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Gravity-driven motion of a highly viscous
non-wetting drop on an inclined wall
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Extensive three-dimensional boundary-integral simulations are presented for the
steady-state, low-Reynolds-number motion of a non-wetting deformable drop in another
liquid on an inclined solid wall. The drop remains separated from the wall by a lubricating
film. The boundary-integral formulation is based on the half-space Green function. The
focus is on the challenging case of small tilt angles θ combined with high drop-to-medium
viscosity ratios λ, when the drop travels with strong hydrodynamical interaction very close
to the wall. Simulations to steady state have required ultrahigh drop surface resolutions (to
3 × 105 boundary elements) achieved through multipole acceleration and combined with
novel regularization to fully eliminate near-singular behaviour of the double-layer integrals
due to small clearance. Non-dimensional drop speed U is presented for θ ≥ 7.5◦, λ ≤ 300
and in a broad range of Bond numbers B, covering from nearly spherical to strongly
pancaked drops. The results are consistent with published experiments on liquid–liquid
systems. At small θ and λ� 1, U is a strong, decreasing function of B; the asymptotic
regime U → 0 at B → 0 is not observed in the simulated range. For small B, the dimpled
thin-film geometry is insensitive to λ = 1–300. For pancaked drops, the lubrication film
is much thicker for λ = 1 than for λ� 1 drops. Approximate thin-film uniformity in the
drop motion direction is confirmed for pancaked, but not for B � 1, drops. Kinematics of
drop motion shows that neither perfect tank treading, nor perfect rolling can be approached
for liquid–liquid systems in the purely hydrodynamical formulation. The methodology is
applicable to other problems and can allow for direct inclusion of short-range colloidal
forces in three-dimensional boundary-integral simulations.
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1. Introduction

Gravity/buoyancy-driven low-Reynolds-number motion of a deformable drop on an
inclined wall is a classical fluid mechanics problem, relevant to many technological
processes and everyday life, and much effort has been reported in the literature to address
this problem experimentally, analytically or numerically. A ubiquitous phenomenon with
liquid drops in the air is their ability to stick to non-horizontal solid surfaces due to wetting,
as long as the gravity force cannot overcome the contact angle hysteresis (Dussan & Chow
1983; Dussan 1985). However, highly viscous drops (of glycerol) in the air were observed
to descend easily on a super-hydrophobic surface, where the hysteresis is made small and
the contact angles (advancing and receding) are both close to 180◦ (Richard & Quéré
1999). A similar non-wetting effect is achieved with the so-called liquid marbles, where
a hydrophobic powder resides on the drop surface (Aussillous & Quéré 2001). Those
authors also offered an approximation for the settling speed of a strongly pancaked drop
(the Bond number B � 1) on the assumption that the drop fluid rolls, in perfect no-slip
contact with the wall along the flat spot (in some other literature, this mode of motion for
pancaked drops is labelled as tank treading). Close agreement of the theory and experiment
confirmed this assumption and justified the neglect of the surrounding air for such physical
systems. In the opposite limit B � 1 of a slightly deformed, highly viscous non-wetting
drop rolling without slip in perfect contact with the wall, Mahadevan & Pomeau (1999)
derived a simple asymptotic relation (to within a factor) for the settling drop speed U
along the wall. Their result U ∼ σB−1/2 sin(θ)/μd (with σ being the drop–air surface
tension, μd the drop dynamic viscosity and θ the plane inclination angle to horizontal)
stems from the balance of the viscous dissipation rate inside the drop near the contact spot
and the rate of change of the drop gravitational energy; again, the effect of the surrounding
medium was fully neglected. The missing prefactor in the theory of Mahadevan & Pomeau
(1999) was recently derived (Schnitzer, Davis & Yariv 2020) through a far more involved
asymptotic analysis in the contact spot area. Note that the well-known contact line paradox
(non-integrable stress singularity) did not appear in these theoretical studies due to the
special contact angle of 180◦. Surprisingly, the theories of Mahadevan & Pomeau (1999)
and Schnitzer et al. (2020) predict the drop settling speed to be a decreasing function of the
drop size through B−1/2, which was qualitatively confirmed in some range by experiments
(Richard & Quéré 1999; Aussillous & Quéré 2001; Aussillous 2002) for a drop (a mixture
of water and glycerol) on a super-hydrophobic wall in the air (see also Quéré (2005)
for a comprehensive review). There are, however, large fluctuations of experimental data
in that range, indicating possible uncontrolled effects of numerous physical factors, e.g.
disjoining pressure due to double-layer electrostatic repulsion (Del Castillo et al. 2011),
surface roughness (Quéré 2005) etc. making the assumption of drop no-slip rolling in
perfect contact with the wall less accurate. In particular, the drop speed, when scaled with
σ sin θ/μd, does not collapse on the same curve when the drop viscosity is reduced four
times (Aussillous 2002).

