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Abstract

This paper proposes improvements to the modified Fletcher–Reeves conjugate gradient method
(FR-CGM) for computing Z-eigenpairs of symmetric tensors. The FR-CGM does not need to compute
the exact gradient and Jacobian. The global convergence of this method is established. We also test
other conjugate gradient methods such as the modified Polak–Ribière–Polyak conjugate gradient method
(PRP-CGM) and shifted power method (SS-HOPM). Numerical experiments of FR-CGM, PRP-CGM
and SS-HOPM show the efficiency of the proposed method for finding Z-eigenpairs of symmetric tensors.
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1. Introduction

Let R be the real field and let m and n be positive integers. An m-order n-dimensional
tensor A is an array indexed by integer tuples (i1, . . . , im) with 1 ≤ i j ≤ n. Let R[m,n]

denote the set of all m-order n-dimensional real tensors and representA ∈ R[m,n] as

A = (ai1···im ), ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

A tensor is called symmetric if the value of ai1···im is invariant under any permutation
of its index (i1, . . . , im). In this paper, all the tensors are real tensors.

To any n-vector x = (x1, . . . , xn)T , real or complex, we define an n-dimensional
column vector

Axm−1 :=
( n∑

i2,...,im=1

aii2···im xi2 · · · xim

)
1≤i≤n

.

Tensor eigenvalues and eigenvectors have received much attention (see [1, 8, 18,
20]). The tensor eigen problem has applications in blind source separation [10],
magnetic resonance imaging [23], higher-order Markov chains [15] and spectral
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hypergraph theory [2, 9, 16]. There is more than one possible definition for a tensor
eigenpair [19, 22]. In this paper, we use the following definition.

Definition 1.1. LetA ∈ R[m,n]. The pair (λ, x) ∈ C × (Cn \ {0}) is called an E-eigenpair,
where λ is the E-eigenvalue and x is the associated E-eigenvector ofA, if they satisfy
the equations

Axm−1 = λx and xT x = 1. (1.1)

We call (λ, x) a Z-eigenpair if they are both real.

It is NP-hard to compute eigenvalues of higher-order tensors (that is, for m ≥ 3).
There is much recent work on calculating Z-eigenvalues of symmetric tensors. Qi
et al. [21] proposed an elimination method for finding all the Z-eigenvalues, which
is specific to third-order tensors. Kolda and Mayo [11, 12] provided a shifted
power method (SS-HOPM) for computing Z-eigenpairs, but the choice of a suitable
shift parameter may be crucial. More recently, Han [5] proposed an unconstrained
optimisation approach for even-order symmetric tensors. Hu et al. [7] proposed a
sequential semidefinite programming method for finding the extreme Z-eigenvalues
of even-order symmetric tensors. The last two methods usually find one or two
Z-eigenvalues of even-order symmetric tensors. Cui et al. [3] use Jacobian SDP
relaxations in polynomial optimisation to compute all real eigenvalues of symmetric
tensors sequentially. The computational complexity of this method increases rapidly
with increasing relaxation order.

The aim of this paper is to provide a simple method for computing Z-eigenpairs
of symmetric tensors. The equations (1.1) are regarded as a system of nonlinear
equations with respect to the variables (x, λ). It is easy to see that the Jacobian of the
system is symmetric for a symmetric tensor. We improve the line search technique
of the modified FR-CGM proposed by Li and Wang [14] to symmetric nonlinear
equations and propose a modified FR-CGM for calculating Z-eigenpairs of symmetric
tensors. The FR-CGM need not compute the exact gradient and Jacobian. The global
convergence of this method is established. We also test other conjugate gradient
methods such as a modified PRP-CGM [25], and present numerical experiments of
the FR-CGM, PRP-CGM and SS-HOPM for computing Z-eigenpairs of symmetric
tensors. The results show that the proposed method is promising.

The paper is organised as follows. In Section 2, we describe the FR-CGM for
finding Z-eigenpairs of symmetric tensors. In Section 3, the convergence theory of
our algorithm is presented. Preliminary numerical results are demonstrated on test
problems in Section 4.

