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DIFFERENTIAL COMPLETIONS AND DIFFERENTIALLY
SIMPLE ALGEBRAS

BY
PETER SEIBT

ABSTRACT. Differentially simple local noetherian Q -algebras are
shown to be always (a certain type of) subrings of formal power series
rings. The result is established as an illustration of a general theory of
differential filtrations and differential completions.

Introduction. The present paper takes up a theme which appears first in a paper
of R. Hart: Are differentially simple local noetherian Q -algebras always subrings of
formal power series rings; and what sort of subrings do thus occur? The answer to
the first question is affirmative, and a first-step characterization of the relevant type
of subrings is given. As a natural way towards the result we choose the approach via
differential filtrations and differential completions, which we first discuss in full (that
is characteristic-free) generality.

1. Differential filtrations and differential completions. Recall first the basic facts
about differential filtrations (cf. [3]). Let R be an arbitrary unital commutative ring,
and fix a set D of derivations on R. (R, D), or simply R, is called a differential ring.
Every localization S™'R of R will be tacitly considered as a differential ring, namely
(S7'R, S'D), where S'D is the set of extensions of elements of D to S~'R. We shall
write (R, d) for (R, {d}). For an ideal I of R define D(I) = {f €1 :df €l forall d €
D}. Then D(I) is an ideal of R such that, for every n = 1,I"™! C D(U") C I".
Furthermore, the operation D commutes with arbitrary intersections of ideals. Note that
we can reduce certain considerations to the case of one single derivation: Let D = UD,
and set D,(I) = {f €1 :df €1 forall d € D,}. Then D() = ND, (). For f € R,D
as above, and k = 1 we set D*f = {(dy o---od))f : d; € D,1 =i = k}. We define
Dl =1,D" = DMD" 'I)yn=1. Then D"I = {f €I :Df C I for | £k < n}, as
is easily seen by induction on n.

DEerINITION 1.1. Let (R, D) be a differential ring, 1 an ideal of R. Define Il =
R, =D""'I,nz1.

PROPOSITION 1.2. (I(n))n=0 is a multiplicative filtration of R. More precisely, we have
Tonlimy € Linamy er all n,m 2 0.
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Proor. First observe that for f, ¢ € R, and derivations d,,...,d, of R,r 2 2, the
following formula holds: (*)(d; o...0d,)(fg) =f(dio...0d,)(g)+(do...0d,)(f)g

r—1
+Y > dio...0 di)f)djo...0 d;_)g)
k=1 <.<i

J1 <o Jr—k

(where the j-indexing is complementary to the i-indexing). Let now r 2 0 be fixed.
We have to show, by induction on m = 0, that D*(I)D™(I) C D™™*\(I). Look first at
m=0: Choose f € D"(I),g € D°(I) = I. We have to show that fg € D"™*!(I), that is
that fg € I,D(fg) C1,...,D"!(fg) C I. First, since f,g €1, we get D(fg) C I, by
the derivation property, and in the case when n = 0 the proof is complete. Let us pick
upnow dy,...,d,,2 = r = n+1. Then our formula (*) shows that (d; o...0d,)(fg) € I,
by hypothesis on f and g. This gives finally what we want: fg € D™!(I). As to the
inductive step, suppose that D"(I)D™(I) C D™"*!(I). We have to make sure that
D"(I)D™'(I) C D™™(I). Take f € D"(I),g € D"*'(I). By the inductive hypothesis
we get immediately fg € D™*!(I). We need only show that D"™*™*2(fg) C I. Look
once more at (*), with di,...,dym2 € D, that is with r = n+m+2. For k = n we
have (d;, o...0d;)(f) €1, and for k > n we have n+m+2 —k = m+ 1, that is
(dj, o...0d; _,)(g) €1, which shows finally our claim. '

Define A(/) = M,21D"(I). Then A (I) is obviously the greatest D-stable ideal
contained in /, and the operation A commutes with arbitrary intersections of ideals.
The most interesting elementary observation (see [3]) is that for a primary ideal Q
of R,D(Q) is also primary. Hence, for a prime ideal P of R, the filtration (P(;)),20
consists of P-primary ideals (for n = 1).

REMARK 1.3. Let P be a prime ideal of R. Then for all n = 1 we have P C P,.

