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Criteria for Simultaneous Solutions of

X2 − DY 2
= c and x2 − Dy2

= −c

R. A. Mollin

Abstract. The purpose of this article is to provide criteria for the simultaneous solvability of the Dio-

phantine equations X2−DY 2 = c and x2−Dy2 = −c when c ∈ Z, and D ∈ N is not a perfect square.

This continues work in [6]–[8].

1 Introduction

The norm form equations in the title have long borne the designation Pell’s equa-

tions due to Euler’s misapprehension that John Pell (1611–1685) had developed the
method (for c = 1). This confusion arose from the method of a solution given by

John Wallis (1616–1703) in his book Algebra, which Euler misinterpreted as having
been originally given by Pell. Most historians agree that the honour actually goes to
Lord Brouncker (1620–1684), the first president of the Royal Society. However, as
noted by E. E. Whitford [9]: “to attempt to rename it would be like trying to give

another name to North America because Vespucius was not its discoverer.”

Instances of the Pell equation can be traced back to Archimedes in his book Liber

Assumptorum or Book of the Lemmas, where we find the Cattle Problem, which in-
volves the equation x2 − 4729494y2

= 1. Also, Brahmagupta, considered to be the

greatest of the Hindu mathematicians, is also credited with first studying the equation
x2 − py2

= 1 for a prime p. He wrote his masterpiece (ca. 628 A.D.) on astronomy
Brahma-sphuta-siddhanta or The revised system of Brahma, which had two chapters
devoted to mathematics.

Lagrange used continued fractions to give direct techniques for solving the Dio-
phantine equation x2 − Dy2

= c. It is in this vein that we are interested in this paper
for determining simultaneous solutions to the Diophantine equations in the title. For

a detailed history surrounding the developments of research into the Pell equation,
the reader may consult Dickson [1].

2 Notation and Preliminaries

We will be studying solutions of quadratic Diophantine equations of the general
shape

x2 − Dy2
= c,(2.1)
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where D is not a perfect square and c ∈ Z. If x, y ∈ Z is a solution of (2.1), then
it is called positive if x, y ∈ N and it is called primitive if gcd(x, y) = 1. Among the

primitive solutions of (2.1), if such a solutions exists, there is one in which both x

and y have their least values. Such a solution is called the fundamental solution. We
will use the notation

α = x + y
√

D

to denote a solution of (2.1), and we let

N(α) = x2 − Dy2

denote the norm of α. We will be linking such solutions to simple continued fraction
expansions that we now define.

Recall that a quadratic irrational is a number of the form

(P +
√

D)/Q

where P,Q,D ∈ Z with D > 1 not a perfect square, P2 ≡ D (mod Q), and Q 6= 0.
Now we set:

P0 = P, Q0 = Q, and recursively for j ≥ 0,

q j =

⌊

P j +
√

D

Q j

⌋

,(2.2)

P j+1 = q jQ j − P j ,(2.3)

and

D = P2
j+1 + Q jQ j+1.(2.4)

Hence, we have the simple continued fraction expansion:

α =
P +
√

D

Q
=

P0 +
√

D

Q0
= 〈q0 ; q1, . . . , q j , . . . 〉,

where the q j for j ≥ 0 are called the partial quotients of α.

To further develop the link with continued fractions, we first note that it is well-
known that a real number has a periodic continued fraction expansion if and only if
it is a quadratic irrational (see [4, Theorem 5.3.1, p. 240]). Furthermore a quadratic
irrational may have a purely periodic continued fraction expansion which we denote

by

α = 〈q0 ; q1, q2, . . . , q`−1〉
meaning that qn = qn+` or all n ≥ 0, where ` = `(α) is the period length of the simple
continued fraction expansion. It is known that a quadratic irrational α has such a
purely periodic expansion if and only if α > 1 and −1 < α ′ < 0. Any quadratic
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irrational which satisfies these two conditions is called reduced (see [4, Theorem 5.3.2,
p. 241]). If α is a reduced quadratic irrational, then

0 < Q j < 2
√

D, 0 < P j <
√

D, and q j ≤ b
√

Dc.(2.5)

Finally, we need an important result which links the solutions of quadratic Dio-
phantine equations with the Q j defined above. We first need the following notation.

Let D0 > 1 be a square-free positive integer and set:

σ0 =

{

2 if D0 ≡ 1 (mod 4),

1 otherwise.

Define:

ω0 = (σ0 − 1 +
√

D0)/σ0, and ∆0 = (ω0 − ω ′0)2
= 4D0/σ

2
0 ,

where ω ′0 is the algebraic conjugate of ω0, namely

ω ′0 = (σ0 − 1−
√

D0)/σ0.