2. An FR-CGM

In this section, we give a modified FR-CGM for computing Z-eigenpairs of
symmetric tensors. LetA ∈ R[m,n] and consider the equation

F(x, λ) :=
(
Axm−1 − λx

1
2 (1 − xT x)

)
= 0. (2.1)
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Then F : Rn+1 → Rn+1 is a nonlinear continuously differentiable function. The tensor
eigenvalue equation (1.1) for m > 2 amounts to a system of nonlinear equations (2.1).
Any real solution of (2.1) is a Z-eigenpair of the symmetric tensorA.

Lemma 2.1 [17, 24]. IfA ∈ R[m,n] is a symmetric tensor, then

F′(x, λ) :=
(
(m − 1)Axm−2 − λIn −x

−xT 0

)
is a symmetric matrix.

Since the Jacobian F′(x, λ) is symmetric, (2.1) is a symmetric nonlinear problem.
The symmetric nonlinear problem (2.1) has been studied by several authors. Li and
Fukushima [13] proposed a globally and superlinearly convergent Gauss–Newton
based BFGS method for such problems. Gu et al. [4] extended this method to the
norm descent case. Li and Wang [14] introduced a modified FR-CGM for symmetric
nonlinear equations.

Let ω = (x, λ) and ϕ(ω) = 1
2‖F(ω)‖2. Then the nonlinear equation (2.1) is equivalent

to the global optimisation problem

minϕ(ω), ω ∈ Rn+1. (2.2)

Set Fk = F(ωk), Jk = F′(ωk) and

gk(t) = (F(ωk + tF(ωk)) − F(ωk))/t, (2.3)

so that limt→0 gk(t) = JkFk = ∇ϕ(ωk). The modified FR-CGM in [14] for symmetric
nonlinear equations defines dk(t) with parameter t as

dk(t) =

−gk(t) if k = 0,
−αk(t)gk(t) + βk(t)dk−1 if k ≥ 1,

(2.4)

αk(t) = 1 +
gk(t)T dk−1

‖gk−1‖
2 , βk(t) =

‖gk(t)‖2

‖gk−1‖
2 , (2.5)

where gk−1 is an estimation to ∇ϕ(ωk−1). By direct computation,

gk(t)T dk(t) = −‖gk(t)‖2.

Procedures 1 and 2, below, provide a way of determining dk and tk.

Procedure 1. Let σ1 > 0, σ2 > 0, σ3, r ∈ (0, 1) be constant. Let ik be the smallest
nonnegative integer such that the inequality

ϕ(ωk + tdk(t)) − ϕ(ωk)≤−σ1‖tdk(t)‖2 − σ2‖tF(ωk)‖2

+σ3(F(ωk + tF(ωk)) − F(ωk))T dk(t)

holds with t = ri, i = 0, 1, 2, . . . , ik. Let gk = gk(rik ), dk = dk(rik ).
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Procedure 2. Let ik and dk be determined by Procedure 1. If ik = 0, let tk = 1.
Otherwise, let jk be the largest positive integer j = {0, 1, 2, . . . , ik − 1} satisfying

ϕ(ωk + rik− jdk) − ϕ(ωk)≤−σ1‖rik− jdk‖
2 − σ2‖rik− jF(ωk)‖2

+σ3(F(ωk + rik− jF(ωk)) − F(ωk))T dk.

Let tk = rik− jk .

We improve the line search technique of the above modified FR-CGM and use
it to calculate Z-eigenpairs of symmetric tensors. To this end, we give the following
lemma which shows that, for t > 0 sufficiently small, every solution of (2.4) is a descent
direction of ϕ at ωk.

Lemma 2.2. Let σ1 and σ2 be positive constants. If ωk is not a stationary point of (2.2),
then there exists a constant t̄ > 0 depending on k such that, for t ∈ (0, t̄), the solution
dk(t) of (2.4) satisfies

∇ϕ(ωk)T dk(t) < 0. (2.6)

Moreover, the inequality

ϕ(ωk + tdk(t)) − ϕ(ωk) ≤ −σ1‖tdk(t)‖2 − σ2‖tF(ωk)‖2 (2.7)

holds for all t > 0 sufficiently small.

