnH
1(K,Q/Z)→m−nK /m

−[n/p]
K ⊗OK Ω1

OK
(log)

is the homomorphism of Matsuda [30, Remark 3.2.2] and Borger [6, 3.6]

defined by using Artin–Schreier–Witt theory. It was studied in [29, Sec-

tion 2]. See Sections 3.2 and 3.5.9.

In the mixed characteristic case, we will construct Rsw using higher

dimensional local class field theory (Section 3.3) and also higher dimensional

global class field theory (Section 3.4).

3.1.4. It may seem strange that we use higher dimensional global class

field theory for the local subject Rsw. Our idea is that since any field is a

union of finitely generated fields over a prime field and since each finitely
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generated field over a prime field has class field theory, any subject about

one-dimensional Galois representations of any field can be studied by using

higher dimensional global class field theory. Our method in 3.5.6 to define

Rsw actually follows this idea.

A purely local method for the local subject Rsw exists also in the mixed

characteristic case as in 3.1.5.

3.1.5. In the case F is perfect, our homomorphism Rsw can be defined

also by using the local class field theory of Serre [33] and Hazewinkel [14].

In the case [F : F p] = pr <∞, Rsw can be also defined by using the duality

theory [25] which is a generalization of the local class field theory of Serre

[33] and Hazewinkel [14] to the case [F : F p] = pr.

These things will be explained elsewhere.

3.1.6. The authors wonder whether Rsw in general can be obtained

by the reduction to the perfect residue field case using the local class field

theory of Serre [33] and Hazewinkel [14] and the work [5] of Borger.

3.1.7. The authors wonder whether our refined Swan conductor mod p

can be obtained from the relation of p-adic étale cohomology and de Rham–

Witt complex in [11] or from the relation of p-adic étale cohomology and

Hochschild homology in [4].

3.2 Positive characteristic case (review)

3.2.1. Let K be a complete discrete valuation field of characteristic

p > 0. We briefly review the definition of

Rsw : FnH
1(K,Q/Z)→m−nK /m

−[n/p]
K ⊗OK Ω1

OK
(log).

For details, see [6, 16, 30].

In 3.5.9, we will show that this Rsw has the properties (i) and (ii) in 3.1.2.

3.2.2. From Artin–Schreier–Witt theory, there are isomorphisms

(11) Ws(K)/(φ− 1)Ws(K)'H1(K, Z/psZ),

where Ws(K) denotes the ring of Witt vectors of length s, and φ the

endomorphism of Frobenius.

3.2.3. For a Witt vector a= (as−1, . . . , a0) ∈Ws(K), let ordK(a) =

mini{piordK(ai)}. In [7], Brylinski defined an increasing filtration of Ws(K)

as

FnWs(K) = {a ∈Ws(K) | ordK(a) >−n}
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for n ∈ Z>0. The filtration FnH
1(K, Z/psZ) defined in [20] is the image of

FnWs(K) under (11).

3.2.4. The homomorphism −d :Ws(K)→ Ω1
K given by a= (as−1,

. . . , a0) 7→ −
∑

i a
pi−1
i dai produces a map

FnWs(K)/F[n/p]Ws(K)→m−nK /m
−[n/p]
K ⊗OK Ω1

OK
(log),

which factors through

FnH
1(K, Z/psZ)/F[n/p]H

1(K, Z/psZ)→m−nK /m
−[n/p]
K ⊗OK Ω1

OK
(log),

inducing

Rsw : FnH
1(K,Q/Z)→m−nK /m

−[n/p]
K ⊗OK Ω1

OK
(log).

Here the minus sign of the definition of −d may seem strange, but we

put it to have the compatibility with the refined Swan conductor mod mK

in [20]. The minus sign naturally appears in the argument in 3.5.11.

Remark 3.2.5. The second author was unaware of the unpublished

work of Borger [6] when writing [29], and sincerely regrets not quoting it

in [29].

3.3 Application of higher dimensional local class field theory

3.3.1. Let K be a complete discrete valuation field with residue field F .

In the case F is an r-dimensional local field, we define Rsw by using higher

dimensional local class field theory as below.

We will use the continuity of KM
r+1(K)→Q/Z induced by the reciprocity

map of the r + 1-dimensional local field K and by χ ∈H1(K,Q/Z) and we

will use also the self-duality of the additive group F . Here the continuity

is the one defined in [22], and the duality is also treated by using such

continuity. (In the case r = 1, this duality is the usual self-duality of the

locally compact abelian group F .)

3.3.2. Let F be an r-dimensional local field of characteristic p > 0. We

have the residue map

ResF : Ωr
F → Fp

defined as follows. (The following definition and properties of ResF are

contained in [17, Chapter 2, Lemmas 12 and 14].) Let Fr = F and for

1 6 i6 r, define the field Fi−1 to be the residue field of Fi by downward
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induction on i. Then ResF is the composition

Ωr
F = Ωr

Fr
Res→ Ωr−1

Fr−1
→ · · · → Ω1

F1

Res→ Ω0
F0

= F0
trace→ Fp

where each Res : Ωi
Fi
→ Ωi−1

Fi−1
is the residue map in 2.1.7 defined by taking

Fi−1→OFi and a prime element πi of the discrete valuation field Fi as

in 2.1.7. This composition ResF is independent of the choices of Fi−1→OFi
and πi.

We have

(12) ResF ◦ C = ResF ,

where C is the Cartier operator. For a finite extension F ′ of F , we have

(13) ResF ◦ TrF ′/F = ResF ′ ,

where TrF ′/F is the trace map Ωr
F ′ → Ωr

F . (This trace map for differential

forms is defined in [19] as

Ωr
F ′
∼= U1KM

r+1(F ′((T )))/U2KM
r+1(F ′((T )))

norm→ U1KM
r+1(F ((T )))/U2KM

r+1(F ((T )))∼= Ωr
F .

The trace map for differential forms in a more general setting is defined in

[10]. The formula (13) contains the formula (12) because for a field k of

characteristic p such that [k : kp] = pr, the Cartier operator Ωr
k→ Ωr

k is the

trace map of the homomorphism k→ k ; x 7→ xp.)

3.3.3. Let F be as in 3.3.2 and let V be a finite-dimensional vector

space over F . Then V is canonically regarded as an object of the category

Fr,ab of abelian group objects of the category Fr (2.4.4).

Lemma 3.3.4. Let F and V be as in 3.3.3 and let V ∗ = HomF (V, Ωr
F ).

Then we have the bijection

V ∗
∼=→Homcont(V, Fp) ; h 7→ (x 7→ ResF (h(x))).

Here Homcont is the set of homomorphisms in the category Fr,ab.

Proof. This follows from [22, Proposition 3].
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3.3.5. Let K be a complete discrete valuation field with residue field

F and assume that F is an r-dimensional local field of characteristic p > 0.

(Hence K is an r + 1-dimensional local field.)

Let χ ∈ FnH1(K,Qp/Zp). Then by [23], χ induces a continuous homo-

morphism KM
r+1(K)/Un+1KM

r+1(K)→Qp/Zp, where the continuity is that

of [22]. Let m= max(n− eK , [n/p]). Then via

E : mm+1
K /mn+1

K ⊗OK Ωr
OK

(log)→KM
r+1(K)/Un+1KM

r+1(K)

(2.2.4(1)), we obtain a continuous homomorphism uχ : mm+1
K /mn+1

K ⊗OK
Ωr
OK

(log)→ Fp.
Take an integer b> 0 such that pb > n−m. Then

(m−nK /m−mK ⊗OK Ω1
OK

(log))× (mm+1
K /mn+1

K ⊗OK Ωr
OK

(log))→ Ωr
F ;

(x, y) 7→Rb(x ∧ y) is a perfect duality of finite-dimensional F -vector spaces

where F acts on the two OK/m
n−m
K -modules on the left hand side via ιb

((2) of 2.1.9). Hence by 3.3.4, uχ corresponds to an element RswK(χ) ∈
m−nK /m−mK ⊗OK Ω1

OK
(log). This element is independent of the choice of b.

The following lemma will be used in Section 3.5.

Lemma 3.3.6. Assume that K is a d-dimensional local field whose

residue field F is of characteristic p > 0. Assume one of the following (i)

and (ii).

(i) K ′ is a finite extension of K.

(ii) K ′ is the field of fractions K{{T}} of the completion of the local ring

of OK [[T ]] at the prime ideal generated by mK (then K ′ is a d+ 1-

dimensional local field with residue field F ((T ))).

Then RswK and RswK′ are compatible.

3.3.7. We prove the case (i) of 3.3.6. We have a commutative diagram

KM
d (K ′) → Gal((K ′)ab/K ′)
↓ ↓

KM
d (K) → Gal(Kab/K)

where the horizontal arrows are the reciprocity maps, the left vertical

arrow is the norm map and the right vertical arrow is the natural one [17,

Section 3.2, Corollary 1].
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Let RK : m1−n+m
K /mK ⊗OK Ωd

OK
(log)→ Fp be the composite map ResF ◦

Rb (pb > n−m) which is independent of b, and let RK′ : m
1−n′+m′
K′ /mK′

⊗OK′ Ωd
OK′

(log)→ Fp (n′ = e(K ′/K)n, m′ = max(n′ − eK′ , [n′/p])) be the

corresponding map for K ′.