The value ∆0 is called a fundamental discriminant or field discriminant with associ-
ated radicand D0, and ω0 is called the principal fundamental surd associated with∆0.

Let∆ = f 2
∆
∆0 for some f∆ ∈ N. If we set

g = gcd( f∆, σ0), σ = σ0/g, D = ( f∆/g)2D0, and ∆ = 4D/σ2,

then∆ is called a discriminant with associated radicand D. Furthermore, if we let

ω∆ = (σ − 1 +
√

D)/σ = f∆ω0 + h

for some h ∈ Z, then ω∆ is called the principal surd associated with the discriminant

∆ = (ω∆ − ω ′∆)2.

This will provide the canonical basis element for certain rings that we now define.
Let [α, β] = αZ + βZ be a Z-module. Then O∆ = [1, ω∆], is an order in K =

Q(
√
∆) = Q(

√
D0) with conductor f∆. If f∆ = 1, then O∆ is called the maximal

order in K. The units of O∆ form a group which we denote by U∆. The positive units
in U∆ have a generator which is the smallest unit that exceeds 1. This selection is
unique and is called the fundamental unit of K, denoted by ε∆. Moreover, we will

have need of the following, which may be traced back to Lagrange.

Theorem 2.1 Let α = (P +
√

D)/Q be a quadratic irrational. If P j and Q j for

j = 1, 2, . . . , `(α) = ` are defined by Equations (2.2)–(2.4) in the simple continued

fraction expansion of α, then

ε∆ =
∏̀

i=1

(Pi +
√

D)/Qi

and

N(ε∆) = (−1)`.

Proof See [3, Theorems 2.1.3–2.1.4, pp. 51–53].
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3 Results

In what follows, the symbol pt ‖ b means that the prime power pt properly divides

b ∈ Z, namely pt | b, but pt+1 - b.

Theorem 3.1 Let c ∈ Z, D ∈ N where D is not a perfect square, and gcd(c,D) = 1.

If

x2 − Dy2
= −c(3.6)

has a primitive solution α, then

X2 − DY 2
= c(3.7)

has a primitive solution if and only if either

(a) `(
√

D) is odd,

or

(b) Each of the following holds:

(i) There exists a proper divisor d ∈ N of c, with gcd(d, c/d) | 2, such that

x2−Dy2
= −d2 has a (not necessarily primitive) solution β and x2−Dy2

=

−c2/d2 has a (not necessarily primitive) solution γ.

(ii) α2
= βγ and αβ ′/d a primitive element of Z[

√
D].

Proof If Equations (3.6)–(3.7) have primitive solutions α0 = x0 − y0

√
D and α1 =

x1 + y1

√
D respectively, then N(α0/α1) = −1, where,

α0

α1
=

x0 + y0

√
D

x1 + y1

√
D
=

(x0 + y0

√
D)(x1 − y1

√
D)

x2
1 − y2

1D

=
(x0x1 − y0 y1D) + (y0x1 − x0 y1)

√
D

−c
.

Thus,

(x0x1 − y0 y1D)2 − (y0x1 − x0 y1)2D = −c2.(3.8)

Multiplying x2
1 times x2

0 − Dy2
0 = −c and subtracting x2

0 times x2
1 − Dy2

1 = c, we get

D(x2
0 y2

1 − x2
1 y2

0) = −c(x2
0 + x2

1). Since gcd(c,D) = 1, then any prime p dividing c

must divide x2
0 y2

1 − x2
1 y2

0.

Claim 3.1 If p | c, then if p > 2, either p - Y1 = (x0 y1 − x1 y0), or p - Y2 =

(x0 y1 + x1 y0), and if p = 2, then 4 - gcd(Y1,Y2).
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If p divides Y j for j = 1, 2, then p | 2x0 y1. If p | y1, then p | x1 since p | c and

x2
1 − Dy2

1 = c. However, this contradicts the primitivity of x1 + y1

√
D. Similarly,

if p | x0, then p | y0, contradicting the primitivity of x0 + y0

√
D. Hence, p = 2.

If 2t ‖ gcd(Y1,Y2) for t ∈ N, then both x0 y1 ≡ x1 y0 (mod 2t ) and x0 y1 ≡ −x1 y0

(mod 2t ), so x1 y0 ≡ −x1 y0 (mod 2t ). Since x1 y0 is odd in this case, then we may

take multiplicative inverses to get −1 ≡ 1 (mod 2t ). Thus, t = 1. This establishes
Claim 3.1.

Now set

X1 = (x0x1 − y0 y1D) and X2 = (x0x1 + y0 y1D).