Proof. By direct computation, we get

lim
t→0+
∇ϕ(ωk)T dk(t) = −‖∇ϕ(ωk)‖2 < 0.

Therefore, inequality (2.6) holds for all t > 0 sufficiently small. Next

lim
t→0+

(ϕ(ωk + tdk(t)) − ϕ(ωk))/t = lim
t→0+
∇ϕ(ωk)T dk(t) < 0.

However, the right-hand side of (2.7) is o(t). Therefore, inequality (2.7) holds for all
t > 0 sufficiently small. �

The following procedure gives a way of determining a search direction dk and a step
size tk, simultaneously.

Procedure 3. Let σ1 > 0, σ2 > 0, r ∈ (0, 1) be constant. Let tk = max{1, r, r2, . . .}

satisfying
ϕ(ωk + tkdk) − ϕ(ωk) ≤ −σ1‖tkdk‖

2 − σ2‖tkF(ωk)‖2. (2.8)

Then let gk = gk(tk), dk = dk(tk).

Procedure 3 ensures that the value of ϕ at ωk + tkdk is less than that of ϕ at ωk.
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Now we present a modified FR-CGM for computing Z-eigenpairs of symmetric
tensors. The algorithm is given as follows.

Algorithm FR-CGM
Initial. Choose ε > 0, ω0 ∈ Rn+1. Set k := 0.
Step 1. Evaluate Fk. If ‖Fk‖ ≤ ε, terminate.
Step 2. Determine tk and dk by (2.3)–(2.5) and Procedure 3.
Step 3. Set ωk+1 = ωk + tkdk. Let k := k + 1 and go to Step 1.

As in the proof of [24, Lemma 2.2], we can derive the following lemma from
Algorithm FR-CGM.

Lemma 2.3. The sequence {ϕ(ωk)} is strictly decreasing. If sk = ωk+1 − ωk = tkdk, then

lim
k→∞
‖sk‖ = 0, lim

k→∞
‖tkFk‖ = 0. (2.9)

3. Convergence analysis

In this section, we prove the global convergence of Algorithm FR-CGM. In order
to prove the global convergence, we make the following assumption.

Assumption 3.1. The level set Ω = {ω ∈ Rn+1 | ϕ(ω) ≤ ϕ(ω0)} is bounded.

Assumption 3.1 shows that there exist positive constants M1,M2 such that

‖F(x)‖ ≤ M1, ‖J(x)‖ ≤ M2, ∀x ∈ N.

Theorem 3.2. Let Assumption 3.1 hold and {ωk} be generated by Algorithm FR-CGM.
Then

lim inf
k→∞

‖∇ϕ(ωk)‖ = 0. (3.1)

Proof. If lim supk→∞ αk > 0, then, from (2.9), it is easy to see that

lim inf
k→∞

‖Fk‖ = 0,

which implies (3.1).
We need only to show (3.1) for the case limk→∞ αk = 0. We do it by assuming that

lim inf
k→∞

‖∇ϕ(ωk)‖ > 0, (3.2)

to deduce a contradiction. Suppose that (3.2) holds. Then there is a constant η1 > 0
such that ‖F(ωk)‖ ≥ η1 for all k. Since {ωk} ⊂ Ω is bounded, it is clear that the sequence
{dk} is bounded. Then there exists a set K of nonnegative integers and subsequences
{ωk}k∈K and {dk}k∈K , respectively, that converge to ω∗ and d∗. From

lim
t→0

gk(t) = JkFk = ∇ϕ(ωk),

we get
lim

k∈K,k→∞
gk = ∇ϕ(ω∗).

https://doi.org/10.1017/S0004972716000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000381


416 M. Zeng and G. Zhou [6]

Since limk→∞ tk = 0, we see that t′k = tk/r does not satisfy (2.8), namely,

ϕ(ωk + t′kdk) − ϕ(ωk) > −σ1‖t′kdk‖
2 − σ2‖t′kFk‖

2.