Hodges, Jensen & Rallison (2004) developed a leading-order asymptotic analysis
for an immiscible, deformable drop moving along a gently inclined wall, based on a
different, purely hydrodynamical formulation, with the viscosity μe of the carrier fluid
taken into account. In the absence of singular (but short-range) adhesive forces and
surface roughness, such a drop is not able to reach perfect contact with the wall, and
will always remain separated by a lubrication film due to drop motion, making the
contact angle assumptions irrelevant in this case. They demarcated 11 asymptotic regimes
(for two-dimensional and realistic three-dimensional drops), depending on the relations
between the Bond number, viscosity ratio λ = μd/μe (either small or large) and the
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Drop motion on an inclined wall

inclination angle θ → 0. For a pancaked shape B � 1 and (sin θ)−1/2 � λ� (sin θ)−2,
their prediction is tank-treading motion with the settling drop speed U ≈ 4σ sin θ/(3μd),
which is identical to that from Richard & Quéré (1999) at the contact angle of 180◦, i.e.
the drop speed is unaffected by the carrier fluid viscosity. However, according to Hodges
et al. (2004), the increase in λ beyond ∼(sin θ)−2 and to ∞ should lead to drop sliding as
a rigid body, with small but finite film thickness and much larger drop speed (than for tank
treading) controlled solely by the carrier fluid viscosity. As noted by Hodges et al. (2004),
this behaviour is in stark contrast to the experiments of Richard & Quéré (1999), where
the tank-treading regime with U ≈ 4σ sin θ/(3μd) was observed even for λ ≈ 50 000, far
above the theoretical bound of ∼(sin θ)−2. Presumably, no attempt should be made to
reconcile these differences: the model of Richard & Quéré (1999) simply postulates the
kinematics of tank treading, with perfect drop–wall contact and no slip as a starting point
of their analysis. Practically, such a behaviour for highly viscous drops can be achieved
in the air environment due to the small–medium viscosity and especially small density.
Namely, the drop is able to quickly reach close contact with the wall at the initial stage
of drop deposition, after which strong adhesive forces, acting in concert with the surface
roughness, can ‘pin’ the drop to the wall, resulting in the tank-treading kinematics.

The purely hydrodynamical formulation, adopted in Hodges et al. (2004) and in the
present study, is obviously more realistic when the carrier fluid is liquid, not air (or gas).
Indeed, sticking to a gently inclined wall was never reported for a bubble or a drop (made
of water, silicon, paraffin oil or glycerol–water mixtures) in many viscous carrier liquids
(Aussillous & Quéré 2002; Griggs, Zinchenko & Davis 2009; Rahman & Waghmare 2018).
The apparent ‘contact’ angle in these experiments was always 180◦, which points to the
existence of a lubricating film and a negligible role of non-hydrodynamic forces that could
pin the drop to the substrate.

Griggs, Zinchenko & Davis (2008) and Griggs et al. (2009) also performed the first
(and the only so far, to the author’s knowledge) three-dimensional boundary-integral (BI)
simulations for gravity/buoyancy-driven motion of a drop along the wall to a steady state
(or incipient drop breakup) in this formulation. Their analysis was based on the Green
function of Blake (1971) for the half-space to reduce the problem to a BI equation on the
deforming drop surface only, with direct node-to-node summations to solve this equation
at each time step. Although a number of results were obtained for the steady-state drop
speed and shape, those were only for generic cases (typically, moderate-to-large inclination
angles and only small-to-moderate viscosity ratios λ; small Bond numbers also had to
be excluded due to prohibitive computational difficulties). These shortcomings severely
limited the parameter space, not allowing for comparisons with the asymptotic theories.
The viscosity ratio λ for different liquid–liquid combinations can reach O(102–103), and
it would be essential to handle this range by simulations. However, such values of λ were
totally unreachable with the algorithm of Griggs et al. (2008, 2009), even for not small
inclination angles θ . It turns out that, to overcome limitations of these earlier studies
and work in a wider parameter range than in Griggs et al. (2008, 2009) (specifically, for
most difficult combinations of small tilt angles θ with high viscosity ratios), it requires
a practically all-new and more advanced approach, with extreme surface resolutions and
novel desingularization tools. The goal of the present paper is to develop such an approach
and apply it for a comprehensive, and highly accurate, study of the steady-state drop
motion and related characteristics from first principles.

The problem is formulated in § 2. The solution method is described in § 3, including the
BI equation with the half-space Green function and related stresslet, BI desingularizations,
drop-mesh control (with different schemes necessary for small tilt angles, depending on
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the Bond number) and multipole acceleration. Although, for θ � 1, the outer surface
geometry (outside the near-contact spot) is close to axisymmetric, the lubrication film
profile is essentially three-dimensional, and so it was computationally productive not to
exploit this distinction, but rigorously consider the whole problem as three-dimensional.
A novel and universal full desingularization for double-layer integrals in § 3 is noteworthy,
since it resolves a long-standing issue in the BI simulations, is applicable to arbitrary
drop shapes and can be potentially used in many other problems with strong, near-contact
drop–wall, drop–drop, drop–particle or particle–particle hydrodynamical interactions.
Even more crucial for a successful solution here is multipole acceleration, allowing
for long-time simulations to steady state with ultrahigh surface discretizations. The
complexity of the domain Green function and related stresslet, however, have required
considerable algebraic effort for this element (compared with multipole acceleration
schemes with the free-space Green function and stresslet). In § 4, we discuss the code
validation, beneficial effects of the novel, full BI desingularization and the convergence
analysis for the drop speed in the most difficult cases of small tilt angles and high viscosity
ratios. In § 5, a systematic and highly accurate analysis is presented for the steady-state
drop speed, geometry of the lubrication space and kinematics of the drop fluid motion in
a wide range of parameters, including comparisons with the asymptotic theory of Hodges
et al. (2004) and the semi-empirical drop-speed relation. The narrative in §§ 4 and 5 is
practically independent of the method description in § 3. Conclusions are formulated in
§ 6, with a discussion of other fluid mechanics problems that can potentially benefit from
the methodology developed in this work. The appendices mostly include mathematical
details of the algorithm outlined in § 3 and present additional code validations. The
numerical code developed for this problem is available from the author upon request.