Let χ ∈ FnH1(K,Qp/Zp), let χK′ ∈ Fn′H1(K ′,Qp/Zp) be the image of χ,

and let Rsw(χ)K′ ∈m−n
′

K′ /m
−m′
K′ ⊗OK′ Ω1

OK′
(log) be the image of Rsw(χ) =

RswK(χ) ∈m−nK /m−mK ⊗OK Ω1
OK

(log). Since any finite extension of K is a

successive extension of a tame extension and extensions of degree p, it is

sufficient to prove Rsw(χK′) = Rsw(χ)K′ in the case K ′/K is tame and in

the case [K ′ :K] = p. It is sufficient to prove in these cases that

(14) RK′(Rsw(χK′) ∧ α) =RK′(Rsw(χ)K′ ∧ α)

for any α ∈mm′+1
K′ /mn′+1

K′ ⊗OK′ Ωd−1
OK′

(log). In these cases, the last group is

generated additively by elements of the following three forms.

(a) fω where f ∈mm′+1
K′ and ω ∈ Ωd−1

OK
(log).

(b) ω ∧ df where f is as in (a) and ω ∈ Ωd−2
OK

(log).

(c) ω ∧ d log(f) where ω ∈mm+1
K /mn+1

K ⊗OK Ωd−2
OK

(log) and f ∈ (K ′)×.

(This generation is deduced from 2.1.3. If K ′/K is tamely ramified,

mm′+1
K′ /mn′+1

K′ ⊗OK′ Ωd−1
OK′

(log) is additively generated by elements of the

form (a). If the ramification index of K ′/K is one and if the residue field

of K ′ is a purely inseparable extension of K of degree p generated by the

residue class of an element g of OK′ , and if π denotes a prime element

of K, it is additively generated by elements of the form (a), elements of

the form (b) with f = πjgj (m+ 1 6 i6 n, 1 6 j 6 p− 1), and elements of

the form (c) with f = g. If the residue field of K ′ coincides with that of K

and [K ′ :K] = p, and if π′ denotes a prime element of K ′, it is additively

generated by elements of the form (a), elements of the form (b) with f = (π′)i

(m′ + 1 6 i6 n′), and elements of the form (c) with f = π′.)

Assume α is an element as in (a) (resp. (b), resp. (c)), and let

β ∈mm+1
K /mn+1

K ⊗OK Ωd−1
OK

(log) be TrK′/K(f)ω (resp. ω ∧ d(TrK′/K(f)),

resp. ω ∧ d log(N(f)) where N is the norm map (K ′)×→K×). Then

RK′(Rsw(χK′) ∧ α) = χK′(E(α)) = χ(N(E(α))) (here E is as in 3.3.5 and

N is the norm map) = χ(E(β)) =RK(Rsw(χ) ∧ β). Hence, for the proof

of (14), it is sufficient to prove

(A) RK′(fω) =RK(TrK′/K(f)ω) for f ∈m1−n′+m′
K′ and ω ∈ Ωd

OK
(log);

(B) RK′(ω∧df) =RK(ω∧d(TrK′/K(f))) for f as in (A) and ω ∈ Ωd−1
OK

(log);
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(C) RK′(ω∧d log(f))=RK(ω∧d log(N(f))) for ω∈m1−n+m
K ⊗OK Ωd−1

OK
(log)

and for f ∈ (K ′)×.

If K is of characteristic p, m1−n+m
K /mK ⊗OK Ωd

OK
(log) is a subquotient

of Ωd
K and RK coincides with the map induced from ResK : Ωd

K → Fp on the

subquotient, and the same thing holds for K ′. Hence (A), (B), (C) follow

from ResK′ = ResK ◦ TrK′/K (3.3.2).

Assume K is of characteristic 0. Let L= F ((T )). Then via the isomor-

phism F [T ]/(Tn−m)
∼=→OK/m

n−m
K of rings with log structures ((5) with

a= n−m), m1−n+m
K /mK ⊗OK Ωd

OK
(log) is a subquotient of Ωd

L and RK
coincides with the map induced from ResL : Ωd

L→ Fp on the subquotient.

As is easily seen, there is an extension L′ of L of degree [K ′ :K] and an

isomorphism OK′/m
n−m
K OK′ ∼=OL′/m

n−m
L OL′ of rings with log structures

extending the isomorphism OK/m
n−m
K

∼=OL/m
n−m
L of rings with log struc-

tures, and RK′ : m
1−n′+m′
K′ /mK′ ⊗OK′ Ωd

OK′
(log)→ Fp is identified with the

map induced from ResL′ : Ωd
L′ → Fp on the subquotient. Hence (A), (B), (C)

follow from ResL′ = ResL ◦ TrL′/L (3.3.2).

3.3.8. We prove the case (ii) of 3.3.6. By [19, Theorem 2], we have a

commutative diagram

K̂M
d+1(K ′) → Gal((K ′)ab/K ′)
↓ ↓

K̂M
d (K) → Gal(Kab/K)

where K̂M
d (K) = lim←−iK

M
d (K)/U iKM

d (K), K̂M
d+1(K ′) is defined similarly, the

horizontal arrows are the reciprocity maps, the left vertical arrow is minus

the residue homomorphism in [19] and the right vertical arrow is the natural

one.

Let RK : m1−n+m
K /mK ⊗OK Ωd

OK
(log)→ Fp and RK′ : m

1−n+m
K′ /mK′ ⊗OK′

Ωd+1
OK′

(log)→ Fp be the maps defined as in 3.3.7.

Let χ ∈ FnH1(K,Qp/Zp). We prove Rsw(χK′) = Rsw(χ)K′ . For this,

it is sufficient to prove that RK′(Rsw(χK′) ∧ α) =RK′(Rsw(χ)K′ ∧ α) for

any α ∈mm+1
K′ /mn+1

K′ ⊗OK′ Ωd
OK′

(log). By 2.1.3, the last group is generated

additively by elements as in the following (i)–(iii).

(a) Elements in the image of

(mm+1
K′ /mn+1

K′ ⊗OK Ωd
OK

(log))

⊕ (mm+1
K /mn+1

K ⊗OK OK [[T ]]⊗OK Ωd−1
OK

(log) ∧ dT ).

https://doi.org/10.1017/nmj.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.13


158 K. KATO, I. LEAL AND T. SAITO

(b) ω ⊗ d log(T ) with ω ∈mm+1
K /mn+1

K ⊗OK Ωd−1
OK

(log).

(c) T−iω ⊗ d log(T ) with ω ∈mm+1
K /mn+1

K ⊗OK Ωd−1
OK

(log) and with i> 1.

Assume α is an element as in (a) (resp. (b), resp. (c)). Let ResK′/K :

K̂M
d+1(K ′)→ K̂M

d (K) be the residue map. Then RK′(Rsw(χK′) ∧ α) =

χK′(E(α)) =−χ(ResK′/K(E(α))) where E is as in 3.3.5. By (ii) of 2.2.2 and

by the definition of ResK′/K in [19], we have χ(ResK′/K(E(α))) = χ(E(β)) =

RK(Rsw(χ) ∧ β) where β = 0 in cases (a) and (c) and β = ω in the case (b).

Hence it is sufficient to prove

RK′

( ∑
i�−∞

T iωi ∧ d log(T )

)
=−RK(ω0) (ωi ∈m1−n+m

K /mK ⊗OK Ωd
OK

(log)).(15)

Take a lifting ι : F →OK/m
n−m
K and extend it to ι : F ((T ))→OK′/m

n−m
K′ ;∑

i�−∞ aiT
i 7→

∑
i�−∞ ι(ai)T

i. Let π be a prime element of K. Write

ωi =
n−m−1∑
j=0

π−jι(ωij) ∧ d log(π) (ωij ∈ Ωd−1
F ).

We have

RK′

( ∑
i�−∞

T iωi ∧ d log(T )

)

=RK′

ι
∑

i,j

T iωij

 π−j d log(π) ∧ d log(T )


=−ResF ((T ))

(∑
i

T iωi0 ∧ d log(T )

)
=−ResF (ω00) =−RK(ω0).

This proves (15).

3.4 Application of higher dimensional global class field theory

3.4.1. Let X be a proper normal integral scheme over Z with function

field J and let ν be a point of X of codimension one whose residue field is

of characteristic p > 0. We assume X(R) = ∅.
Let n> 1 and let Fν,nH

1(J,Qp/Zp)⊂H1(J,Qp/Zp) be the inverse image

of FnH
1(Ĵν ,Qp/Zp)⊂H1(Ĵν ,Qp/Zp) where Ĵν denotes the field of fractions
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of the completion of the discrete valuation ring OX,ν . Let mν be the maximal

ideal of OX,ν . Let m= max(n− eĴν , [n/p]).
We define a canonical homomorphism

RswX,ν : Fν,nH
1(J,Qp/Zp)→m−nν /m−mν ⊗OX,ν Ω1

X,ν(log)

by using the higher dimensional global class field theory in [23].

3.4.2. By the class field theory of X [23], we have a canonical continuous

homomorphism

CX := lim←−
I

Hd(X, KM
d (OX , I))→Gal(Jab/J)

where d= dim(X), and hence χ ∈H1(J,Qp/Zp) induces a homomorphism

CX →Qp/Zp which factors through Hd(X, KM
d (OX , I)) for some I (2.4.10).

3.4.3. Let Y be the closure of ν in X. We will identify an element p =

(yi)i ∈ P (Y ) with the element (xi)i ∈ P (X) where xi = yi for 0 6 i6 d− 1

and xd is the generic point of X.

Let χ ∈ Fν,nH1(J,Qp/Zp). For p ∈ P (X), let hp :KM
d (J)→Qp/Zp be the

homomorphism induced by χ : CX →Qp/Zp (2.3.3). Then if p ∈ P (Y ), hp
kills Un+1KM

d (J) where U• is defined with respect to the discrete valuation

ring OX,ν . For p ∈ P (Y ), let sp : mm+1
ν /mn+1

ν ⊗OX,ν Ωd−1
X,ν (log)→ Fp be the

homomorphism induced by hp and the truncated exponential map E of 3.3.5.