Dividing both sides by α′k and then taking limits as k→∞ with k ∈ K, it follows that

∇ϕ(ω∗)T d∗ ≥ 0. (3.3)

Since gk(t)T dk(t) = −‖gk(t)‖2, limt→0+ gk(t)T dk(t) = −‖∇ϕ(ωk)‖2 and

lim
k∈K,k→∞

gT
k dk = −‖∇ϕ(ω∗)‖2.

From
lim

k∈K,k→∞
gk = ∇ϕ(ω∗), lim

k∈K,k→∞
dk = d∗

and (3.3) we get
−‖∇ϕ(ω∗)‖2 ≥ 0,

which implies that
‖∇ϕ(ω∗)‖ = 0.

But this contradicts (3.2). This completes the proof. �

Theorem 3.2 shows that the iterative sequence {ωk} has an accumulation point which
is a stationary point of the problem minϕ(ω) = 1

2‖F(ω)‖2. It may not be a solution of
(2.1) if the Jacobian matrix J(ω) is singular at that point.

As in the proof of [24, Theorem 3.3], it is easy to derive the following theorem from
Algorithm FR-CGM, showing that Algorithm FR-CGM is globally convergent.

Theorem 3.3. Let Assumption 3.1 hold. Suppose that the sequence {ωk} generated by
Algorithm FR-CGM has a subsequence converging to a stationary point ω∗ at which
J(ω∗) is nonsingular. Then ω∗ is a solution of (2.1), that is, (x∗, λ∗) is a Z-eigenpair of
the symmetric tensorA. Moreover, the whole sequence {ωk} converges to ω∗.

4. Numerical experiments

In this section, we report some numerical experiments of the proposed algorithm
(FR-CGM) for computing Z-eigenpairs of symmetric tensors. In addition, we also
give the comparative numerical results for the FR-CGM, PRP-CGM and SS-HOPM
for Examples 4.1 and 4.2.

The parameters are specified as follows. We take r = 0.5 in Procedure 3 and
σ1 = σ2 = 10−5 in (2.8). We stop the iteration process if ‖F(ωk)‖ ≤ 10−4. We also
stop the program if the iteration number is larger than 10 000. The program is coded
in MATLAB 7.8. For any odd-order tensor (that is, m odd), if (x, λ) is an eigenpair,
then (−x,−λ) is also an eigenpair. For any even-order tensor (that is, m even), if (x, λ)
is an eigenpair, then (−x, λ) is also an eigenpair. Therefore, we only give their positive
Z-eigenvalues and the corresponding Z-eigenvectors for odd-order tensors. Iters is the
total number of iterations and Time is the CPU time in seconds.
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Table 4.1. Numerical results of the FR-CGM and the PRP-CGM for Example 4.1.

FR-CGM PRP-CGM
λ xT Iters Time λ xT Iters Time

0.8730 [−0.3921 0.7249 0.5663] 13 0.0032 0.8729 [−0.3921 0.7248 0.5663] 12 0.0232
0.4306 [−0.7187 −0.1244 −0.6841] 10 0.0015 —
0.2294 [−0.8448 0.4384 −0.3068] 14 0.0019 0.2294 [−0.8448 0.4384 −0.3068] 38 0.0067
0.0180 [0.7127 0.5097 −0.4820] 29 0.0039 0.0180 [0.7126 0.5097 −0.4820] 169 0.0151
0.0033 [0.4484 0.7740 −0.4471] 27 0.0032 0.0033 [0.4483 0.7741 −0.4470] 107 0.0119
0.0018 [0.3309 0.6309 −0.7018] 34 0.0067 0.0018 [0.3305 0.6308 −0.7020] 178 0.0208
0.0006 [0.2899 0.7359 −0.6119] 42 0.0058 0.0006 [0.2906 0.7354 −0.6122] 226 0.0176

Table 4.2. Numerical results of the FR-CGM and the SS-HOPM for Example 4.1.

