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SEQUENCESWITH TRANSLATES
CONTAINING MANY PRIMES

TOM BROWN, PETER JAU-SHYONG SHIUE AND X.Y. YU

ABSTRACT. Garrison [3], Forman [2], and Abel and Siebert [1] showed that for all
positive integers k and N, there exists a positive integer A such that nk + X is prime for
at least N positive integers n. In other words, there exists A such that nK + ) represents
at least N primes.

We give a quantitative version of this result. We show that there exists A < xX such
that Nk + )\, 1 < n < x, represents at least (% +o(1))7r(x) primes, as x — co. We also
give some related results.

1. Introduction. In[1], Abel and Siebert make the wonderful observation that if
A = {a,} isasequence of natural numbersand A(X) = Y5, <x 1, then

2 2 2 1= [m(2) — m(xIAX),

A<2X 89 <X pra+A

where p denotes a prime and 7(x) denotes the number of primes p < x. They used this
ineguality, together with Chebyshev’sinegualities, to show that if limsup,_, %é—% = 00,
then for al N there exists A such that a, + A represents at least N primes. Forman [2]
obtained the same result with methods different from those of Abel and Siebert.

Earlier, Sierpenski [4] showed that n? + \ represents arbitrarily many primes. Then
Garrison [3] extended this to nk + \. Forman [2] and Abel and Siebert [1] showed that
g(n) + A represents arbitrarily many primes, where g(x) is any polynomial with integer
coefficients and positive leading coefficient.

In this note we consider sums of the form

=3 > > flm) and TE)=3 > > f(bm)

A<2X an <X by=an+X\ A<X an<X bp=an+X
where A = {a,} and B = {b,} are given sequences of natural numbersand f is agiven
nonnegativefunction defined on the natural numbers. In particular, if B isthe sequenceof
primesandf = 1, then T(x) = (1 + O(l))A(X)?T(X). Thisimpliesthat if A= {n*:n> 1},
then T(x) = (1+ 0(1))x% 7(X). It follows that there exists a positive integer A < x¢ such
that n + ), n < x, represents at least ( +0(1))m(x) primes.
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2. Results.

THEOREM 1. Let A = {a,}, B = {bm} be sequences of natural numbers, and let f
be a nonnegative function defined on the natural numbers. Let A(X) = g <x 1, B(X) =
megx f (bm)-

Assumethat B(x) = (1+0(1))x*¢(x), where ¢ is monotonic and limy_., 222 = 1.

Let S(x) denote the sum

=2 > > flom)

8 <X A\<2X by=ap+\

Then
(2" — 1+0(1))A(XB(X) < S(X¥) < (3" +0(1)) AX)B(X).

PrROCF. For the lower bound, we start with Abel and Siebert’s inequality

Sx) = [B(2x) — B(XJAX).

Next,
B(2) —BK _ (1+oD)@"v@) . .. .
B(X) (1+0(1))x ¢ (x) ’
hence B(2X) — B(x) = (2% — 1+ 0(1))B(x).
For the upper bound, we write
=% > f(bm)
8 <X an+1<bm<an+2x
= Y [Ban +2x) — B(an)] < 3 B(an +2X).
a<x an<x

We now estimate B(a,, + 2x) from above.
Letabeaninteger, 1 < a < x. Since ¢ is monotonic, X < a+x < 2x, and % =1,

2@, 1, it follows that for every £ > O there existsN = N(e) such that

p(@+x)
()
From thisit follows that &3 = &9 . 2@ _, 1
»(¥) w2 e
Now since 2x < a+ 2x < 3x, ¢ is monotonic, and fé(z—;;l — 1, %(3—32 — 1, it follows
that for every £ > Othere exists N = N(e) such that

<l+e, x>N, 1<a<x

p(a+ 2x)
©(X)

It now follows that foranya=a(x), 1 <a < x,andany ¢ > 0,

<l+e, xX>N, 1<a<x

Ba+2x) _ (1+o(l)(@+29"p(a+29 <3+

B(X) (1+0(1))x*¢(x)
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for sufficiently large x. Hence, independent of the choiceof a, 1 < a < x,
B(a+2x) < (3" +0(1))B(x).

and
SX) < 3 Blan +24 < (3" +0(1)) AKB(XY).

a0 <x
This completesthe proof of Theorem 1.
Now we let B be the sequence of primes.