Lemma 3.4.4. There exists a sheaf F on Y satisfying the following (i)

and (ii).

(i) F is a coherent OX-submodule of the constant sheaf mm+1
ν /mn+1

ν ⊗OX,ν
Ωd−1
X,ν (log) on Y and the map Fν →mm+1

ν /mn+1
ν ⊗OX,ν Ωd−1

X,ν (log) is an

isomorphism.

(ii) Via the map in Lemma 2.3.4, (sp)p∈P (Y ) defines a homomorphism

Hd−1(Y, F)→ Fp.

Proof. Let U be a regular dense open subset of X such that D := U ∩ Y
is also a regular dense open subset of Y and that χ is unramified on U rD.

Let FU be the coherent OU -module OU (−(m+ 1)D)/OU (−(n+ 1)D)⊗OU
Ωd−1
U (log D). Note that FU,ν equals Fν := mm+1

ν /mn+1
ν ⊗OX,ν Ωd−1

X,ν (log). We

show that it is sufficient to prove the following (i) and (ii). Let ξ ∈ Y be a

point of codimension one.
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(i) If ξ ∈ U , then for any p = (yi)i ∈ P (Y ) such that yd−2 = ξ, sp kills the

image of FU,ξ→FU,ν .

(Note that there are only finitely many ξ ∈ Y of codimension one such

that ξ /∈ U .)

(ii) There is a finitely generated OX,ξ-submodule Fξ of Fν which generates

Fν over OX,ν having the following property: For any p = (yi)i ∈ P (Y )

such that yd−2 = ξ, sp kills Fξ.

Let j : U →X be the open immersion and F be a coherent OX -module

such that F|U = FU and Fξ is given in (ii) for each codimension one point

ξ of Y not contained in U . Then, (sp)p∈P (Y ) satisfies the conditions (i)

and (ii) in Lemma 2.3.4 for Hd−1(Y, F) since the kernel of Fν =H0
ν (Y, F)→

H1
ξ (Y, F) is FU,ξ (resp. Fξ) for codimension one point ξ in U (resp. not

contained in U).

Note that for any p = (yi)i ∈ P (Y ), we have
∑

p′∈R(p) hp′ = 0 on KM
d (J)

where R(p) denotes the set of p′ = (xi)i ∈ P (X) such that xi = yi for 0 6
i6 d− 2.

We prove (i). Let π be an element of OX,ξ which defines Y at ξ.

For p as in (i) and for g ∈ OX,ξ and u1, . . . , ud−1 ∈ O×X,ξ · π
Z, we have

sp(π
m+1g d log(u1) ∧ · · · ∧ d log(ud−1)) = hp({E(πm+1g), u1, . . . , ud−1}).

This element {E(πm+1g), u1, . . . , ud−1} ∈KM
d (J)/Un+1KM

d (J) belongs

to the subgroup of KM
d (J)/Un+1KM

d (J) generated by all elements of

the form {u1, . . . , ud} ∈KM
d (J) such that u1, . . . , ud ∈ O×X,ξ · π

Z. For

any p′ = (xi)i ∈R(p) r {p}, hp′ :KM
d (J)→Qp/Zp kills such {u1, . . . , ud}

because χ is unramified at xd−1 and hence hp′ factors through the boundary

map KM
d (J)→KM

d−1(κ(xd−1)) (κ denotes the residue field) which kills

{u1, . . . , ud}. Hence hp({u1, . . . , ud}) = 0.

We prove (ii). Take an element π of OX,ξ which is a prime element

of the discrete valuation ring OX,ν . Take an element f ∈ OX,ξ hav-

ing the following properties (a1) and (a2). (a1) f is a unit in OX,ν .

(a2) ordµ(πm+1f)> Swµ(χ) for any point µ of X of codimension one

such that ξ ∈ {µ} and µ 6= ν and such that either χ ramifies at µ or

ordµ(π)> 0. Let Fξ be the OX,ξ-submodule of Fν generated by the images

of πm+1f ⊗ Ωd−1
X,ξ and πm+1f ⊗ Ωd−2

X,ξ ∧ d log(π). We prove that sp kills

Fξ. For g ∈ OX,ξ and u1, . . . , ud−1 ∈ O×X,ξ · π
Z, sp(π

m+1f ⊗ g d log(u1) ∧
· · · ∧ d log(ud−1)) = hp(α) where α= {E(πm+1fg), u1, . . . , ud−1} ∈KM

d (J).

To prove that hp(α) = 0, it is enough to prove that hp′(α) = 0 for any

p′ = (xi)i ∈R(p) r {p}. Let µ= xd−1. Assume first that either χ ramifies
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at µ or ordµ(π)> 0. Then α ∈ U s+1
µ KM

d (J) where s= Swµ(χ) and U•µ is

the filtration defined for the discrete valuation ring OX,µ. Hence hp′ kills α.

Assume next χ is unramified at µ and π is a unit at µ. Then hp′ factors

through the boundary map KM
d (J)→KM

d−1(κ(µ)) which kills α.

3.4.5. By Serre–Grothendieck duality of the cohomology of coherent

sheaves [13], we have a canonical isomorphism

lim−→
F

Hom(Hd−1(Y, F), Fp)∼= m−nν /m−mν ⊗OX,ν Ω1
X,ν(log)

where F ranges over coherent OX -modules F as in (i) in 3.4.4. (The

inductive system is given by making F smaller and smaller. If F and F ′ are

as in (i) in 3.4.4 and F ′ ⊂F , the canonical map Hd−1(Y, F ′)→Hd−1(Y, F)

is a surjective map of finite abelian groups.) By 3.4.4, χ ∈ Fν,nH1(J,Qp/Zp)
gives an element of the left hand side of this isomorphism, and hence gives

an element of m−nν /m−mν ⊗OX,ν Ω1
X,ν(log). This is our RswX,ν(χ).

3.5 Rsw in general

We prove our statements in 3.1.1 and 3.1.2.

Lemma 3.5.1. Let K be a complete discrete valuation field whose residue

field F is a finitely generated field over Fp, and let χ ∈H1(K,Qp/Zp). Then

there exist a proper normal integral scheme X over Z such that X(R) = ∅,
a point ν of X of codimension one, and an isomorphism α between OK and

the completion of the local ring OX,ν such that if J denotes the function

field of X, χ comes from H1(J,Qp/Zp) via α.

Proof. If K is of characteristic p, take a proper normal integral scheme

Y over Fp with function field F , let X = P1
Y , and let ν be the generic point

of the image of any section Y →P1
Y . Next assume K is of characteristic 0.

Let (ti)16i6r be a transcendental basis of F over Fp and let (Ti)16i6r be

its lifting to OK . Let J0 = Q(T1, . . . , Tr). Then the algebraic closure J∞ of

J0 in K is a henselian discrete valuation field whose completion is K, and

hence H1(J∞,Qp/Zp)
∼=→H1(K,Qp/Zp). Hence χ comes from H1(J,Qp/Zp)

for some finite extension J of J0 in J∞ such that J is dense in K. Let X

be the integral closure of Pr
Z ⊃ Spec(Z[T1, . . . , Tr]) in J . By replacing J

by a bigger J , we have X(R) = ∅. (Indeed, K contains a purely imaginary

algebraic number β, for example, a square root of 1− p if p 6= 2, and a square

root of −7 = 1− 8 in the case p= 2. By replacing J by J(β)⊂K, we have

β ∈ J . For such J , X(R) = ∅.) Let ν be the image of the closed point of

Spec(OK) under Spec(OK)→X.
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Lemma 3.5.2. Let K be a complete discrete valuation field whose

residue field F is a function field in r variables over Fp, and let χ ∈
FnH

1(K,Qp/Zp). Then there is a unique element RswK(χ) of m−nK /m−mK
⊗OK Ω1

OK
(log) (m= max(n− eK , [n/p])) having the following property (i)

for any (X, ν, α) as in 3.5.1.

(i) Let J be as in 3.5.1 and let Y ⊂X be the closure of ν. Then for any

v ∈ Pl(Y )⊂ Pl(X), the image of RswK(χ) in m−nJv /m
−m
Jv
⊗OJv Ω1

OJv
(log)

coincides with the element RswJv(χJv) defined in Section 3.3. Here the

inclusion map Pl(Y )⊂ Pl(X) sends v ∈ Pl(Y ) to the ring of all elements

of OX,ν whose residue classes belong to v, and we regard K as a subfield of

Jv via α.

The proof of 3.5.2 is given after preparations 3.5.3 and 3.5.4.

Lemma 3.5.3. Let Y be an integral scheme over Fp of finite type, let F

be the function field of Y , and let v ∈ Pl(Y ). Then we have an isomorphism

F ⊗F Fv
∼=→ Fv ; x⊗ y 7→ xyp,

where F → F in the tensor product is x 7→ xp.

Proof. This follows from (3) of 2.4.8.

Lemma 3.5.4. Let (X, ν, α, J) be as in 3.5.1 and let Y ⊂X be the

closure of ν. Then for any v ∈ Pl(Y )⊂ Pl(X) and for any integer t such

that 1 6 t6 eK , the map

OK/m
t
K ⊗OK Ω1

OK
(log)→OJv/m

t
Jv ⊗OJv Ω1

OJv
(log)

is injective. More precisely, the map OJv ⊗OK (l.h.s.)→ (r.h.s.) is bijective.