Proor. It is easily seen that for every localization R — S~'R we have D(S™'1) =
S™'DS({) (where S(I) means S-saturation). In particular, if Q is primary, we get
D(S™'Q) = S7'D(Q). An easy induction shows that if NS = ¢, we obtain (with
¢ : R — S7'R the localizing homomorphism) D"Q = ¢~ 'D"S™!Q for all n = 0.
Now take S = R\P,¢ : R — R, and put M = S~'P = PR,,. Since M" C D"'M for
all n = 1, we get PM = o7 'M" C o 'D"'M = D" 'P = P,, as claimed. a

For a prime ideal P of R, and any localization R — S~ 'R such that PN § = ¢,
inspection of the proof 1.3 shows that the P, — filtration on R is the trace of the
(S~P)(y — filtration on S~'R. Furthermore, P,y = P™ if and only if (S™'P)q,) =
(S~'P)™. As another complement, we see that for a primary ideal Q of R and for
every localization ¢ : R — S™'R such that QNS = @, we have A(Q) = ¢ 'AS!Q).
Thus Q is D-stable if and only if S™'Q is §~!D-stable.

DEerINITION 1.4. Let (R, D) be a differential ring, and let (I,),>0 be a decreasing
sequence of ideals of R. We call the corresponding filtration D-good whenever all
d € D are (uniformly) continuous in the uniform structure defined by (1,)n>0.
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ExampLEs 1.5. (1) Let I C R be a fixed ideal, and consider (/,),~0 = (I"),>0, that
is the /-adic filtration on R. Since every derivation d of R satisfies d(I"*') C I",n 2 0,
an [-adic filtration on R is D-good for any set D of derivations on R.

(2) Let I C R be a fixed ideal, as before, D a set of derivations on R. Let (I"),~¢ =
(1(,,)),,>0 be the differential filtration associated with D (and 7); we shall call such
a filtration a D-adic filtration. Then Umy)n>o0 1s D°-good for every D° C D. We
have only to observe that for d € D we have dl.1) C Iy),n 2 0. In order to
see this, take f € I41); since Df C 1,D?f C I,...,D"f C I, we get in particular
df €1,Ddf C1,...,D""'df C I, which means precisely that df € I ).

REMARK 1.6. Let (/,),>0 be a D-good filtration on R. I, = My,>ol, is D-stable.
Thus, in the given situation, we may pass to R =R /100, with the differential structure
defined by the set of induced derivations D!, say. We shall henceforth assume that all
our filtrations are separated (that is Mo/, = 0).

ProposiTioN 1.7. Let (I,),>0 be a D-good separated filtration on R, and let R* be the
completion of R relative to this filtration. (1) Every d € D has a unique prolongation
d* on R* which is a derivation of R*. Let D* be the set of these prolongations. (2)
If D is finite, or if the topology on R is such that for every open ideal I of R,I? is
also open, then the extension (R,D) — (R*,D*) of differential rings has the following
property: For every open ideal I of R we have D*(I*) = (D(I))*. (( )* means closure
in R*,D* has the obvious meaning relative to D).

Proor. (1) is immediate by the elementary properties of completions of rings. (2):
Recall that the set of open ideals / of R and the set of open ideals J of R* are in
bijection viaJ — [ = JNR and I — J = I* (closure in R*). Let I be an open
ideal of R. Then, by our assumptions, D(I),/* and D*(/*) must also be open, since
I?CDU)=1MNgepd 1 CI,and 1> C I** C D*(I*) = I* Nyep d*~'I*NI*. Note that
D*(I*) is closed, and thus contains (I2)*; if 12 is open, (I?)* is also open. We need
only show that D*(I*) MR = D(I). But this follows from the definitions.

COROLLARY 1.8. Under the conditions above, we have for every open ideal I of R,
and all n 2 0,(I*)ny = (Uw)*, and thus Iy = (") NR.

ProposITION 1.9. Let R be a noetherian ring, m an ideal of R such that R is a
Zariski ring relative to its m-adic topology, and let R be its m-adic completion. If D
is a finite set of derivations on R, then for every ideal I of R we have (D(I))" = D(I),
and thus Iy = ()" for all n = 0.

Proor. Note that now closure equals extension, that is we may write I = IR for
every ideal I of R. Let us first consider the case of one single derivation, that is D =
{d}. Let E(R,R) be the idealization of R, that is E(R,R) = R® R, with multiplication:
(0, XY@,y = (xy,xy +x'y). Let § : R — E(R, R) be the ring homomorphism given
by 6(x) = (x,dx),x € R. Look first at E(R,R), considered as an R = module via
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6. We have r.(x,y) = 6(r)(x,y) = (r,dr)(x,y) = (rx,ry +dr.x). Note that E(R,R)
is generated by (1,0) and (0, 1), also for its §-structure: (x,y) = x.(1,0) + (y —
dx).(0,1),x,y € R. Consider now the (m @ R)-adic filtration on E(R,R), which is
given by the decreasing sequence of ideals (E (m”,m”"))n>o. We obtain the uniform
structure of the direct m-adic sum, and for the §-structure we get m*. E(m", m"~") C
Em™* m™—1) k. n = 1.

