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SEQUENCES WITH TRANSLATES
CONTAINING MANY PRIMES

TOM BROWN, PETER JAU-SHYONG SHIUE AND X.Y. YU

ABSTRACT. Garrison [3], Forman [2], and Abel and Siebert [1] showed that for all
positive integers k and N, there exists a positive integer ï such that nk + ï is prime for
at least N positive integers n. In other words, there exists ï such that nk + ï represents
at least N primes.

We give a quantitative version of this result. We show that there exists ï � xk such

that nk + ï, 1 � n � x, represents at least
�

1
k + o(1)

�
ô(x) primes, as x ! 1. We also

give some related results.

1. Introduction. In [1], Abel and Siebert make the wonderful observation that if
A = fang is a sequence of natural numbers and A(x) =

P
an�x 1, then

X
ï�2x

X
an�x

X
p=an+ï

1 ½ [ô(2x) � ô(x)]A(x)Ò

where p denotes a prime and ô(x) denotes the number of primes p � x. They used this
inequality, together with Chebyshev’s inequalities, to show that if lim supx!1

A(x)
log x = 1,

then for all N there exists ï such that an + ï represents at least N primes. Forman [2]
obtained the same result with methods different from those of Abel and Siebert.

Earlier, Sierpenski [4] showed that n2 + ï represents arbitrarily many primes. Then
Garrison [3] extended this to nk + ï. Forman [2] and Abel and Siebert [1] showed that
g(n) + ï represents arbitrarily many primes, where g(x) is any polynomial with integer
coefficients and positive leading coefficient.

In this note we consider sums of the form

S(x) =
X
ï�2x

X
an�x

X
bm=an+ï

f (bm) and T(x) =
X
ï�x

X
an�x

X
bm=an+ï

f (bm)Ò

where A = fang and B = fbmg are given sequences of natural numbers and f is a given
nonnegative function defined on the natural numbers. In particular, if B is the sequence of
primes and f � 1, then T(x) =

�
1 + o(1)

�
A(x)ô(x). This implies that if A = fnk : n ½ 1g,

then T(x) =
�
1 + o(1)

�
x

1
k ô(x). It follows that there exists a positive integer ï � xk such

that nk + ï, n � x, represents at least
�

1
k + o(1)

�
ô(x) primes.
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2. Results.

THEOREM 1. Let A = fang, B = fbmg be sequences of natural numbers, and let f
be a nonnegative function defined on the natural numbers. Let A(x) =

P
an�x 1, B(x) =P

bm�x f (bm).
Assume that B(x) =

�
1 + o(1)

�
xãß(x), where ß is monotonic and limx!1

ß(2x)
ß(x) = 1.

Let S(x) denote the sum

S(x) =
X

an�x

X
ï�2x

X
bm=an+ï

f (bm)

Then �
2ã � 1 + o(1)

�
A(x)B(x) � S(x) �

�
3ã + o(1)

�
A(x)B(x)

PROOF. For the lower bound, we start with Abel and Siebert’s inequality

S(x) ½ [B(2x) � B(x)]A(x)

Next,
B(2x)� B(x)

B(x)
=

�
1 + o(1)

�
(2x)ãß(2x)�

1 + o(1)
�
xãß(x)

� 1 ! 2ã � 1Ò

hence B(2x)� B(x) =
�
2ã � 1 + o(1)

�
B(x).

For the upper bound, we write

S(x) =
X

an�x

X
an+1�bm�an+2x

f (bm)

=
X

an�x
[B(an + 2x)� B(an)] �

X
an�x

B(an + 2x)

We now estimate B(an + 2x) from above.
Let a be an integer, 1 � a � x. Since ß is monotonic, x � a + x � 2x, and ß(x)

ß(x) = 1,
ß(2x)
ß(x) ! 1, it follows that for every ¢ Ù 0 there exists N = N(¢) such that

ß(a + x)
ß(x)

Ú 1 + ¢Ò x Ù NÒ 1 � a � x

From this it follows that ß(3x)
ß(x) = ß(3x)

ß(2x) Ð
ß(2x)
ß(x) ! 1.

Now since 2x � a + 2x � 3x, ß is monotonic, and ß(2x)
ß(x) ! 1, ß(3x)

ß(x) ! 1, it follows
that for every ¢ Ù 0 there exists N = N(¢) such that

ß(a + 2x)
ß(x)

Ú 1 + ¢Ò x Ù NÒ 1 � a � x

It now follows that for any a = a(x), 1 � a � x, and any ¢ Ù 0,

B(a + 2x)
B(x)

=

�
1 + o(1)

�
(a + 2x)ãß(a + 2x)�

1 + o(1)
�
xãß(x)

Ú 3ã + ¢
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for sufficiently large x. Hence, independent of the choice of a, 1 � a � x,

B(a + 2x) �
�
3ã + o

�
1)
�
B(x)Ò

and
S(x) �

X
an�x

B(an + 2x) �
�
3a + o(1)

�
A(x)B(x)

This completes the proof of Theorem 1.
Now we let B be the sequence of primes.