If p | Y1, then by Equation (3.8), p | X1. Thus, if pt ‖ c for p > 2, then by Claim 3.1,
pt | Y1 and pt | X1. Let d be the product of all prime powers dividing both c and
gcd(X1,Y1). Thus, by Equation (3.8),

N
(

X1/d + (Y1/d)
√

D
)

= −(c/d)2.(3.9)

If c = d, this shows that N(εD) = −1, so by Theorem 2.1, `(
√

D) is odd. If c 6= d,

then by Claim 3.1, all the odd prime powers dividing c/d also divide Y2, together with
the remaining power of 2 dividing c/d. However, N(α0/α

′

1) = −1, where

α0

α ′1
=

x0 + y0

√
D

x1 − y1

√
D
=

(x0 + y0

√
D)(x1 + y1

√
D)

−c

=
(x0x1 + y0 y1D) + (x1 y0 + x0 y1)

√
D

−c
=

X2 + Y2

√
D

−c
,

so N(X2 + Y2

√
D) = −c2. Thus, those odd prime powers dividing c/d and Y2, to-

gether with the remaining power of 2 dividing c/d, also divide X2. Therefore,

N

(

X2

c/d
+

Y2

c/d

√
D

)

= −d2.(3.10)

Note that in the case where c is even, by Claim 3.1, either 2 ‖ gcd(X1,Y1) or

2 ‖ gcd(X2,Y2). Therefore, gcd(c, c/d) | 2. Also, α = x0 − y0

√
D is a primitive

solution of Equation (3.6), β = (X2−Y2

√
D)/(c/d) is a solution of Equation (3.10),

and γ = (X1 + Y1

√
D)/d is a solution of Equation (3.9), such that α2

= βγ. Also,
αβ ′/d = −α1 is a primitive element of Z[

√
D].

Conversely, if N(εD) = −1, namely if `(
√

D) is odd by Theorem 2.1, then clearly
both Equations (3.6)–(3.7) have primitive solutions if one of them has. On the other
hand, if there exists a d as in the hypothesis, then N(dγ/α) = N(−αβ ′/d) = c,
where α1 = −αβ ′/d is primitive in Z[

√
D], by hypothesis. Hence, α1 is a primitive

solution of Equation (3.7).

Remark 3.1 When αβ ′/d is a primitive element of Z[
√

D] in Theorem 3.1, then
this is a primitive solution of Equation (3.7). Hence, the theorem provides a mecha-
nism for finding such solutions. See the examples below for illustrations.
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Corollary 3.1 (Lagrange) The Pell equation x2 − Dy2
= −1 has a solution if and

only if `(
√

D) is odd.

Proof Since c = 1 has no proper divisors, then x2 − Dy2
= −1 if and only if `(

√
D)

is odd.

Corollary 3.2 ([7, Theorem 3.3]) Suppose that D ∈ N is not a perfect square and p is

a prime not dividing D. Then both x2 −Dy2
= −p and X2 −DY 2

= p have primitive

solutions if and only if `(
√

D) is odd.

Proof Since the only proper divisor of c = p is d = 1, then the result follows.

Example 3.1 The Diophantine equation x2−27y2
= 13 has the solution 11+2

√
27,

but x2 − 27y2
= −13 has no solutions x, y ∈ Z. Here `(

√
27) = 2.

Corollary 3.3 Suppose that D ∈ N is not a perfect square, c = pq is a product of two

primes such that gcd(c,D) = 1, and α is a primitive solution of x2 − Dy2
= −pq.

Then X2 − DY 2
= pq has a primitive solution if and only if either `(

√
D) is odd, or

x2 − Dy2
= −p2 has a primitive solution β and X2 − DY 2

= −q2 has a primitive

solution γ with α2
= βγ and αβ ′/p is a primitive element of Z[

√
D].

Proof Since the only proper divisors of c = pq are p, q, and 1, then the result follows.

Example 3.2 To illustrate the method of proof in Theorem 3.1, let c = 33 = pq

and D = 34, for which `(
√

34) = 4. By setting p = 3, we see that N(5 +
√

34) =

−32
= −p2 and N(27 + 5

√
34) = −112

= −q2. The reader may see the process
developed in the proof of Theorem 3.1 by setting X1 = −55, Y1 = 11, X2 = 81 and
Y2 = 15. Set α = 1 +

√
34, β = −5 +

√
34 and γ = 27 + 5

√
34. Then α2

= βγ.
Thus, x2 − Dy2

= −33 and X2 − DY 2
= 33 have primitive solutions α = 1 +

√
34

and α1 = 13 + 2
√

34, respectively. Notice as well that that α1 = −αβ ′/p.

Corollary 3.4 (Eisenstein—see [3, Footnote 2.1.10, p. 60]) If D ∈ N is not a perfect

square and is odd, then both

x2 − Dy2
= −4(3.11)

and

X2 − DY 2
= 4(3.12)

have primitive solutions if and only if εD /∈ Z[
√

D] and N(εD) = −1.