Proof. If F denotes the residue field of K, the residue field of Jv is

identified with Fv. By 3.5.3, a p-base of F is a p-base of Fv. Hence 3.5.4 is

reduced to 2.1.3.

3.5.5. We prove 3.5.2. Take (X, ν, α, J) as in 3.5.1 and let Y ⊂X be

the closure of ν.

By Section 3.4, χ defines an element of m−nK /m−mK ⊗OK Ω1
OK

(log) which

we denote by RswK(χ). By the construction of this element in Section 3.4,

it is sent to RswJv(χJv) for any v ∈ Pl(Y )⊂ Pl(X).

If we change (X, ν, α) by (X ′, ν ′, α′), since the associated Y and Y ′

are birational, there is v ∈ Pl(Y ) which belongs also to Pl(Y ′). By [18,

Lemma 1], there is a unique K-isomorphism of complete discrete valuation
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fields between Jv and J ′v which induces the identity map of the residue

field Fv. By the injectivity 3.5.4, we have that ResK(χ) defined by using

(X, ν, α) coincides with that defined by using (X ′, ν ′, α′).

3.5.6. Now we prove the unique existence of the definition of Rsw

satisfying (i) and (ii) in 3.1.2.

Note that K =
⋃
J J where J ranges over subfields of K which are finitely

generated over the prime field. For a sufficiently large such J , J contains

a prime element of K and χ comes from FnH
1(Ĵ ,Qp/Zp) where Ĵ denotes

the completion of J for the restriction of the discrete valuation of K to J .

By 3.5.2 applied to Ĵ , we get an element of m−n
Ĵ
/m−m

Ĵ
⊗OĴ Ω1

OĴ
(log), and

hence an element Rsw(χ) of m−nK /m−mK ⊗OK Ω1
OK

(log) as the image of it.

We show that this element Rsw(χ) is independent of such J . Let J and

J ′ be two such fields. We may assume J ⊂ J ′. Then the residue field E′

of J ′ is an extension of finite type of the residue field E of J . Choosing a

transcendental basis of E′ of E, we find embeddings J →M and J ′→M ′

to higher dimensional local field such that M ′ is a successive extension of

those in 3.3.6. Thus it follows from the injectivity 3.5.4.

It is clear that this Rsw has the properties (i) and (ii) in 3.1.2, and the

uniqueness follows from 3.5.4.

Lemma 3.5.7. Let n and m be as in 3.1.1. Then for an integer i

such that m< i < n, Rsw : FnH
1(K,Qp/Zp)→m−nK /m−mK ⊗OK Ω1

OK
(log)

sends FiH
1(K,Qp/Zp) to m−iK /m

−m
K ⊗OK Ω1

OK
(log), and the induced

homomorphism FiH
1(K,Qp/Zp)/Fi−1H

1(K,Qp/Zp)→m−iK /m
−i+1
K ⊗OK

Ω1
OK

(log) coincides with the refined Swan conductor mod mK (3).

Proof. If the residue field F is an r-dimensional local field, then by

[20, (6.5)], the refined Swan conductor rswχ mod mK is characterized

by the property: {χ, 1 + aπn, u1, . . . , ur}= ResFRb(aπ
nrswχ ∧ d log u1 ∧

· · · ∧ d log ur) for n= swχ, a ∈ OK , u1, . . . , ur−1 ∈ O×K , ur ∈K×. Hence the

assertion follows in this case. The general case follows by the injectivity 3.5.4.

Proposition 3.5.8. Let n and m be as in 3.1.1.

(1) The map Rsw : FnH
1(K,Qp/Zp)/FmH1(K,Qp/Zp)→m−nK /m−mK ⊗OK

Ω1
OK

(log) is injective.

(2) Let χ ∈ FnH1(K,Qp/Zp) and let i be an integer such that m< i6 n.

Assume that Rsw(χ) ∈m−nK /m−mK ⊗OK Ω1
OK

(log) belongs to the image
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of m−iK ⊗OK Ω1
OK

(log) but not to the image of m−i+1
K ⊗OK Ω1

OK
(log).

Then Sw(χ) = i.

(3) The image of Rsw is contained in the kernel of

(16) d : m−nK /m−mK ⊗OK Ω1
OK

(log)→m−nK /m−mK ⊗OK Ω2
OK

(log).

Proof. (1) and (2) follow from 3.5.7 and the injectivity of the refined

Swan conductor mod mK (3).

(3) is reduced to the case F is a higher dimensional local field. Then it is

reduced to (3) of 2.2.4 by the fact that the map (16) is dual to the map (7)

in (3) of 2.2.4.

In the case of characteristic p, the two definitions of the refined Swan

conductor mod p coincide:

Proposition 3.5.9. In the case K is of characteristic p, the refined

Swan conductor mod p defined in Section 3.2 coincides with that defined in

Sections 3.3–3.5.

3.5.10. To prove 3.5.9, we review the definition of the reciprocity map

KM
d (K)→Gal(Kab/K) of a d-dimensional local field of characteristic p.

Let K be a field of characteristic p > 0, let s> 1, and let P be a

commutative ring over Z/psZ which is flat over Z/psZ such that P/pP =K.

We have a well-defined ring homomorphism

θ :Ws(K)→ P ; (as−1, . . . , a0) 7→
∑
i

ps−1−iãp
i

i

where ãi is a lifting of ai to P . In Ω1
P , we have

(17) dθ(as−1, . . . , a0) = ps−1
∑
i

ãp
i−1
i dãi.

Now let K be a d-dimensional local field of characteristic p > 0. The reci-

procity map KM
d (K)→Gal(Kab/K) is defined as follows [19, Chapter 3].

Take an isomorphism

(18) K ∼= Fq((T1)) . . . ((Td))

of d-dimensional local fields and identify them. Define rings Pi (0 6 i6 d)

inductively as P0 =Ws(Fq), Pi = Pi−1[[Ti]][T
−1
i ] (1 6 i6 d). Let P = Pd. So

P is Z/psZ-flat and P/pP =K. Let ResP : Ωd
P → Z/psZ be the composition

Ωd
P = Ωd

Pd
→ Ωd−1

Pd−1
→ · · · → Ω0

P0
=Ws(Fq)

trace→ Z/psZ
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where Ωi
Pi
→ Ωi−1

Pi−1
(1 6 i6 d) is the map∑

j�−∞
T ji ωj d log(Ti) 7→ ω0 (ωj ∈ Ωi−1

Pi−1
).

ResP kills the image of d : Ωd−1
P → Ωd

P .

Then the reciprocity map KM
d (K)→Gal(Kab/K) (which is independent

of the choice of the isomorphism (18)) is characterized by the following

property: let χ ∈H1(K, Z/psZ) and assume that χ is the image of f ∈
Ws(K). Then χ sends the image of {y1, . . . , yd} ∈KM

d (K) (yi ∈K×) to

ResP (θ(f) d log(ỹ1) ∧ · · · ∧ d log(ỹd)) where ỹi is a lifting of yi to P .

3.5.11. We prove 3.5.9. We may assume that K is a d-dimensional local

field of characteristic p with d> 1.

Let m= max(n− eK , [n/p]) and let x ∈mm+1
K , yi ∈K× (1 6 i6 d− 1).

Let the notation be as in 3.5.10. We have

χ({E(x), y1, . . . , yd−1})

= ResP (θ(f) d log E(x̃) ∧ d log(ỹ1) ∧ · · · ∧ d log(ỹd−1))

= ResP (θ(f) dx̃ ∧ d log(ỹ1) ∧ · · · ∧ d log(ỹd−1))

(here we used (3) of 2.2.2)

= ResP (d(θ(f)x̃ d log(ỹ1) ∧ · · · ∧ d log(ỹd−1)))

− ResP (x̃ dθ(f) ∧ d log(ỹ1) ∧ · · · ∧ d log(ỹd−1))

=−ResP (x̃ dθ(f) ∧ d log(ỹ1) ∧ · · · ∧ d log(ỹd−1)).

Write f = (fs−1, . . . , f0) with fi ∈K. By (17), ResP (x̃ dθ(f) ∧ d log(ỹ1) ∧
· · · ∧ d log(ỹd−1)) is the image of ResF (x ·

∑s−1
i=0 f

pi−1
i dfi ∧ d log(y1) ∧

· · · d log(yd−1)) ∈ Fp under the homomorphism Fp
⊂→ Z/psZ which sends 1

to ps−1. Hence Rswχ equals −
∑s−1

i=0 f
pi−1
i dfi as in 3.2.4.

3.6 Applications

A nonlogarithmic version of the following result is obtained in [6].

Theorem 3.6.1. Let K be a complete discrete valuation field whose

residue field is of characteristic p > 0, and let χ ∈H1(K,Qp/Zp). Then

Sw(χ) = sup
L

Sw(χL)/e(L/K)

where L ranges over cdvf over K with perfect residue fields.

https://doi.org/10.1017/nmj.2019.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.13


166 K. KATO, I. LEAL AND T. SAITO

Proof. By the characterization of the Swan conductor in [20, Proposi-

tion (6.3)], we have e(L/K) · Sw(χ) 6 Sw(χL) in general.