Because of close drop–wall contact (resulting from small tilt angles) combined with
strong drop–wall interactions at λ� 1 and necessitating extreme surface resolutions, a
strong preference is given here to the BI method with its sharp interface treatment. It would
be highly problematic to use instead more general three-dimensional (3-D) algorithms of
computational fluid dynamics, with volume discretization and diffuse interface for the
same purpose. With those methods, it would be particularly difficult to discern physical
and numerical effects.

2. Problem formulation

Consider the gravity/buoyancy-induced motion of a 3-D deformable drop near an infinite,
inclined plane solid wall under creeping flow conditions. Both the drop and external liquids
are Newtonian, isothermal and free from surfactants. The drop is non-wetting, and so, it is
always separated by a lubrication film from the wall due to drop motion. The wall tilt angle
to horizontal is θ , the non-deformed drop radius is a, the drop and the medium dynamic
viscosities are μd and μe, respectively, with the viscosity ratio λ = μd/μe. Without a loss
of generality, the drop is assumed to be heavier than the medium, with the density contrast
�ρ > 0, and so both phases are in the upper half-space of figure 1.

For steady-state drop sedimentation down the wall, the non-dimensional parameters are
θ , λ and the Bond number

B = �ρga2

σ
, (2.1)

with σ = const being the interface surface tension and g the standard gravity acceleration.
The main goal is a rigorous study of the drop steady-state speed U along the wall, the
geometry of the lubrication space and the mode of drop motion in a wide range of
parameters θ , λ and B. Specifically, we are most interested in extreme viscosity ratios
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Drop motion on an inclined wall
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Figure 1. Schematic for drop motion on an inclined wall.

λ� 1 and small inclination angles – the most challenging combinations that could not
be approached by the more basic BI algorithms of Griggs et al. (2008, 2009) and have
required the development of many novel tools herein, both numerical and semi-analytical,
to handle unavoidable extreme surface resolutions in dynamical simulations. The present
solutions also cover a wide range of B – from nearly spherical to strongly pancaked drops
(but below critical for drop breakup). As in Griggs et al. (2008, 2009), the drop velocity
is defined as the volume average of the fluid velocity inside the drop reduced to surface
integration by Gauss’ theorem, and so only the interfacial velocity has to be determined.
Below, where necessary to distinguish between the transient and steady-state values for
the drop speed (or other quantities), the index ‘st’ will be added to steady-state values.

A convenient, although somewhat empirical, reference velocity scale is

Uref = 2
9

(λ+ 1)

(λ+ 2/3)

�ρga2

μe
sin θ, (2.2)

which is the steady-state speed of an isolated spherical drop under reduced gravity g sin θ .
To make the equations and results below non-dimensional, all the velocities will be scaled
with Uref , lengths with a and times with a/Uref . Note that a different velocity scale,
σ/μe, is used in the asymptotic theory of Hodges et al. (2004); the ratio of the two
scales is O(B sin θ). The scale (2.2) was chosen in the present work, since it makes the
non-dimensional, steady-state drop speed U much less sensitive to θ and B.

3. Method

3.1. Boundary-integral equation
A fixed, right Cartesian coordinate system (x1, x2, x3) is chosen with the origin on the wall,
the x3 axis normal to it and the x2 axis along the projection of gravity vector g on the wall
(figure 1). As in Griggs et al. (2008, 2009), the BI equation for the non-dimensional Stokes
flow problem at any instantaneous, transient drop–wall configuration is based on the Green
tensor G(x; y) and related fundamental stresslet τ (x; y) for the half-space (x3, y3 > 0).
A crucial advantage of using these functions (instead of their simple free-space
counterparts GFS and τFS) is that they work to exclude the wall BIs due to no slip,
and so the problem can be formulated as a BI equation on the drop surface S only for
the fluid velocity u(x). Such an equation corresponds to the original, infinite half-space
solution domain. An alternative of additionally discretizing the wall (with new unknown
distributions) and embedding the drop–wall configuration into a finite computational
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domain (with slowly decaying finite-size effects) would make the solution much less
efficient and accuracy far more difficult to achieve. Plus, exclusion of the wall from the
equations greatly facilitates the logic of the multipole-accelerated BI algorithm paramount
in the present superhigh resolution simulations.

The second-rank Green tensor G was derived by Blake (1971) and reviewed in
Pozrikidis (1992), who also presented τ . With the normalization used herein, Gk =
(Gk

1, Gk
2, Gk

3)(x; y) (for any fixed k = 1, 2, 3) is, by definition, the unit-viscosity Stokes
flow velocity at x due to the point force −ek applied to the fluid at y, subject to the no-slip
boundary conditions Gk

j (x; y) = 0 ( j = 1, 2, 3) when x3 = 0. The corresponding stress
tensor components at x are τ k

ij (x; y).
Based on general theory (Rallison & Acrivos 1978; Pozrikidis 1992), the

non-dimensional BI equation for u(y) on the drop surface can be written as

u(y) = F (y) + κ

[
2
∫

S
Qi(x)τ ij(x; y)nj(x) dSx + u′(y)

]
, y ∈ S. (3.1)

Here, κ = (λ− 1)/(λ+ 1), τ ij = (τ 1
ij , τ

2
ij , τ

3
ij ), n(x) is the outward unit normal to S, and

u′(x) is the projection of u(x) on the subspace of rigid-body motions; this projection is
easy to calculate without the Gram–Schmidt orthogonalization, as noted in Zinchenko,
Rother & Davis (1997). The form (3.1), with Q(x) = u(x) − u′(x) under the double-layer
integral and the added-back term u′(y), serves to generally reduce the magnitude of the
integrand and increase the efficiency of the multipole-accelerated solution for (3.1). With
the reference capillary number Caref = μeUref /σ , the non-dimensional inhomogeneous
term, due to stress jump on the interface, can be written as