Now, § : R — E(R,R) is a homomorphism of filtered rings, which prolongs to the
completions. More precisely, 6:R— ER,R)"= E(f?,f?) is given by 5({) = (&, 3{),
where d is the prolongation of d to R.

For every ideal I of R,E(l,I) is an ideal of E(R,R), hence an R-submodule for
the é-structure. We have R.E(I,I) = E(,I), since £.(x,y) = (éx,&y + d€.x) for
¢ € R and x,y € I, which gives, by [5, p. 266, Cor. 3], (D(I)) "= ﬁ(l Nd-'1 =
RSTEW, 1) =6"'Ed,I) = Ina'l = D). Now, by [5, p. 266, Cor. 2], we have for
D = {d,,...,d,} the following equalities: D(I) = N<i<,D;(I) = Ni<i<,(Di(1)) " =
(Mi=ig, D))"= (DWI))".

This completes the proof. O

We now look more closely at the relation between /-adic and D-adic comple-
tion. Let (R, D) be a differential ring, / an ideal of R, R the I-adic completion of R,
and R* the D-adic completion relative to the filtration (/(;))n>0, Where Iy =
{fel:Df CI,...,D"f CI},n= 1. We suppose that MN,>ol;»y = 0, hence a
fortiori that M,5ol" = 0. We write D for the set of prolongations of the elements of
D to R, and D* for the corresponding set of prolongations on R*.

THEOREM 1.10. In the above situation we have a surjective ring homomorphism
@ : R — R*, which prolongs the identity on R. (1) Let I* be the closure of I in R*;
then the D*-filtration associated with I* is separated. (2) Let I be the closure of I in
IAQ, and let (Iin))n>0 be the f)'ﬁltcation associated with I in R. Then <p‘11(’;,) = i(,,) for
all n Z 0. Thus Ker ¢ equals A(I), the biggest D-invariant ideal of R contained in
1. (3) D* is the set of derivations induced by D on R* = IAQ/A(i). (4) R* is [-adically
complete; hence, if R is noetherian, R* is also I*-adically complete.

Proor. First, it is easy to see that /" C I, for all n 2 0. Hence the /-adic
structure on R is finer than the D-adic structure (relative to /). Thus we obtain a
prolongation of the identity on R, ¢ : R — R*, say. R* is separated, and o(R) is
dense and complete in R*, which gives the surjectivity of ¢. (1) By definition of
R* we know that the filtration ((/(4))*)n>0 satisfies My>o(/()* = 0. We must verify
that (/())* = (I*)(n for all n 2 0. Note that this is not a consequence of 1.8. First,
the equality is trivial for n = 0, 1. Assume that (I(,)* = (I*),). We have to show
that (+1))* = (DUw))* = (I*)@+1). By the inductive hypothesis this amounts to
showing that (D(I(,)))* = D*(I(,))*. Comparing with the proof of 1.7, this equality is
true provided all the ideals in question are open. Only for D*(/(,))* this is not trivial
by definition. But (D(I(»)))* € D*(I(n)*, which yields the result. (2) The equality
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Umy) "~ = i(,,),n = 0, follows from 1.8, since now we are dealing with an /-adic
filtration. The continuity of ¢ gives immediately i(,,) Cop ll(’;) for all n = 0. Now,
these are open ideals in R; we need only observe that Lp“(l(n))ﬁR = i(,,)ﬁR = Iy for
all n 2 0, which follows from the fact that ¢ prolongs the identity on R. (3) For every
d € D we have that d*, the prolongation of d on R*, and d’, the derivation induced
by :1' on R*, coincide with d on R. This yields immediately the assertion. 4) R* is
I-adically complete, as a homomorphic image of R. Suppose now R to be noetherian.
Then the /-adic and the [-adic structures on R coincide, and we have (") = [” for all
n 2 0. But ga(i "y = (I*)",n 2 0, hence the [-adic and the [*-adic structures on R* are
equal. This finishes the proof of our theorem. g