THEOREM 2. Let A = fang be a sequence of natural numbers. Then

S(x) =
X
ï�2x

X
an�x

X
p=an+ï

1 ½
�
1 + o(1)

�
A(x)ô(x)Ò

where p denotes a prime. Hence there exists ï, 1 � ï � 2x, such that an +ï, 1 � an � x
represents at least

�
1
2 + o(1)

�
A(x)

x ô(x) primes.

PROOF. This proof is a direct application of the method of Abel and Siebert. We have

S(x) =
X
ï�2x

X
an�x

X
p=an+ï

1 ½
�
ô(2x) � ô(x)

�
A(x) =

�
1 + o(1)

�
A(x)ô(x)Ò

or
1
2x

2xX
ï=1

�X
an�x

X
p=an+ï

1
�
½
�1

2
+ o(1)

�A(x)
x
ô(x)Ò

so at least one ï, 1 � ï � 2x, has the required property.
We now improve this result by using part of the method of proof of Theorem 1.

THEOREM 3. Let A = fang be a sequence of natural numbers. Then

T(x) =
X
ï�x

X
an�x

X
p=an+ï

1 =
�
1 + o(1)

�
A(x)ô(x)Ò

where p denotes a prime. Hence there exists ï, 1 � ï � x, such that an +ï, 1 � an � x,
represents at least

�
1 + o(1)

�
A(x)

x ô(x) primes.

PROOF. As in the proof of Theorem 1, we write

T(x) =
X

an�x

X
an+1�p�an+x

1 =
X

an�x
[ô(an + x) � ô(an)]

It is not hard to show that for every ¢ Ù 0 there exists N = N(¢) such that

1� ¢ Ú
ô(a + x) � ô(a)

ô(x)
Ú 1 + ¢Ò x Ù NÒ 1 � a � x

(For fixed ¢, divide [1Ò x] into subintervals of length ¢x, and use the Prime Number
Theorem to estimate ô(a+x)�ô(x)

ô(x) when a 2 [(i � 1)¢xÒ i¢x].)
Summing this over all akÒ ak � x, gives

(1 � ¢)A(x)ô(x) Ú T(x) Ú (1 + ¢)A(x)ô(x)Ò x Ù NÒ

or T(x) =
�
1 + o(1)

�
A(x)ô(x). The rest follows as in the proof of Theorem 2.
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COROLLARY. Let k ½ 1 be given. Then there exists a positive integer ï � xk such
that nk + ï, n � x, represents at least

�
1
k + o(1)

�
ô(x) primes.

PROOF. Setting an = nk in Theorem 3, and replacing x by xk in the conclusion of
Theorem 3 shows that there exists ï, 1 � ï � xk, such that nk + ï, 1 � nk � xk,
represents at least

�
1 + o(1)

� (xk)
1
k

xk
ô(xk) =

�
1 + o(1)

� x
xk

xk

log xk
=
�
1 + o(1)

� x
k log x

=
�1

k
+ o(1)

�
ô(x)

primes.
We now apply our methods to the case when B is the sequence of square-free numbers.

THEOREM 4. Let A = fang be a given sequence of natural numbers. Let A(x) =P
an�x 1, and let ã be any fixed real number with 1

2 Ú ã Ú 1. Let ¢ Ù 0 be given. Then
for all sufficiently large x, there exists ï, 1 � ï � xã, such that more than ( 6

ô2 � ¢)A(x)
of the numbers an + ï, an � x, are square-free.

PROOF. Let B = fbmg be the sequence of square-free numbers, and let B(x) =
P

bm�x 1.
It is known (see [4]) that

B(x) =
6x
ô2

+ O(
p

x)

Let ã be fixed, 1Û2 Ú ã Ú 1, and let L denote the number L = [xã].
Let ¢ Ù 0 be given. Then

LX
ï=1

X
an�x

X
bm=an+ï

1 =
X

an�x

X
ï�L

X
bm=an+ï

1

=
X

an�x

X
an+1�bm�an+L

1

=
X

an�x

�
B(an + L)� B(an)

�

=
X

an�x

�6L
ô2

+ O
�p

x + L
��

=
X

an�x

6L
ô2

�
1 + o(1)

�

Ù
� 6
ô2

� ¢
�

L
X

an�x
1

=
� 6
ô2

� ¢
�

LA(x)

holds for sufficiently large x. Hence there exists at least one ï, 1 � ï � L = [xã], for
which X

an�x

X
bm=an+ï

1 Ù
� 6
ô2

� ¢
�

A(x)Ò

which was to be proved.
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