F (y) = 2
(λ+ 1)

B
Caref

∫
S

[
2�k(x)

B
+ �x3 cos θ − �x2 sin θ

]
nj(x)Gj(x; y) dSx. (3.2)

Here, Gj = (G1
j , G2

j , G3
j ) (note the difference from the above definition of Gk), �k(x) =

k(x) − 〈k〉, �x = x − xc, k(x) = (k1 + k2)/2 is the local surface curvature (half-sum of
principal curvatures) with the average 〈k〉 over the whole surface and xc is the drop surface
centroid; the centroid components and 〈k〉 are subtracted to generally reduce the magnitude
of the integrand in (3.2) without changing the integral.

A major challenge in the simulations with θ � 1 and λ� 1 was how to avoid
non-convergence of iterations for the BI equation (3.1), stalling dynamical simulation well
before the steady-state drop speed is reached, even with full desingularization (see below)
and a powerful orthogonalized GMRES (Generalized Minimal Residual) method (Arnoldi
iteration). For λ� 1, (λ− 1)/(λ+ 1) is close to the theoretical marginal spectral value
κ = 1 of the right-hand side operator (3.1), and so small discretization errors growing
in dynamical simulation sufficiently distort the spectrum and cause this non-convergence.
Theoretically, partial Wielandt deflation (e.g. Kim & Karilla 1991; Pozrikidis 1992) purges
unity from the spectrum by working with an auxiliary vector field ω = u − κu′. The
equation for ω(y) is the same as (3.1), with Q(x) = ω(x) − ω′(x) (which is still u − u′),
but without the added-back rigid-body projection term in the brackets. The physical
velocity u is recovered as ω + κω′/(1 − κ). Against expectations, partial deflation never
resolved the issue (presumably, because the spectrum is nearly continuous for θ � 1,
and purging just one marginal value does little); instead, using high/ultrahigh resolutions
(through multipole acceleration) was imperative to make BI iterations convergent all the
way to steady state, for both non-deflated and partially deflated versions. However, partial
deflation provided a somewhat more accurate steady-state speed for pancaked drops and
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Drop motion on an inclined wall

was the method of choice in that range; for B ≤ O(1), both the non-deflated (3.1) and
partially deflated forms could be used with indistinguishable results. Note finally that
full deflation (which also eliminates -1 from the spectrum and is often practiced in BI
simulations) was irrelevant in our case and even detrimental, making the steady-state speed
of a pancaked drop much slower convergent with respect to resolutions when θ � 1 and
λ� 1.

The full Green tensor and fundamental stresslet are split as

G = GFS + GC, τ = τFS + τC, (3.3a,b)

where GC and τC are the wall-correction parts, with explicit expressions given in Blake
(1971) and Pozrikidis (1992) (note a different normalization used herein in the definitions
of G and τ ). Instead of the cumbersome forms for GC and τC, it is more relevant to (3.1)
and (3.2) to know how these tensors act on arbitrary vectors W and Q. Namely,

−8πWjGC
j (x; y) =

[(
6x3y3

R2 − 1
)

(W · R) + 2y3W3

]
RIM

R3

−
(

1 + 2x3y3

R2

)
W IM

R
− 2

[
x3(W · R)

R2 + W3

]
e3

R
, (3.4)

and

4π

3
QiWjτ

C
ij (x; y) =

[
2y2

3(W · Q) +
(

10x3y3

R2 − 1
)

(W · R)(Q · R)

]
RIM

R5

− 2x3y3

R5 [(W · R)QIM + (Q · R)W IM] − 2x3

R5 (W · R)(Q · R)e3. (3.5)

Here, R = x − yIM , and the superscript IM stands for the mirror image of a vector or a
point with respect to the wall. Equations (3.4) and (3.5) are complemented by standard FS
contributions

−8πWjGFS
j (x; y) = W

r
+ (W · r)r

r3 , (3.6)

and
4π

3
QiWjτ

FS
ij (x; y) = (W · r)(Q · r)r

r5 , (3.7)

with r = x − y. After some algebra, the combination of (3.5) and (3.7) can be transformed
to match (7) of Griggs et al. (2009) (except for the typo in the second line of their equation:
the closing bracket ] must be moved to the next line). Computationally, however, our (3.5)
is slightly more economical.

3.2. Desingularization of boundary integrals

3.2.1. Single-layer desingularization
Let, for brevity, f̃ (x) be the expression in the square brackets of (3.2). The true singularity
of the integrand in (3.2), when x = y, comes from GFS and is eliminated in a standard
way, by subtracting f̃ (y) from f̃ (x). The wall-correction part (3.4) is finite for all x, y ∈ S,
but it can be quite large, ∼1/R, when x is close to the mirror image of y; this is the case
for a drop moving almost in contact with the wall, of most interest in the present study.
However, such near singularity only comes into play for mesh nodes y in the vicinity of
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the wall. Let x∗ ∈ S be the mesh node on S closest to yIM (figure 1). By the continuity
equation for GFS and GC, the integral (3.2) can be calculated as∫

S
f̃ (x)nj(x)Gj(x; y) dSx =

∫
S
[f̃ (x) − f̃ (y)]nj(x)GFS

j (x; y) dSx

+
∫

S
[f̃ (x) − Θ(y)f̃ (x∗)]nj(x; y)GC

j (x; y) dSx. (3.8)

Here, Θ(y) is a barrier function, which is close to 1 for ‖yIM − x∗‖ � 1 and, by definition,
set to zero for ‖yIM − x∗‖ > ho, where ho is a moderately small threshold. In the present
work, ho was fixed at 0.25, and one of the possible forms for Θ was used

Θ(y) = 1 − (‖yIM − x∗‖/ho)
4. (3.9)

When Θ ≈ 1, the subtracted term in the last integral (3.8) effectively cancels the near
singularity of GC; for ‖yIM − x∗‖ > ho, such subtraction would not be beneficial. Also,
small support for Θ considerably improves the efficiency of our multipole-accelerated
calculation of the desingularized form (3.8).