Write Rsw(χ) = π−n ⊗ (a+ c d log(π)) where π is a prime element of K,

n= Sw(χ), a ∈ Ω1
OK

and c ∈OK . If c is a unit, any L/K with e(L/K) = 1

(the residue field of L is perfect) satisfies Rsw(χL) is the image of Rsw(χ)

and hence Sw(χL) = Sw(χ). Assume c is not a unit. Write a=
∑

λ∈Λ aλ dbλ
where (bλ)λ∈Λ is a lifting of a p-base of F to OK and aλ ∈OK . Then aµ
is a unit for some µ ∈ Λ. For an integer t> 2, let Lt be the completion

of the extension of K obtained by adding a tth root π1/t of π and bλ,n
(λ ∈ Λ, n> 0) such that bλ,n = bpλ,n+1 for any λ ∈ Λ and n> 0, b0,λ = bλ for

λ 6= µ, and bµ,0 = bµ − π1/t. Then the residue field of Lt is perfect, π1/t is a

prime element in Lt, Rsw(χLt) = π−n ⊗ (aµπ
1/t + ct) d log(π1/t), and hence

we have e(Lt/K)−1Sw(χLt) = Sw(χ)− t−1.

We improve a previous result of the second author in [29].

3.6.2. Let L/K be a separable extension of complete discrete valuation

fields whose residue fields are of characteristic p > 0, and assume that K has

perfect residue field. (The extension L/K need not be a finite extension.)

Let Ω̂1
OL/OK

(log) be the mL-adic completion of the cokernel of OL ⊗OK
Ω1
OK

(log)→ Ω1
OL

(log). Then by 2.1.3, the OL-torsion part Ω̂1
OL/OK

(log)tor

of Ω̂1
OL/OK

(log) is of finite length as an OL-module. Let δtor(L/K) ∈ Z>0 be

the length of the OL-module Ω̂1
OL/OK

(log)tor.

Theorem 3.6.3. Let L/K and δtor(L/K) be as in 3.6.2. Assume

δtor(L/K)< eL.

If χ ∈H1(K,Qp/Zp) is such that

Sw(χ)>
p

p− 1

δtor(L/K)

e(L/K)
.

Then

Sw(χL) = e(L/K)Sw(χ)− δtor(L/K).

Remark 3.6.4. In the case K is of characteristic p, this result is proved

in [29]. In [29], it is stated without assuming L/K is separable, but this was

a mistake.

When K is of mixed characteristic and δtor(L/K)< eL, Theorem 3.6.3

gives a stronger result than the following result obtained in [29].
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Theorem 3.6.5. [29] Let L/K be an extension of complete discrete

valuation fields of mixed characteristic. Assume that K has perfect residue

field of characteristic p > 0 and χ ∈H1(K,Qp/Zp) is such that

Sw(χ) >
2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.

Then

Sw(χL) = e(L/K)Sw(χ)− δtor(L/K).

3.6.6. We prove 3.6.3. Write n= Sw(χ), n′ = e(L/K)n, m= max(n−
eK , [n/p]), m

′ = max(n′ − eL, [n′/p]) and δ = δtor(L/K). We prove first

(19) Sw(χL) = e(L/K)Sw(χ)− δ if n′ − δ >m′.

By 2.1.3 and 2.1.5, Ω̂1
OK

(log) is a nonzero monogenic OK-module of finite

length, Ω̂1
OL

(log)tor is a nonzero monogenic OL-module of finite length and

it is a direct summand of Ω̂1
OL

(log), and the canonical map Ω1
OK

(log)→
Ω1
OL

(log) induces an isomorphism OL ⊗OK Ω̂1
OK

(log)
∼=→mδ

LΩ̂1
OL

(log)tor. The

map Rsw : FnH
1(K,Qp/Zp)→m−nK /m−mK ⊗OK Ω1

OK
(log) sends χ to a gen-

erator of the OK-module m−nK /m−mK ⊗OK Ω1
OK

(log). Hence if n′ − δ >m′,

the image of this generator in m−n
′

L /m−m
′

L ⊗OL Ω1
OL

(log) belongs to the

image of m−n
′+δ

L /m−m
′

L ⊗OL Ω1
OL

(log) but does not belong to the image of

m−n
′+δ+1

L /m−m
′

L ⊗OL Ω1
OL

(log). Hence by the compatibility with pullback

((i) of 3.1.2) and the relationship between Rsw and Sw ((2) of 3.5.8), we

obtain (19).

If

n >
p

p− 1

δ

e(L/K)
,

then e(L/K)n− δ > e(L/K)np−1 and hence n′ − δ > [n′/p]. Further, since

δ < eL, we have n′ − δ > n′ − eL. It follows that n′ − δ >m′ and the formula

holds.

3.6.7. In the case δtor(L/K)< eL, 3.6.3 in the mixed characteristic case

is stronger than 3.6.5. Indeed, we have that

p

p− 1

δtor(L/K)

e(L/K)
<

2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
.
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To see this, observe that

2eK
p− 1

+
1

e(L/K)
+

⌈
δtor(L/K)

e(L/K)

⌉
>

eK
p− 1

+
1

p− 1

δtor(L/K)

e(L/K)
+
δtor(L/K)

e(L/K)

>
p

p− 1

δtor(L/K)

e(L/K)
,

so we have an improvement.

§4. Globalization

4.1 Module theoretic preparations

In this paper, a simple normal crossing divisor has no multiplicity (it is

reduced as a scheme).

Proposition 4.1.1. Let X be a regular scheme of finite type over Z
of dimension d, let D be a simple normal crossing divisor on X, let p be

a prime number, and let E be an effective divisor on X whose support is

contained in D such that the scheme E = Spec(OX/OX(−E))⊂X is of

characteristic p.

(1) The OE-module OE ⊗OX Ω1
X(log D) is locally free of rank d.

(2) The OE-module OE ⊗OX Ωd
X(log D)(E −D) is the canonical dualizing

module of E relative to Fp.

Proof. We may assume either X is a scheme over Fp or X is flat over Z.

Assume first that X is over Fp. Then X is smooth over Fp and hence

Ω1
X(log D) is locally free of rank d and Ωd

X is a dualizing module of

X relative to Fp. Hence the OE-module OE ⊗OX Ω1
X(log D) is locally

free of rank d and RHomOX (OE , Ωd
X)[1] =OE ⊗OX Ωd

X(E) =OE ⊗OX
Ωd
X(log D)(E −D) is the dualing module of E relative to Fp.
Assume X is flat over Z. This case is reduced to the case X is over Fp as

follows. Let x be a closed point of X and let (ti)16i6d be a regular system

of parameters of the regular local ring OX,x such that D is defined at x

by t1 . . . tr for some r (0 6 r 6 d). Then E is defined by t
a(1)
1 . . . t

a(r)
r at x

for some a(i) ∈ Z>0 and we have p= t
e(1)
1 . . . t

e(r)
r h for some e(i) ∈ Z>0 such

that e(i) > a(i) (1 6 i6 r) and for some h ∈ OX,x. Replacing X by an open

neighborhood of x in X, we have an unramified morphism X →Ad
Z given
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by (ti)16i6d. Replacing X by an open neighborhood of x in X, this morphism

factors as X
f→ Z

g→Ad
Z where g is étale and f is a closed immersion [12,

18.4.7] defined by a section p− T e(1)
1 . . . T

e(r)
r h̃ of OZ for some lifting h̃ of

h to OZ . Hence E is defined in Z by T
a(1)
1 . . . T

a(r)
r and p. Hence we have

an étale morphism from E to E′ := Spec(Fp[T1, . . . , Td]/(T
a(1)
1 . . . T

a(r)
r ))

for which the pullback of Ti is ti. Let X ′ = Spec(Fp[T1, . . . , Td]) and

let D′ be the divisor T1 . . . Tr = 0 on X ′ with simple normal crossings.

Then OE ⊗OX Ω1
X(log D) is the pullback of OE′ ⊗OX′ Ω1

X′(log D′). (1)

follows from this. Since OE ⊗OX Ωd
X(log D)(E −D) is the module theoretic

pullback of OE′ ⊗OX′ Ωd
X′(log D′)(E′ −D′) which is the dualizing module of

E′ relative to Fp by the étale morphism E→ E′, it is the dualizing module

of E relative to Fp.

4.1.2. Let the assumption and the notation be as in 4.1.1 and let

H=OE ⊗OX Ωd
X(log D)(E −D). By local duality of Grothendieck [13,

Chapter V, Section 6], Hom(Hd−1
x (E,H), Fp) is isomorphic to the com-

pletion ÔE,x of OE,x, and in the correspondence 2.3.5 (we take E as

X in 2.3.5 and we take d− 1 as d in 2.3.5), f ∈ OE,x corresponds to

(hp)p∈Px(E) with hp(ω) = Resp(fω) where Resp :Hxd−1
→ Fp is as follows.

Write p = (xi)06i6d−1, let Y ⊂X be the closure of xd−1, let F be the residue

field of xd−1, and take an integer b such that pb > ordxd−1
(E). Then

Resp =
∑

v∈Pl(Y,p)

ResFv ◦Rb.

Here Rb :Hxd−1
→ Ωd−1

F is as in 2.1.9, Pl(Y, p) is as in 2.4.8, and ResFv is

as in 3.3.2. Note that ResFv ◦Rb is independent of the choice of b because

ResFv ◦ C = ResFv where C is the Cartier operator.

4.1.3. Let the assumption and the notation be as in 4.1.2. Let Ē be

a proper scheme over Fp which contains E as a dense open subscheme.

Let F be a coherent OĒ-module whose restriction F|E to E is a vector

bundle, and consider the vector bundle G :=HomOE (F|E ,H) on E. Let

h :Hd−1(Ē, F)→ Fp be a homomorphism. Then we obtain an element g

of G(E) associated to h as follows. By Grothendieck–Serre duality, h gives

an element of H1−d(Ē, RHomOĒ (F , I)) where I is the dualizing complex

of Ē. Since the restriction of I to E is H[d− 1], we obtain an element g of

H1−d(E, RHomOE (F , I)) =H0(E,HomOE (F ,H)) = G(E).
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This element g is characterized by the following property. For any

closed point x of E, the homomorphism Hd−1
x (E, F) =Hd−1

x (Ē, F)→ Fp
induced by h corresponds by local duality Hom(Hd−1

x (E, F), Fp)∼= Ĝx of

Grothendieck to the image of g in the completion Ĝx of Gx.