THEOREM 2. Let A= {a,} bea sequence of natural numbers. Then

S¥=3 > > 1> (1+0(1)AM(X),

A<2x an <X p=an+X

wherep denotesa prime. Hencethereexists A, 1 < A < 2x, suchthata,+\,1 < a, <X
representsat least (3 +0(1)) 2% 7(x) primes.

PROOF. Thisproof isadirect application of the method of Abel and Siebert. We have
=Y > Y 1> (729 — 7())AK) = (1+0(1))AX)T(X),

A<2x ap<x p=a,+\
or o
1 1 A®X)
= 1) > (s +0(1) ) —7(x),
(2 % 1) (5rom) e,

soatleastone A\, 1 < X\ < 2x, hasthe required property.
We now improve this result by using part of the method of proof of Theorem 1.

THEOREM 3. Let A = {a,} be a sequence of natural numbers. Then

T =3 > > 1=(1+0(1))AX(x).

A<X @ <X p=ap+A
where p denotesa prime. Hencethereexists A\, 1 < A <x, suchthata, +\, 1 < a, <X,
representsat least (1 +0(1)) 22 7(x) primes.

PROCF. Asin the proof of Theorem 1, we write

TX) = > > 1= [m(an +x) — m(an)].
an <X an+1<p<an+x an<x
It is not hard to show that for every £ > O there exists N = N(e) such that
1o T@N=T@ 4, yoN 1<a<x
m(X)

(For fixed ¢, divide [1,X] into subintervals of length ex, and use the Prime Number
Theorem to estimate "1 whena € [(i — 1)x,ieX].)
Summing thisover al ay, ax < X, gives

A —)AXTX) < T(X) < (L+e)AX)7(X), x> N,
or T(x) = (1+0(1))A()(X). Therest follows as in the proof of Theorem 2.
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COROLLARY. Let k > 1 be given. Then there exists a positive integer A < xX such
that n* + X, n < x, representsat least ( + o(1))m(x) primes.

PROOF. Setting a, = n* in Theorem 3, and replacing x by x* in the conclusion of
Theorem 3 shows that there exists A, 1 < A < XX, such that N+ X\, 1 < n¢ < XX
represents at least

X
klogx

ky & k
(1+0(2)) %ﬂ(xk) = (1+0(1)) % Icgj—xk = (1+0(1))

X

= (% + 0(1))7r(x)

primes.
We now apply our methodsto the case when B isthe sequenceof square-free numbers.

THEOREM 4. Let A = {a,} be a given sequence of natural numbers. Let A(x) =
Ya,<x 1, and let o be any fixed real number with 3 < o < 1. Let ¢ > 0 be given. Then
for all sufficiently large x, thereexists A, 1 < A < x*, such that more than (% —e)A(X)
of the numbersa, + A, a, < X, aresquare-free.

ProoOF. LetB = {bm} bethe sequenceof square-free numbers, and let B(x) = Yy, <x 1.
It isknown (see[4]) that

B() = 5 +O(/R).

Let o befixed, 1/2 < a < 1, and let L denote the number L = [x*].
Let e > Obegiven. Then

YY Y 1YY Y o1

A=1an<Xbp=an+A A <XA<L bm=an+X

1
an <X an+1<bp<a,+L

> (B(an + L) — B(an))

;(% +0(vx+D))
a;x%(uo(l))
(% - e)L 1

anh<x

= (% - 5) LA(X)

\%

holds for sufficiently large x. Hence there exists at least one A\, 1 < A < L = [x*], for
which

DD 1>(%—5)A(x),

8 <X by=an+\
which was to be proved.
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