3.2.2. Free-space double-layer desingularization
The FS contribution to the integral (3.1) is desingularized in a standard way. The explicit
form (3.7) yields∫

S
Qi(x)τFS

ij (x; y)nj(x) dSx = 3
4π

∫
S

{[Q(x) − Q(y)] · r}[r · n(x)]r
r5 dSx + 1

2
Q(y).

(3.10)

Here, the subtraction of Q(y) fully suppressed the singularity and makes the right-hand
side integrand finite, since r · n(x) = O(r2) for any close pair of points x and y on a smooth
surface.

3.2.3. Wall-correction double-layer desingularization
It is non-trivial to fully desingularize the integrand in the wall-correction contribution to
the double-layer integral (3.1). One can, of course, follow the logic of (3.8) and subtract
Qi(x∗) from Qi(x) in such an integral (without an added-back term), but, for a drop in near
contact with the wall, such a subtraction only reduces the integrand near singularity from
O(1/R2) to O(1/R). The reason is that R · n(x) is still O(R) for points x and y (on S) close
to each other and the wall. The lack of full desingularization could be offset in the present
work to a large extent by extreme resolutions (possible due to multipole acceleration)
to simulate the steady-state drop velocity, but such simulations underperformed, with
much longer relaxation to the steady state, excessive number of BI iterations per time
step and usually quite inaccurate thin-film profiles in the most difficult runs; without full
desingularization, some high-resolution runs still crashed with drop–wall overlap, before
reaching the steady state.

It is relevant to note a similar, long-standing issue with full desingularization of the
FS double-layer integrals (3.10) in other problems (e.g. close interaction between drops,
or between drops and solid particles in unbounded space or a periodic box), where the
observation point y can be slightly outside the integration surface. Again, using, for
subtraction, Q at the surface point nearest to y only reduces the integrand singularity
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Drop motion on an inclined wall

to O(1/r). To the author’s knowledge, neither of the works aimed at desingularized
BI equations (e.g. Bazhlekov, Anderson & Meijer 2004; Klaseboer, Sun & Chan 2012;
Farutin, Biben & Misbah 2014) could fully eliminate near-singular behaviour of the
FS integrals (3.10), when y is off the integration surface. Zinchenko & Davis (2002)
constructed the subtracted quantity Q∗ differently from the solution of a special variational
problem, which improved the spectral properties of the discretized double layer and
allowed for highly concentrated emulsion flow simulations with moderate viscosity
contrast, still without full desingularization. This technique, however, was found by
Zinchenko & Davis (2005) to lose advantage with the increase of resolutions and was also
not powerful enough for the present study. In contrast, in the high-order near-singularity
subtraction scheme (Zinchenko & Davis 2006, 2008), Q(x) is locally approximated near
x∗ as a constant plus a linear function of the coordinates in the tangential plane, and both
terms are subtracted from Q(x) to fully eliminate the near singularity of the integrand.
Their technique (applied to drop squeezing through constrictions) was only suitable for
integration over a solid particle surface of canonic shape (sphere, spheroid, torus), when
the added-back integral allows for analytical treatment. To generalize such an approach to
other shapes, Gissinger, Zinchenko & Davis (2021) opted for direct numerical evaluation
of the added-back integral on a superfine auxiliary mesh, but their method is still for
integration over fixed solid surfaces and could not be used for a deformable drop surface
in dynamical simulations.

The present work offers, for the first time, a recipe for full removal of near-singular
behaviour of the double-layer integrand, suitable for any smooth, closed integration
surface and any type of the fundamental stresslet τ (x; y) (free space or wall corrected).
In the present context of the wall-bounded geometry, the general identity derived in
Appendix A applies to any pair of points y, x∗ ∈ S and any vector quantity Q∗

∫
S

Q(x) · (τ k)C(x; y) · n(x) dSx

=
∫

S
{Q(x) − Q∗−L(x − x∗) + [(x − x∗) · n∗] f ∗} · (τ k)C(x; y) · n(x) dSx

+
∫

S
[ f (x) − (n · n∗)f ∗−(n · f ∗)n∗] · (Gk)C(x; y) dSx

− Li
i

∫
S

{
[nk − n∗

k(n · n∗)]ϕk(x; y) + n∗
k [(x − x∗) · n∗]

∂ϕk(x; y)
∂n

}
dSx, (3.11)

for k = 1, 2, 3 (no summation over k in the last line). Here, (τ k)C is the wall-correction
part of the second-rank tensor {τ k

ij } for a fixed k; likewise, (Gk)C is the wall-correction part
of the Green vector Gk. Further, L(x − x∗) is a linear vector field

Li = L j
i (xj − x∗

j ), (3.12)

with a constant matrix of coefficients L j
i and the trace Li

i. The only limitation is
L j

i nj(x∗) = 0, i.e. (3.12) only depends on the projection of x − x∗ on the tangential plane
at x∗. The related vector field f (x) is given in coordinates as

fj(x) = (Li
j + L j

i )ni(x). (3.13)
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For brevity, n in (3.11) is used for n(x), while the asterisk denotes the values of n and f at
x∗. Finally, the auxiliary functions ϕk, specific for the half-space geometry, are

ϕk(x; y) = − 1
4π

(
1
R

∓ 2y3R3

R3

)
, (3.14)

where the upper sign is for k = 1 and 2, and lower sign is for k = 3; the normal derivative
in the last line of (3.11) is with respect to x.