4.2 Global refined Swan conductor mod p

4.2.1. In this Section 4.2, let X be a regular scheme of finite type

over Z, letD be a divisor onX with simple normal crossings, let j : U :=X r
D→X be the inclusion morphism, and let p be a prime number. Consider

the sheaf R1j∗(Qp/Zp) on the étale site of X, where j∗ is the direct image

functor for the étale topology.

For an effective divisor N on X whose support is contained in D, let

FNR
1j∗(Qp/Zp) be the subsheaf of R1j∗(Qp/Zp) consisting of local sections

χ such that the Swan conductor Swν(χ) at any point ν of codimension

one satisfies Swν(χ) 6 ordν(N), where ordν(N) denotes the multiplicity of

N at ν. Let FNH
1
et(U,Qp/Zp)⊂H1

et(U,Qp/Zp) be the inverse image of

H0(X, FNR
1j∗(Qp/Zp)).

Theorem 4.2.2. Let N be an effective divisor on X whose support is

contained in D. Write N =
∑

P n(P )P (P ranges over all generic points

of D and n(P ) ∈ Z>0) and let M =
∑

P m(P )P where m(P ) = max(n(P )−
ordP (p), [n(P )/p]) (so M is an effective divisor on X such that M 6N).

Then there is a unique homomorphism

Rsw : FNR
1j∗(Qp/Zp)→OX(N)/OX(M)⊗OX Ω1

X(log D)

which is compatible with Rsw at all points of X of codimension one in the

support of N −M .

Proof. By using étale localization of X and then by taking a compact-

ification of X, we may assume that X is a dense open subscheme of a

proper normal d-dimensional integral scheme X̄ over Z such that X̄(R) = ∅
and E = Spec(OX/OX(M −N)) is a dense open subscheme of a closed

subscheme Ē of X̄.

We use the global class field theory of X̄. (Note that X̄ here is X in

Section 3.3.) Let χ ∈ FNH1
et(U,Qp/Zp). Let K be the function field of X

and let hp :KM
d (K)→Qp/Zp for p ∈ P (X̄) be the homomorphism induced

by χ. We identify P (Ē) with the subset of P (X̄) consisting of all elements

p = (xi)06i6d such that xd−1 ∈ E. Let

FE :=OX(−M −D)/OX(−N −D)⊗OX Ωd−1
X (log D.)
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For a generic point ν of E, let Fν be the stalk of FE at ν. For p =

(xi)06i6d−1 ∈ P (Ē), let sp : Fxd−1
→ Fp be the homomorphism induced by

hp and the truncated exponential map.

By using the arguments in the proof of 3.4.4, we can show that there

is a coherent OĒ-module F such that F|E = FE and such that for any

p = (xi)i ∈ P (Ē) such that xd−2 /∈ E, sp kills the image of Fxd−2
→Fxd−1

.

We prove that (sp)p∈P (Ē) comes from a homomorphism s :Hd−1(Ē, F)→
Fp. For this, by 2.3.4, it is sufficient to prove that for any point ξ of E of

codimension one and for any q = (xi)i ∈Qd−1(Ē) such that xd−2 = ξ, the

map (hp)p∈Pq(Ē) :
⊕

p∈Pq(Ē) Fη(p)→ Fp kills the diagonal image of Fξ. This

is proved by the following Facts 1 and 2.

Fact 1. We have
∑

p∈Pq(X) hp =
∑

p∈Pq(X̄) hp = 0 on KM
d (K), where q is

identified with an element of Qd−1(X).

Fact 2. If p = (xi)i ∈ Pq(X) and µ := xd−1 does not belong to E, hp
factors through the boundary map KM

d (K)→KM
d−1(κ(µ)) and sp(Fξ) is

generated by elements of the form hp({u1, . . . , ud}) with ui ∈ O×X,ξ and such

{u1, . . . , ud} is killed by the boundary map.

Let H :=OX(N)/OX(M)⊗OX Ωd
X(log D) as in 4.1.2, and let G :=

HomOE (F ,H) =OX(N)/OX(M)⊗OX Ω1
X(log D). Then s :Hd−1(Ē, F)→

Fp gives an element Rsw(χ) ∈ G(E) by 4.1.3. By 4.1.2 and 4.1.3, this element

induces Rsw at any generic point of E.

Proposition 4.2.3. Let the notation be as in 4.2.2. The map

Rsw : FNR
1j∗(Qp/Zp)/FMR1j∗(Qp/Zp)→OX(N)/OX(M)⊗OX Ω1

X(log D)

is injective, and its image is contained in the kernel of

d :OX(N)/OX(M)⊗OX Ω1
X(log D)→OX(N)/OX(M)⊗OX Ω2

X(log D).

Proof. This follows from 3.5.8.

4.3 Pullbacks

We prove that the global Rsw (4.2.2) commutes with the pullback maps.

Theorem 4.3.1. Let f :X ′→X be a morphism of regular schemes of

finite type over Z, let D (resp. D′) be a divisor on X (resp. X ′) with simple

normal crossings, and assume f(U ′)⊂ U where U =X rD, U ′ =X ′ rD′.

Let p be a prime number. Let N be an effective divisor on X whose support
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is contained in D, let N ′ be the pullback f∗N of N on X ′, define the

effective divisor M 6N on X using N as in 4.2.2 and define the effective

divisor M ′ 6N ′ on X ′ using N ′ similarly. Let j′ : U ′→X ′ be the inclusion

morphism.

(1) The map f∗R1j∗(Qp/Zp)→R1j′∗(Qp/Zp) sends f∗FNR
1j∗(Qp/Zp) to

FN ′R
1j′∗(Qp/Zp).

(2) We have a commutative diagram

f∗FNR
1j∗(Qp/Zp)

Rsw→ f∗(OX(N)/OX(M)⊗OX Ω1
X(log D))

↓ ↓
FN ′R

1j′∗(Qp/Zp)
Rsw→ OX′(N ′)/OX(M ′)⊗OX′ Ω1

X′(log D′).

We first prove Theorem 4.3.1 in special cases (4.3.2, 4.3.5, and 4.3.7).

Lemma 4.3.2. Theorem 4.3.1 is true if X ′ is the blowing-up of X at a

closed point of D.

To prove 4.3.2, we use the following lemma.

Lemma 4.3.3. Let the notation be as in 4.2.2. Let X ′ be the blowing-up

of X at a closed point x of D and let D′ be the support of the pullback

of D on X ′. Assume dim(OX,x) > 2. Let λ :X r {x}→X and λ′ :X ′ r
f−1(x)→X ′ be the inclusion maps. Then the composite map

f∗(OX′(N ′)/OX′(M ′)⊗OX′ Ω1
X′(log D′))

→ f∗λ
′
∗(λ
′)∗(OX′(N ′)/OX′(M ′)⊗OX′ Ω1

X′(log D′))

∼= λ∗λ
∗(OX(N)/OX(M)⊗OX Ω1

X(log D))(20)

is injective.

Proof. Let Di (1 6 i6 r) be the irreducible components of D which

contain x. Replacing X by an open neighborhood of x, we may assume that

D =
⋃r
i=1 Di. Write N =

∑r
i=1 niDi, M =

∑r
i=1 miDi (ni, mi ∈ Z>0). We

have N ′ =
∑r

i=1 niD
′
i + (

∑r
i=1 ni)P where D′i is the proper transformation

of Di in X ′ and P is the inverse image of x in X ′. We have M ′ =∑r
i=1 miD

′
i +m′P for some integer m′ such that

∑r
i=1 mi 6m′ 6

∑r
i=1 ni.

Take integers ai (1 6 i6 r) such that mi 6 ai 6 ni and
∑r

i=1 ai =m′, and

let A be the divisor
∑r

i=1 aiDi on X. Then the pullback A′ of A on X ′ is∑r
i=1 aiD

′
i +m′P . It is sufficient to prove that the maps

f∗(OX′(N ′)/OX′(A′)⊗OX′ Ω1
X′(log D′))

→ λ∗λ
∗(OX(N)/OX(A)⊗OX Ω1

X(log D)),(21)
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f∗(OX′(A′)/OX′(M ′)⊗OX′ Ω1
X′(log D′))

→ λ∗λ
∗(OX(A)/OX(M)⊗OX Ω1

X(log D))(22)

are injective.

We first prove that the map (22) is injective. Regard the divisors A−M
and A′ −M ′ as schemes. Then (A−M) r {x} is a dense open subscheme

of A′ −M ′, F :=OX′(A′)/OX′(M ′)⊗OX′ Ω1
X′(log D′) is a vector bundle on

A′ −M ′, and the map (22) is the canonical map F → γ∗γ
∗F for the inclusion

map γ : (A−M)− {x}→A−M and hence it is injective.