FR-CGM SS-HOPM
λ xT Iters Time λ xT Iters Time

0.8730 [−0.3921 0.7249 0.5663] 13 0.0032 0.8730 [−0.3922 0.7249 0.5664] 39 0.0018
0.4306 [−0.7187 −0.1244 −0.6841] 10 0.0015 0.4306 [−0.7187 −0.1245 −0.6840] 74 0.0014
0.2294 [−0.8448 0.4384 −0.3068] 14 0.0019 0.4306 [−0.7187 −0.1245 −0.6840] 92 0.0036
0.0180 [0.7127 0.5097 −0.4820] 29 0.0039 0.0180 [0.7132 0.5093 −0.4817] 179 0.0067
0.0033 [0.4484 0.7740 −0.4471] 27 0.0032 0.8730 [0.3922 0.7249 0.5664 ] 70 0.0031
0.0018 [0.3309 0.6309 −0.7018] 34 0.0067 0.4306 [−0.7187 −0.1245 −0.6840] 123 0.0049
0.0006 [0.2899 0.7359 −0.6119] 42 0.0058 0.0180 [0.7132 0.5093 −0.4817] 282 0.0106

Example 4.1 [11, Example 3.6]. Consider an odd-order symmetric tensor A ∈ R[3,3]

defined by

a111 = −0.1281, a112 = 0.0516, a113 = −0.0954, a122 = −0.1958,
a123 = −0.1790, a133 = −0.2676, a222 = 0.3251, a223 = 0.2513,
a233 = 0.1773, a333 = 0.0338.

From [11, Theorem 5.3], A has at most seven Z-eigenpairs. Under the same initial
conditions, the FR-CGM found all the Z-eigenpairs, the PRP-CGM found six Z-
eigenpairs, while the SS-HOMP only found three Z-eigenpairs with the shift parameter
α = 1. The numerical results are shown in Tables 4.1 and 4.2.

Example 4.2 [11, Example 3.5]. Let A ∈ R[4,3] be an even-order symmetric tensor
defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,
a1123 = −0.2939, a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862,
a1133 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,
a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

From [11, Theorem 5.3], this problem has at most 13 E-eigenpairs. In fact, A has
11 Z-eigenpairs. Under the same initial conditions, the FR-CGM found all the Z-
eigenpairs. However, the PRP-CGM only found three Z-eigenpairs. The SS-HOMP
also found three Z-eigenpairs with the shift parameter α = 2. The numerical results
are shown in Tables 4.3 and 4.4.
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Table 4.3. Numerical results of the FR-CGM and the PRP-CGM for Example 4.2.

FR-CGM PRP-CGM
λ xT Iters Time λ xT Iters Time

0.8895 [0.6672 0.2470 −0.7028] 70 0.0124 —
0.8170 [0.8412 −0.2636 0.4722 ] 21 0.0095 —
0.5104 [0.3597 −0.7780 0.5150 ] 23 0.0062 —
0.3633 [0.2676 0.6447 0.7160 ] 10 0.0017 0.3633 [0.2675 0.6447 0.7161] 12 0.0019
0.2683 [0.6100 0.4362 0.6616 ] 6 0.0012 0.2682 [0.6099 0.4363 0.6617] 8 0.0016
0.2628 [0.1318 −0.4425 −0.8870] 20 0.0038 —
0.2433 [0.9895 0.0946 −0.1088] 10 0.0017 —
0.1735 [0.3357 0.9073 0.2531 ] 6 0.0012 0.1734 [0.3357 0.9073 0.2531] 8 0.0015
−0.0452 [0.7797 0.6135 0.1250 ] 6 0.0013 —
−0.5630 [0.1761 −0.1796 0.9679 ] 21 0.0077 —
−1.0955 [0.5915 −0.7467 −0.3043] 42 0.0098 —

Table 4.4. Numerical results of the FR-CGM and the SS-HOPM for Example 4.2.