Proof If Equations (3.11)–(3.12) have primitive solutions, then by Theorem 3.1,

`(
√

D) is odd. Therefore, by Theorem 2.1, N(εD) = −1. Since x2 − Dy2
= −4

has a primitive solution, then εD /∈ Z[
√

D].
Conversely, if N(εD) = −1 and εD /∈ Z[

√
D], then clearly both Equations (3.11)–

(3.12) have primitive solutions.
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Remark 3.2 As noted by Dickson [1, p. 400], to solve x2 − Dy2
= −4, set D =

a2 + b2, y = z2 + t2, and solve the simultaneous equations,

(bz − at)2 − Dt2
= ±2b,

and

(bt + az)2 − Dz2
= ∓2b.

Dickson gives D = 32 + 102 with minimum solution t = 3, z = 4, as an example, so
that 2612 − 252 · 109 = −4. Note that

ε109 =
261 + 25

√
109

2
.

Example 3.3 If D = 65 and c = 29, then `(
√

65) = 1, and x2 − 65y2
= −29

has primitive solution (x, y) = (6, 1), while X2 − DY 2
= 29 has primitive solution

(X,Y ) = (17, 2).

Example 3.4 If D = 845 and c = 29, then `(
√

845) = 5. Primitive solutions of
x2 − 845y2

= −29 and X2 − 845Y 2
= 29 are (x, y) = (436, 15) and (X,Y ) =

(407, 14).

The following illustrates the case where c is even and both conditions (a)–(b) in

Theorem 3.1 are satisfied.

Example 3.5 Let c = 64 and D = 145, where `(
√

145) = 1. A primitive solution of

x2−145y2
= −64 isα = 9−

√
145. Moreover, if we set d = 2, β = −24+2

√
145, and

γ = 51 + 5
√

145, then N(β) = 242− 22 · 145 = −4 = −d2, N(γ) = 512− 52 · 145 =
−322

= −(c/d)2, and α2
= βγ. Also, αβ ′/d = 37 + 3

√
145 = α1 is a primitive

element of Z[
√

D]. Thus both conditions (a)–(b) in Theorem 3.1 are satisfied, and

α1 is a primitive solution of X2 − 145Y 2
= 64.

The following illustrates the case in Theorem 3.1 where neither condition (a)–(b)
in Theorem 3.1 is satisfied.

Example 3.6 Let c = 100, and D = 221, for which `(
√

D) = 6. Thus, condition (a)
fails in Theorem 3.1. Also, condition (b) fails since there are no divisors d of c satisfy-

ing the conditions. To see this, note that the only possible proper divisors of c = 100
for which gcd(d, c/d) | 2 are d = 1, d = 25, or d = 50. However, if d = 1, then
x2−Dy2

= −1 = −d2 has no solutions by Theorem 2.1 since N(εD) = 1. If d = 50,
then although there is a solution 140 + 10

√
221 to x2 − 221y2

= −502
= −d2, there

is no solution to x2 − dy2
= −4 = −(c/d)2 by Corollary 3.4. Similar considerations

apply to the divisor d = 25. Hence, although x2 − 221y2
= −100 has the primitive

solution 11 +
√

221, the equation x2 − 221y2
= 100 has no primitive solutions. It

does have non-primitive solutions such as 75 + 5
√

221, however.
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We conclude with an observation that there is some ideal theory and related phe-
nomena underlying what we have presented here. For instance, underlying Exam-

ple 3.2 is the following quadratic irrational and its simple continued fraction expan-
sion:

δ =
−1 +

√
34

13− 2
√

34
=

(−1 +
√

34)(13 + 2
√

34)

33
=

55 + 11
√

34

33

=
5 +
√

34

3
= 〈3 ; 1, 1, 1, 1, 3〉.

This is an example of a reduced quadratic irrational with pure symmetric period,

namely δ = 〈q0 ; q1, . . . , q`−1〉 with q0q1 · · · q`−1 being a palindrome.1 In [3, The-
orem 6.1.5, p. 194], we proved that the existence of a reduced quadratic irrational δ
with pure symmetric period representing an ideal in a cycle of reduced ideals is tan-
tamount to the existence of a reduced quadratic irrational δ with N(δ) = δδ ′ = −1

representing an ideal in that cycle. Moreover, we proved that these are in turn equiv-
alent to that cycle being an ambiguous cycle containing at most one ambiguous ideal.
(All of these ideals are in the ring of integers of the underlying real quadratic field
having discriminant given by the quadratic irrational.) For the interested reader, we

devoted an entire chapter to the study of these interrelated phenomena in [3]. Also,
see [5].
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1A palindrome is “never even”, indeed it is “never odd or even”. It is “a toyota”.
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