We next prove that the map (21) is injective. Take a sequence of divisors

Ai (0 6 i6 s) on X such that N =As > · · ·>A0 =A and such that for each

1 6 i6 s, Ai −Ai−1 coincides with the divisor Dj for some j (1 6 j 6 r, j

can depend on i, Dj is regarded as a reduced scheme), and let A′i be the

pullback of Ai to X ′. It is sufficient to prove that the map

f∗(OX′(A′i)/OX′(A′i−1)⊗OX′ Ω1
X′(log D′))

→ λ∗λ
∗(OX(Ai)/OX(Ai−1)⊗OX Ω1

X(log D))(23)

is injective for each 1 6 i6 s. Since OX′(A′i)/OX′(A′i−1)∼=OQ where Q=

D′j ∪ P with the reduced scheme structure for some j, it is sufficient to prove

that the map

(24) f∗(OQ ⊗OX′ Ω1
X′(log D′))→ λ∗λ

∗(ODj ⊗OX Ω1
X(log D))

is injective. We may assume that r = d where d is the dimension of OX,x.

In fact, on an open neighborhood of x, we can enlarge D to a simple

normal crossing divisor D∗ with d irreducible components such that x

is contained in all irreducible components of D∗, and we can replace D

by D∗ because the map OQ ⊗OX′ Ω1
X′(log D′)→OQ ⊗OX′ Ω1

X′(log(D∗)′) is

injective where (D∗)′ is the support of the pullback of D∗ to X ′. In the case

r = d, Ω1
X′(log D′) is the module theoretic pullback of Ω1

X(log D), and hence

the injectivity of (24) is reduced to the injectivity of

(25) f∗(OQ)→ λ∗λ
∗(ODj ).

Since P is isomorphic to the d− 1-dimensional projective space over the

residue field of κ(x), f∗(OP ) consists of constant functions. Hence (25) is

injective.
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4.3.4. We prove 4.3.2. Let U ′ be the inverse image of U in X ′ (so we have

an isomorphism U ′
∼=→ U). Let χ ∈ FNH1

et(U,Qp/Zp). By [20, Theorem 8.1],

the Swan conductor divisor of χU ′ on X ′ is 6N ′. Both Rsw(χU ′) and the

pullback of Rsw(χ) on X ′ are sections of the left hand side of (20) whose

images in the right hand side of (20) coincide with the pullback of Rsw(χ).

Hence by the injectivity 4.3.3, they coincide.

Lemma 4.3.5. Theorem 4.3.1 is true if X ′ is a (locally closed) subscheme

of X of codimension one, D is regular, and the scheme D ×X X ′ is regular.

The following proof of 4.3.5 models on the method of Brylinski in [7] who

studied the induced ramification on a curve X ′ ⊂X for a surface X over a

finite field by using the class field theory of X.

Proof. Let D′ =D ×X X ′. We may assume that X, D, X ′ and D′ are

integral and that D is of characteristic p > 0. Let K (resp. F , resp. K ′,

resp. F ′) be the function field of X (resp. D, resp. X ′, resp. D′). Let d

be the dimension of X. Let ξ be the generic point of D′ and let ν be the

generic point of D. Let τ ∈ OX,ξ be an element which defines X ′ at ξ and

let π ∈ OX,ξ be an element which defines D at ξ. Let q = (xi)i ∈Qd−1(X)

and assume xd−2 = ξ. Let χ ∈ FNH1
et(U,Qp/Zp). For p ∈ Pq(X), consider

the homomorphism hp :KM
d (K)→Qp/Zp induced by χ. Then we have∑

p∈Pq(X) hp = 0 on KM
d (K). Let p1 = (xi)i ∈ Pq(X) be the unique element

such that xd−1 is the generic point of D, and let p2 = (x′i)i be the unique

element of Pq(X) such that x′d−1 is the generic point of X ′.

WriteN = nD,M =mD. We may assume n > 0 and hence n >m. Let g ∈
πm+1OX,ξ and y1, . . . , yd−2 ∈ O×X,ξ · π

Z, and let α= {E(g), y1, . . . , yd−2, τ}
∈KM

d (K). Since
∑

p∈Pq(X) hp(α) = 0 and hp(α) = 0 for p ∈ Pq(X) r
{p1, p2}, we have

(26) hp1(α) + hp2(α) = 0.

Let χ′ be the pullback of χ to X ′ ∩ U . Let p1(D) be p1 regarded as an

element of P (D) and define p2(X ′) ∈ P (X ′) and q(D′) ∈ P (D′) similarly. Let

hp2(X′) :KM
d−1(K ′)→Q/Z be the homomorphism induced by χ′. Then hp2 :

KM
d (K)→Q/Z coincides with the composition KM

d (K)
∂→KM

d−1(K ′)→
Q/Z where the first arrow is the boundary map and the second arrow is

hp2(X′).

We first prove Swξ(χ
′) 6 n. It is sufficient to prove that hp2(X′) kills

Un+1KM
d−1(K ′) where U• is for the discrete valuation ring OX′,ξ. The group
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Un+1KM
d−1(K ′) is generated by ∂(α) where α= {E(g), y1, . . . , yd−2, τ} is as

above such that g ∈ πn+1OX,ξ. For such α, we have hp2(X′)(∂(α)) = hp2(α) =

−hp1(α) = 0. Here we used (26) and the fact Swν(χ) 6 n and hence hp1 kills

α ∈ Un+1KM
d (K) where U• is for the discrete valuation ring OX,ν .

Let E and E′ be the schemes (n−m)D and (n−m)D′, respectively.

Since Fp[T ]→OD,ξ ; T 7→ τ is a localization of a smooth map, there is a

ring homomorphism ι :OD,ξ→OE,ξ which lifts the identity map of OD,ξ
and which sends the image of τ to the image of τ . Then ι induces ring

homomorphisms F →OE,ν and F ′→OE′,ξ which lift the identity maps of

F and F ′, respectively. Write

Rsw(χ) =

n∑
i=m+1

π−i ⊗ (ι(ai) d log(π) + ι(bi))

∈ (OX(nD)/OX(mD)⊗OX Ω1
X(log D))ξ,

Rsw(χ′) =

n∑
i=m+1

π−i ⊗ (ι(a′i) d log(π) + ι(b′i))

∈ (OX′(nD′)/OX′(mD′)⊗OX′ Ω1
X′(log D′))ξ,

where ai ∈ OD,ξ, bi ∈ Ω1
D,ξ, a

′
i ∈ F ′, b′i ∈ Ω1

F ′ .

For j ∈ Z, let ε : Ωj
D,ξ→ Ωj

F ′ be the canonical projection. It is sufficient

to prove a′i = ε(ai), b
′
i = ε(bi) for all i.

We prove a′i = ε(ai). For any c ∈ Ωd−2
D,ξ , we have

hp1({E(πi ⊗ ι(c)), τ}) = (−1)d−1Resp1(D)(aic ∧ d log(τ))

= (−1)d−1Resq(D′)(ε(ai)ε(c)),

where Resp1(D) =
∑

v∈Pl(D,p1(D)) ResFv , Resq(D′) =
∑

v∈Pl(D′,q(D′)) ResF ′v .

On the other hand,

hp2({E(πi ⊗ ι(c)), τ}) = hp2(X′)(E(πi ⊗ ι(c))) = (−1)d−2Resq(D′)(a
′
iε(c)).

Hence by (26), Resq(D′)(ε(ai)c) = Resq(D′)(a
′
ic) for any c ∈ Ωd−2

F ′ . Hence we

have ai = a′i.

We prove b′i = ε(bi). For c ∈ Ωd−3
D,ξ ,

hp1({E(πi ⊗ ι(c)), π, τ}) = −Resp1(D)(bi ∧ c ∧ d log(τ))

= −Resq(D′)(ε(bi) ∧ ε(c)).
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On the other hand,

hp2({E(πi ⊗ ι(c)), π, τ}) = hp2(X′)({E(πi ⊗ ι(c)), π}) = Resq(D′)(b
′
i ∧ ε(c)).

Hence by (26), Resq(D′)(ε(bi) ∧ c) = Resq(D′)(b
′
i ∧ c) for any c ∈ Ωd−3

F ′ . Hence

we have bi = b′i.

Corollary 4.3.6. Theorem 4.3.1 is true in the case X ′ is a one-

dimensional subscheme of X such that X ′ meets D only at regular points of

D and the scheme D ×X X ′ is regular.

Proof. This is because the morphism X ′→X is a composition of

morphisms X ′→X of the type of 4.3.5.

Lemma 4.3.7. Theorem 4.3.1 is true if X ′ is one-dimensional.

Proof. Let C be the image of X ′→X. We may assume that C is one-

dimensional. By repeating the blowing-up of X at C ∩D, we obtain the

situation of 4.3.6 with X ′ = C. Hence in the composition X ′→ C→X, 4.3.7

for the latter morphism is reduced to 4.3.2 and 4.3.6. Lemma 4.3.7 for the

first morphism is reduced to (i) of 3.1.2.

The following 4.3.8 is a preparation for 4.3.9 which is important to reduce

Theorem 4.3.1 to 4.3.7.

Lemma 4.3.8. Let D be a smooth scheme over a perfect field k of

characteristic p > 0 and let x be a closed point of D. Then we have an

injection

Ω1
D/k,x→

∏
Z

Ω1
Z/k,x

where Z ranges over all closed integral subschemes of D of dimension one

which contain x and which are smooth at x.