FR-CGM SS-HOPM
λ xT Iters Time λ xT Iters Time

0.8895 [0.6672 0.2470 −0.7028] 70 0.0124 0.8893 [0.6672 0.2471 −0.7027] 44 0.0158
0.8170 [0.8412 −0.2636 0.4722 ] 21 0.0095 0.8169 [0.8412 −0.2635 0.4722 ] 41 0.0025
0.5104 [0.3597 −0.7780 0.5150 ] 23 0.0062 0.8893 [−0.6672 −0.2471 0.7027 ] 158 0.0078
0.3633 [0.2676 0.6447 0.7160 ] 10 0.0017 0.3633 [0.2676 0.6447 0.7160 ] 55 0.0030
0.2683 [0.6100 0.4362 0.6616 ] 6 0.0012 0.8169 [0.8412 −0.2635 0.4722 ] 63 0.0034
0.2628 [0.1318 −0.4425 −0.8870] 20 0.0038 0.3633 [−0.2676 −0.6447 −0.7160] 76 0.0033
0.2433 [0.9895 0.0946 −0.1088] 10 0.0017 0.8893 [0.6672 0.2471 −0.7027] 54 0.0016
0.1735 [0.3357 0.9073 0.2531 ] 6 0.0012 0.8893 [0.6672 0.2471 −0.7027] 130 0.0064
−0.0452 [0.7797 0.6135 0.1250 ] 6 0.0013 0.8893 [0.6672 0.2471 −0.7027] 83 0.0043
−0.5630 [0.1761 −0.1796 0.9679 ] 21 0.0077 0.8169 [0.8412 −0.2635 0.4722 ] 49 0.0014
−1.0955 [0.5915 −0.7467 −0.3043] 42 0.0098 0.8893 [0.6672 0.2471 −0.7027] 50 0.0014

Table 4.5. Z-eigenpairs forA ∈ R[3,5] from Example 4.3.

λ xT

9.9972 [−0.7312 −0.1375 −0.4674 −0.2365 −0.4146]
4.2872 [−0.1858 0.7158 0.2149 0.5655 0.2950]
0.0000 [ 0.5213 −0.1043 0.4170 −0.7298 −0.1043]

Example 4.3 [3, Example 4.11]. Consider the odd-order symmetric tensor A ∈ R[3,5]

such that

ai jk =
(−1)i

i
+

(−1) j

j
+

(−1)k

k
.

This problem has three Z-eigenpairs. Using the FR-CGM, we find all the Z-eigenpairs,
which are listed in Table 4.5.

Example 4.4 [3, Example 4.12]. Consider the even-order symmetric tensor A ∈ R[4,5]

such that ai jkl = sin(i + j + k + l). This problem has five Z-eigenpairs. Using the FR-
CGM, we find all the Z-eigenpairs, which are listed in Table 4.6.
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Table 4.6. Z-eigenpairs forA ∈ R[4,5] from Example 4.4.

λ xT

7.2591 [0.2686 0.6150 0.3959 −0.1872 −0.5982]
4.6410 [−0.5056 0.1228 0.6382 0.5669 −0.0256]
0.0000 [0.6294 0.3328 −0.0809 0.5550 0.4226]
−3.9207 [−0.1785 0.4847 0.7023 0.2742 −0.4060]
−8.8478 [−0.5810 −0.3563 0.1959 0.5680 0.4179]

5. Conclusions

The numerical results show that the FR-CGM is more effective than the PRP-CGM
for computing Z-eigenpairs of symmetric tensors. For an m-order n-dimensional tensor
A, the computational complexity of each iteration of the FR-CGM is O(nm), which is
the work of computing Axm−1. The computational complexity of each iteration of
the SS-HOPM is also O(nm). The numerical results illustrate that the FR-CGM may
compute all the Z-eigenpairs while the SS-HOPM may only find some Z-eigenpairs
for a fixed shift parameter. The polynomial optimisation method [3], implemented
by the software Gloptiploy 3 [6] and SEDUMI, can compute all the Z-eigenpairs of
symmetric tensors. However, the calculation and implementation of the polynomial
optimisation method are complex, while our method is simple.
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