For full desingularization of (3.11), x∗ is chosen again as the mesh node nearest to
yIM (figure 1), and Q∗ is set to Θ(y)Q(x∗), while the construction of L(x − x∗) follows
Zinchenko & Davis (2006). Namely, in the intrinsic coordinate system (x′

1, x′
2, x′

3) centred
at x∗ and with the x′

3-axis along n(x∗), L is first sought as a linear function of x′
1 and x′

2
for the least-squares fit to Q(x) − Q(x∗) in the set of mesh nodes (mesh triangle vertices)
directly connected to x∗, with subsequent transformation (3.12) to global coordinates. This
way, the whole expression in the braces of the second line of (3.11) is O(‖x − x∗‖2) +
O(‖x∗ − yIM‖4) for x ≈ x∗ and effectively cancels the near singularity of (τ k)C. Due to
n∗ · f ∗ = 0, the integrand in the third line of (3.11) is also non-singular, since the O(1/R)

near singularity of (Gk)C is cancelled by the term in brackets; so is the last integrand in
(3.11).

With high surface resolutions, full desingularization (3.11) only makes sense for y very
close to the wall, and so a 2-tiered scheme is used in the algorithm. For ‖yIM − x∗‖ > ho,
the integral (3.11) is handled in its original, left-hand side form. For h1 < ‖yIM − x∗‖ <

ho, only a leading-order subtraction of Θ(y)Q(x∗) (akin to (3.8)) is used, ignoring all
other terms/integrals associated with L; these terms/integrals are additionally included
only for ‖yIM − x∗‖ < h1. Here, h1(y) = (1–1.2)Δ, where Δ is the average length of the
mesh edges (see below) emanating from node y. Desingularization (3.11) can be organized
without slowing down the BI iterations (§ 3.4), but small values of h1, still beneficial, help
to greatly reduce the CPU cost of the pre-iterative part associated with (3.11).

3.3. Drop surface discretization and dynamic mesh control
In the present work, requiring long-time simulations for a λ� 1 drop in very close contact
with the wall, it was highly beneficial to use unstructured drop surface triangulations, with
a fixed number of mesh nodes and fixed mesh topology in each run to the steady state.
That way, surface interpolations and other undesirable, sudden mesh changes (which could
disrupt iterative solution of the BI problem in the presence of strong drop–wall interaction
through a thin lubrication film) are avoided altogether. Accordingly, the problem symmetry
about the x1 = 0 plane (drawn through the drop centroid) was not exploited in the solution
(but naturally achieved with high resolutions), since our triangular mesh nodes do not
possess such symmetry. Forcing this symmetry (only to achieve less than 2-fold gain in
the code speed) would require invoking surface interpolations at each time step. However,
three distinct meshing methods had to be used depending on the Bond number, as briefly
outlined below; additional details are given in Appendix B.

3.3.1. Small B: projective meshing
An adaptation (and some simplification) of the projective mesh approach, originally
developed by Zinchenko & Davis (2005) for glancing, near-contact interactions of two
slightly deformable drops in free space, was found to be most suitable here to handle
a slightly deformable drop near the wall. At each time moment t, the projection centre
O(t) is placed between the drop surface centroid xc and the wall (depending on xc

3).
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Drop motion on an inclined wall

O(0)

S(0)

t = 0

O(t)

Ω(t) S(t)

t > 0

g

Ω(0)

(b)(a)

Figure 2. A 2-D sketch of gap-adaptive, projective drop surface meshing near the wall. (a) For a drop starting
from spherical, the initial meshing is obtained by radial projection of a uniform unit sphere meshing from the
centre O placed between the wall and the drop centroid by the rule (3.15). (b) For t > 0, migration of mesh
nodes on S(t), compatible with the BI solution, allows for a parametric mesh on Ω(t) to remain stationary in
the reference frame moving with O(t). A small size of the unit sphere Ω relative to the drop is chosen just for
presentation.

Let Ω(t) be a unit sphere centred at O(t). A nearly uniform, unstructured mesh with
a prescribed number N� of triangular elements is first constructed on Ω(0) by now
standard methods, starting from either a regular icosahedron or dodecahedron followed
by a series of refinements (Zinchenko et al. 1997). The possibilities include N� = 34 560,
46 080, 61 440, 77 760, 138 240, 245 760, 327 680 (abbreviated below as 35 K, etc.) used
in the present simulations; the maximum-to-minimum mesh edge ratio for each of these
triangulations is within 1.19. For a drop starting from spherical in close contact with the
wall, the initial drop surface triangulation is simply a projection of the Ω(0) mesh from
O(0) (figure 2a). As the drops deforms and moves, so does the mesh on S(t), and the
projection centre O(t) evolves as well. The mesh nodes x j are projected back from S(t)
onto the current Ω(t) (figure 2b) to form a ‘parametric mesh’ on Ω(t). This mapping is
used for non-iterative calculation of the normal vector n(x j) and local curvature k(x j) in
the mesh nodes on S. The parametric, nearly uniform mesh on Ω(t) also facilitates accurate
calculation of the regularized BIs on S(t), by transforming this operation to integration
over Ω(t). Compared with Zinchenko & Davis (2005), such integration is improved here
by handling the corresponding mesh triangles on Ω(t) as geodesic without the need for
additional mesh nodes. By reassigning contributions from such mesh triangles on Ω(t) to
mesh vertices x j on S, all smooth function integrations are economically performed as