Proof. Let ω be a nonzero element of Ω1
D/k,x. Let (ti)16i6d be a regular

system of parameters at x. We prove by induction on d. Write ω =
∑

i gidti
on an open neighborhood of x. We may assume g1 6= 0. Assume d> 2. Since

the ideals of (tn1 − td) (n> 1) of OX,x are distinct prime ideals of height

one, there is n> 1 which is divisible by p such that g1 /∈ (tn1 − td). Let Z be

the closed integral subscheme of X containing x which is defined by tn1 − td
at x. Then Z is smooth at x, (dti)16i6d−1 is a base of Ω1

Z,x, the image of ω

in Ω1
Z,x is

∑d−1
i=1 gidti, and g1 is nonzero in OZ,x.
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Lemma 4.3.9. Let the notation be as in 4.2.2. Let x be a closed point of

D at which D is regular. Then we have an injection

(OX(N)/OX(M)⊗OX Ω1
X(log D))x

→
∏
C

(OC(N ′C)/OC(M ′C)⊗OC Ω1
C(log D′C))x

where C ranges over all one-dimensional regular integral subschemes of X

which contain x and which are not contained in D. Here N ′C is the pullback

of N to C, M ′C is the effective divisor on C defined using N ′C similarly

to M , and D′C is the support of the pullback of D to C regarded as a divisor

on C with simple normal crossings.

Proof. We may assume that D is regular and that N = nD for some

integer n> 1. Let ω be a nonzero element of (OX(N)/OX(M)⊗OX
Ω1
X(log D))x. Let π be an element of OX,x which defines D at x. Take a

system of regular parameters (t1, . . . , td) of OX,x such that td = π. Write

M =mD. Let h> 0 be the largest integer such that ω is in the image

of πh−n ⊗ Ω1
X(log D). Then n− h >m. Write ω = πh−n ⊗ (f d log(π) +∑d−1

i=1 gidti) with f, gi ∈ OX,x. Then the pullback of some of f and gi to

D is nonzero.

There are two cases.

Case 1. The pullback of some gi to D is nonzero.

Case 2. The pullbacks of gi to D are zero for all i. In this case, the

pullback of f to D is nonzero.

In Case 1 (resp. Case 2), there is a closed integral subscheme Z of D of

dimension one which contains x and which is smooth at x such that the

pullback of
∑d−1

i=1 gidti (resp. f) to Z is nonzero. (In Case 1, the existence of

Z is by 4.3.8.) By changing the choice of (ti)16i6d−1, we may assume that Z

is defined at x by t2, . . . , td−1 and π. (In Case 1, the pullback of
∑d−1

i=1 gidti
to Z becomes the pullback of g1dt1.)

Let a be the order of the pullback of g1t1 (resp. f) to Z at x.

Take an integer e which is divisible by p (resp. is coprime to p) such

that e> p(a+ 1). Let C be a one-dimensional regular integral subscheme of

X containing x which is defined by t2, . . . , td−1, t
e
1 − π at x. Let ω′ be the

pullback of ω to (OC(N ′C)/OC(M ′C)⊗OC Ω1
C(log D′C))x.

In Case 1 (resp. Case 2), we have the following.
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Claim 1. N ′C = enD′C , M ′C =m′D′C where m′ is an integer such that

e−1m′ 6m+ p−1(p− 1). t1 is a prime element of the discrete valuation ring

OC,x. d log(t1) is a generator of Ω1
C(log D′C)x.

Claim 2. ω′ = πh−n ⊗ g d log(t1), where g is the pullback of g1t1 (resp.

ef + g1t1) to C. The order of g at x is a.

The proofs of Claims 1 and 2 are straightforward.

Claim 3. ω′ 6= 0.

To prove Claim 3, by Claims 1 and 2, it is sufficient to prove e(n− h)−
a >m′. But e−1(e(n− h)− a−m′ − 1) = (n− h−m− 1) +m− e−1m′ +

1−e−1(a+1) > (m− e−1m′)+1− e−1(a+1) >−p−1(p− 1)+1− p−1 = 0.

4.3.10. Now we prove Theorem 4.3.1. By 4.3.9 which we apply by taking

X ′ in 4.3.1 as X in 4.3.9, we may assume that X ′ in 4.3.1 is one-dimensional.

Then we are reduced to 4.3.7.

4.3.11. By 4.3.7 and 4.3.9, for χ ∈ FNH1
et(U,Qp/Zp), Rsw(χ) in

Theorem 4.2.2 is determined by Rsw of the pullbacks of χ to

Fn(C,x)H
1(KC,x,Qp/Zp), where x ranges over regular points of D, C ranges

over one-dimensional regular integral subschemes of X which contain x

and which are not contained in D, n(C, x) denotes the multiplicity of the

pullback of N to C at x, and KC,x denotes the local field of the function

field of C at x.

4.3.12. In the case X is of characteristic p, the proofs of the Theo-

rems 4.2.2 and 4.3.1 can be given also by using Artin–Schreier–Witt theory.

We first consider 4.2.2. The exact sequence 0→ Z/psZ→Ws(OU )
φ−1→

Ws(OU )→ 0 on Uet, where φ is the Frobenius, induces an exact sequence

0→ Z/psZ→ j∗Ws(OU )
φ−1→ j∗Ws(OU )→R1j∗(Z/psZ)→ 0 on Xet (this is

because R1j∗Ws(OU ) = 0 by the fact j is an affine morphism). For an

effective divisor N whose support is contained in D, let FN j∗Ws(OU )

be the subsheaf of j∗Ws(OU ) consisting of local sections (fs−1, . . . , f0)

satisfying pidiv(fi) >−N for all i. Similarly as [35, Proposition 1.31(1)], the

subsheaf FNR
1j∗(Z/psZ) :=R1j∗(Z/psZ)∩FNR1j∗(Qp/Zp)⊂R1j∗(Z/psZ)

where Z/psZ is embedded in Qp/Zp in the canonical way equals the image

of FN j∗Ws(OU ).
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We have the homomorphism

FNj∗Ws(OU )→OX(N)⊗OX Ω1
X(log D);

(fs−1, . . . , f0) 7→ −
∑
i

fp
i−1
i dfi.

By the exact sequence 0→ Z/psZ→ FMj∗Ws(OU )
φ−1→ FN j∗Ws(OU )→

F ′NR
1j∗(Z/psZ)→ 0 and by the surjectivity of FN j∗Ws(OU )→ FNR

1j∗
(Z/psZ), this homomorphism induces a homomorphism

FNR
1j∗(Z/psZ)→OX(N)/OX(M)⊗OX Ω1

X(log D)

which is Rsw.

The compatibility with pullbacks (4.3.1) is evident in this method.

The refined Swan conductor FNR
1j∗(Z/psZ)→OX(N)/OX(N +D)

⊗OX Ω1
X(log D) defined in [35, Definition 1.33] is induced by Rsw, by 3.5.7.

As an application of our theory, we have the following theorem.

Theorem 4.3.13. Let X be a regular scheme of finite type over Z, D a

divisor on X which is regular and integral, U =X rD, p a prime number,

and let χ ∈H1
et(U,Qp/Zp). Let x be a closed point of D. Then

SwD(χ) = sup
C

Swx(χ|C∩U )/(C, D)x

where C ranges over all one-dimensional integral subschemes on X which

contain x, which are regular at x, and which are not contained D. Here

SwD(χ) denotes the Swan conductor of χ at the generic point of D, and

(C, D)x denotes the intersection number of C and D at x which is the

multiplicity at x of the pullback of the divisor D to C.

The positive characteristic case of 4.3.13 is already proved by Barrientos

[3, Theorem 5.2] without the assumption X is of finite type over Z.

In the equal characteristic and geometric case, an analogue of 4.3.13

is proved in Hu [15] for the Swan conductor of a locally constant sheaf

with ramification along a divisor defined by the logarithmic filtration by

ramification groups [1]. Conjecture A in [3] discussed in 4.3.15 is also studied

in [15].

4.3.14. We prove 4.3.13. l.h.s > r.h.s. follows from (1) of Theorem 4.3.1.

To prove l.h.s. 6 r.h.s., we consider the C in the proof of 4.3.9 with
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n= SwD(χ) (so h= 0). We have Swx(χ|C∩U ) = en− a, (C, D)x = e, and

hence Swx(χ|C∩U )/(C, D)x = n− e−1a. a can be fixed and e can become

arbitrarily big.

4.3.15. As is discussed in [3], 4.3.13 is related to the rank one case

of Conjecture A in [3] on ramification of `-adic sheaves on a scheme X

(here ` is a prime number which is invertible on X). This conjecture was

first formulated by Esnault and Kerz in the positive characteristic case

at the end of Section 3 of [8]. Conjecture A is formulated by using the

Swan conductor of a representation of Gal(K̄/K) for a complete discrete

valuation field K defined by Abbes–Saito theory [1]. For a one-dimensional

Galois representation, the Swan conductor given by [20] and used in this

paper coincides with that given by [1] in the positive characteristic case

[2, Corollary 9.12], but this coincidence is not yet known in the mixed

characteristic case.

If the last coincidence is true, then (1) of 4.3.1, 4.3.13 and the arguments

in [3, Section 6] show that Conjecture A is true for rank one `-adic sheaves

on X in 4.2.1.

(Two of the authors (K.K. and T.S.) are preparing an article [24] where

the coincidence in the mixed characteristic case is proved. This should imply

Conjecture A in the rank one and the mixed characteristic case.)

Acknowledgments. The authors are grateful to the referee for careful

reading of the manuscript and valuable comments.
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cas d’un trait, RIMS, Kyoto Univ. 45 (2009), 25–74.

[3] I. Barrientos, Log ramification via curves in rank 1, Int. Math. Res. Not. IMRN 19
(2017), 5769–5799.

[4] B. Bhatt, M. Morrow and P. Scholze, Topological Hochschild homology and integral
p-adic Hodge theory, preprint, 2018, arXiv:1802.03261.

[5] J. M. Borger, Conductors and the moduli of residual perfection, Math. Ann. 329
(2004), 1–30.

[6] J. M. Borger, Kato’s conductor and generic residual perfection, preprint, 2011,
arXiv:0112306v2.
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