ExampLE 1.11. The topological situation, as described by 1.10, is the following: Let
R be noetherian. R* is /*-adically complete, but whenever A(i ) # 0, the induced [ -adic
topology on R C R* is not the given one (which, in this case, is strictly finer). R is
I*-adically dense in R*. We should give an easy example in order to make the situation
clear. Consider R = k[x,y](,), the local ring of the affine k-plane at the origin, and
assume char k = 0. Let d = d/dx + (y — 1)d/dy be the k-derivation of R which maps
x onto 1, and keeps (y — 1) fixed. R does not contain any nontrivial d-invariant ideal
(see [4, (2.10)]); this is equivalent to the fact that A(m) = 0, where m = (x,y)y)
is the maximal ideal of R. Consider now (k, d), where R = kl[x,y]] is the formal
power series ring in x and y over k. We have AGm) = Rf, with f=¢e" —1+y (note
that df = f, hence Rf is d-invariant; on the other hand, Rf is a prime ideal of height
one in R /1 is not d-invariant, and A(m) must be a prime ideal, since in characteristic
zero all associated prime ideals of a differential ideal need also be differential). We
get R* = k[[x,1 — e*]] = k[[x]], with d* = d/0x, the derivative relative to x. The
embedding R = k[x,y]«,) — R* = k[[x]] is given by substitution of 1 — ¢* for y.
We have m* = R*x, and m*™' NR = (™' + RF)NR = (y +x + ...+ 1 /nlx™) + m"™",
which shows that the m-adic structure on R is strictly finer than the induced m*-adic
structure.

2. Differentially simple local noetherian Q -algebras. In order to derive non-
trivial consequences of our somehow too general (since characteristic-free) theory, we
have to impose the standard Q -algebra condition (we are not working with higher
rank derivations), together with noetherian assumptions.

LeMmaA 2.1. Let (S, m, K) be a regular local m-adically complete Q -algebra (hence
a formal power series ring in a finite number of variables over K), and let D be a set
of Q -derivations on S. Then S is D-simple (that is A(m) = 0) if and only if there is
ak 21 with Mg+l = D"(m) C m2.

ProoF. Assume first S to be D-simple; S is thus separated relative to the filtration
(M))n>0. By a well-known theorem of Chevalley ([5, p. 270, theorem 13]) there is
a function o : Al — A_,limo(n) = oo, such that muy, C m" for all n 2 1. In
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particular, there is a k 2 1 such that my.;, = D*(m) C m?. Conversely, assume
that mgs;y = D*(m) C m?* for some k = 1. This condition means explicitly that
for every regular parameter t € m\m’ there are dy,...,d, € D,j < k, such that
(dy o...od;)(t) € m. Consider now P = A(m) = M,oMn), the maximal D-invariant
(prime) ideal of §. We have to show that P = 0. Now, S is excellent, hence S’ = S/P
is also excellent. But S’ is D’-simple (where D’ is the set of derivations on S’ induced
by the elements of D). Thus, by [1, Corollary to theorem 1], S’ is regular. We get
P = (t,...,t;) for some regular system of parameters (¢,...,%) of S. For i 2 1
the D-invariance of P is in contradiction to the above explicit formulation of our
assumption. Thus P = 0, and we have finished our proof.

DEerINITION 2.2. Let (R, m) be a local ring, D a set of derivations on R. We call
D exhaustive if and only if there is a k Z 1 such that for every t € m\m? there
are dy,...,di € D,1 = k, with (dyo...od)(t) & m (every t € m\m2 can be made
invertible by iterated application of appropriate elements of D, in at most k steps).

THEOREM 2.3. A local noetherian Q -algebra (R, m,K) is differentially simple (for
some set of Q -derivations on R) if and only if (1) R is a dense subalgebra of some
power series ring R* = K[[T\,...,T,]] (for its (T\,...,T,)-adic topology). (2) There
is an exhaustive set D* of Q -derivations on R* which leaves R invariant (that is we
have D*R C R).

Proor. One implication is an immediate consequence of 1.10, since R*, the D-
adic completion of R, is an excellent local D*-simple Q - algebra, hence regular (by
corollary to theorem 1 in [1]). The other implication follows from 2.1.

CompLEMENT 2.4. There is a natural question arising in the context of 2.3: Let
(R, m,K) be a noetherian local Q -algebra which is D-simple for some set D of Q -
derivations on R. Is the following assertion true: R is regular if and only if R is
excellent? One implication is a well-known result of R. Hart, the other implication
would be in the spirit of a theorem of Mizutani (see [2, Theorem 10]).
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