∫
S
ϕ(x) dS ≈

∑
x j∈S

ϕ(x j)�Sj, (3.15)

where �Sj can still be called a mesh area associated with node x j. The BI solution for the
interfacial velocity u only imposes a constraint V j · n(x j) = u(x j) · n(x j) on the mesh
node velocities V j = dx j/dt. Remarkably, it is still possible to add tangential motion of
mesh nodes on S to make the parametric mesh stationary (in the reference frame moving
with O(t)) for the entire simulation, from t = 0 to steady state. The rule for placing the
projection centre O(t) controls near-contact mesh adaptivity (Appendix B).
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(b)(a)

Figure 3. A simulation with λ = 30, θ = 7.5◦, B = 0.125 and N� = 8640 using dynamic projective meshing.
(a) Side view along the x1-axis. (b) Diagonal view from the drop bottom showing the dimple and the
near-contact mesh adaptivity (with maximum-to-minimum mesh edge ratio rmax ≈ 4). Only global steady-state
drop shape (not the drop speed) could be approached in this low-resolution run.

Figure 3(a,b) gives an example of projective meshing in a simulation with λ = 30, θ =
7.5◦, B = 0.125. A small number of elements N� = 8640 was intentionally chosen just to
facilitate mesh visualization. Due to insufficient resolution, this run could only approach
an accurate, global steady-state drop shape shown in (a), but stalled shortly thereafter with
drop–wall overlap and non-convergence of BI iterations, well before the steady state for
drop velocity could be reached. Nevertheless, this example demonstrates the high quality
of projecting meshing, with almost equilateral mesh triangles and smooth mesh transition
from the near-contact zone to the outer region.

3.3.2. Intermediate B: n3-based passive mesh stabilization
Projective meshing, although a highly accurate method, is obviously limited to
small-to-moderate deformations. With this method, when the drop becomes significantly
pancaked and the size of the near-contact spot comparable to the drop size, the top portion
of the drop can unnecessarily receive higher resolution than the outer part of the spot.
Another difficulty is the loss of smoothness of the projective mapping onto the unit sphere
near the rim of the spot in this case. An alternative, robust approach for moderate B should
still be adaptive, with higher concentration of mesh nodes in near contact with the wall.
Following the version of a passive mesh stabilization technique from Zinchenko & Davis
(2013), the node velocities V i = dxi/dt to be used in the drop shape update are required,
at each time step, to minimize a form of the ‘kinetic mesh energy function’ under the
normal velocity constraints dictated by the BI solution. This function, quadratic in V 1,
V 2 · · · , contains the rates of change of deviations between the mesh edges ‖xij‖ and their
local target values hij, and also has a term to resist mesh triangle quality deterioration. The
novelty of the present case is in how to construct hij. Curvature adaptation of Zinchenko &
Davis (2013) is not the right criterion here, since local curvature in the near-contact spot
is overall much smaller than on the rest of the drop. Nor was it possible to develop a stable
and accurate meshing scheme with fixed topology for the present simulations based on the
local drop–wall clearance, since such schemes are overly sensitive to local features which
do not necessarily have a significant global effect. Note instead that, in the coordinate
system of figure 1, n3 ≈ −1 only in the spot area of the drop surface. Accordingly, with
an empirical coefficient α set close to 1, a simple form h(x) ∼ [1 + αn3(x)]1/2 for the
target mesh size h near x provided robust meshing of the entire surface, adaptive to
the near-contact spot but not requiring knowledge of the spot size or surface clearance.
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Drop motion on an inclined wall

(b)(a)

Figure 4. A simulation with λ = 30, θ = 7.5◦, B = 1 and N� = 8640 using n3-based passive mesh
stabilization. (a) Side view along the x1-axis. (b) Diagonal view from the drop bottom showing the dimple
and the near-contact mesh adaptivity (with rmax ≈ 3). Only global steady-state drop shape (not the drop speed)
could be approached in this low-resolution run.

(b)(a)

Figure 5. A simulation with λ = 30, θ = 7.5◦, B = 5 and N� = 8640 using non-adaptive passive mesh
stabilization. (a) Side view along the x1-axis. (b) Diagonal view from the drop bottom showing the dimple and
the quality of mesh triangles. Only global steady-state drop shape (not the drop speed) could be approached in
this low-resolution run.

The degree of adaptivity is controlled by α (with default 0.7). Details of this technique are
described in Appendix B.

Figure 4(a,b) gives an example of n3-based meshing in a simulation with λ = 30,
θ = 7.5◦, B = 1 and intentionally small number of elements N� = 8640 just to facilitate
mesh visualization, with required adaptivity to the near-contact spot, nearly equilateral
mesh triangles and smooth mesh transition from the spot to the outer region. This run could
only achieve the steady-state drop shape with reasonable accuracy, but crashed shortly
thereafter due to drop–wall overlap, still far from the steady state for the drop velocity.

3.3.3. Large B: non-adaptive meshing
Surprisingly, for strongly pancaked drops, the best choice was non-adaptive meshing
dynamically controlled by passive stabilization, even at small tilt angles when a large
drop portion is in very close contact with the wall. A simpler form (Appendix B) of the
kinetic mesh energy function is used, which only prevents the mesh edges from becoming
irregular and maintains the quality of mesh triangles. Figure 5(a,b) demonstrates the
intended non-adaptive meshing in dynamical simulation with λ = 30, θ = 7.5◦ and B = 5;
the mesh triangles are seen to be almost equilateral in the spot area (b) and on the rest
of the drop (a). Again, a small number N� = 8640 of triangular elements was chosen
just to facilitate mesh visualization and quickly approach, with reasonable accuracy,
the steady-state drop shape for these λ, θ and B. The run crashed shortly thereafter
with drop–wall overlap well before the steady-state drop velocity could be reached;
the steady-state thin-film profile could not be simulated either with such resolution (in
particular, dimple imperfection (bulging) can be seen in figure 5b). Successful simulations
with λ� 1 and small tilt angles require much higher N� (especially, for strongly pancaked
drops B � 1), which was made possible by multipole acceleration described below.
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3.4. Multipole acceleration
Since the present simulations required long-time simulations with extreme resolutions
(up to N� ∼ 3 × 105 triangular elements), direct node-to-node summations for the BI
(3.8), (3.10) or (3.11) were severely prohibited, and a highly efficient multipole-accelerated
scheme was developed instead. Starting from the year 2000, multipole acceleration has
been extensively developed and used in various multidrop–multiparticle BI simulations
(see Zinchenko & Davis (2000), Zinchenko & Davis (2002), Zinchenko & Davis (2008),
Zinchenko & Davis (2013), Zinchenko & Davis (2017) and other works by these authors).
As discussed elsewhere (e.g. Zinchenko & Davis 2008), those techniques are distinct from
the hydrodynamical version of the fast multipole method (FMM) (e.g. Sangani & Mo
1996) in many respects. In particular, instead of a hierarchy of space decompositions by
Cartesian grids (characteristic of general FMM), a physically motivated surface partition
into compact patches is used (with better behaviour of multipole expansions), combined
with a broad use of rotational transformations for high-order expansions/re-expansions
and economical truncation bounds. Compared with those previous works, the present,
new multipole-accelerated scheme is most in line with the algorithm of Zinchenko &
Davis (2005) developed for near-contact, free-space interaction of two slightly deformable
drops with high resolution, but it is necessarily more complex due to complexities of
the half-space Green function and related fundamental stresslet, and due to high-order
near-singularity subtraction in the double-layer integral.

The discrete form of the BI equation (3.1) is obtained by approximating the non-singular
integrals on the right-hand side of (3.8), (3.10) and (3.11) by the rule (3.15), using
the area elements �Sj associated with nodes x j. Below, we briefly outline how the
multipole-accelerated scheme works for the discretized double-layer integral in (3.1).

The mesh nodes are grouped into a large number M of non-overlapping, compact patches
(figure 6) B1,B2, . . .BM , as detailed in Zinchenko & Davis (2005). This partition is made
at t = 0 only and while the nodes still form a uniform mesh (i.e. before projection on
the initial drop surface in the operations of § 3.3 and Appendix B), and it is assumed
unchanged in the subsequent drop motion. That way, each patch retains a constant set of
≈N�/(2M) mesh nodes; typically, 200–400 nodes per patch were optimal for multipole
acceleration. If mesh nodes adapt to the near-contact area, so do the patches.

Let B(y) be the patch containing mesh node y. The contribution of nodes x j ∈ B(y) to
the right-hand side of (3.10) is calculated by direct summation

Ψ SI(y) = 3
4π

∑
x j∈B(y)

{[Q(x j) − Q(y)] · rj}[rj · W (x j)]rj

r5
j

, W (x j) = n(x j)�Sj (3.16)

(where rj = x j − y, and x j = y is excluded from summation). Handling of other FS
contributions to (3.10) is assisted by the subtraction matrices

Π1(y) = − 3
4π

∑
x j∈S\B(y)

[rj · W (x j)]rjrj

r5
j

, (3.17)

independent of Q and calculated for all y ∈ S before the BI iterations (see below).
Additional matrices

Π2(y) = −
∑
x j∈S

τC(x j; y) · W (x j), (3.18)

precalculated only for ‖yIM − x∗‖ < ho, help with handling the discretized wall-correction
contribution (3.11). Regarding other parts of (3.11), we note that the best local linear fit
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Figure 6. A schematic for multipole-accelerated BI calculations using an extended system of mesh nodes
(small dots), patches (bounded by hexagonal cells) and their mirror images in the lower half-space x3 < 0.
For patches Bα and Bβ well separated from Bδ , their Bα → Bδ and Bβ → Bδ contributions are calculated
by singular-to-regular re-expansion of Lamb’s series. The Bγ → Bδ contribution is computed by pointwise
Lamb’s singular series for nodes y ∈ Bδ well outside the shell Dγ , and by direct node-to-node summation
otherwise.

L(x − x∗) to �Q(x) = Q(x) − Q(x∗) can be written (Zinchenko & Davis 2006) as

L(x − x∗) =
∑

x j∈A(x∗)

(ajx′
1 + bjx′

2)�Q(x j). (3.19)

Here, A(x∗) is the set of mesh nodes directly connected to x∗; coefficients aj and bj depend
on the local surface geometry near x∗ and the choice of the intrinsic coordinates (x′

1, x′
2)

in the tangential plane at x∗ (see § 3.2.1). Let Γ k
l (y) and Γ k

l+3(y) be the total L-related
contributions to (3.11) when L(x − x∗) has the special form x′

1el or x′
2el, respectively.

These 18 scalars are also precalculated for all necessary nodes y before the iterations.
The discretized form of the double layer (3.1) to compute at every iteration becomes∫

S
Q(x) · τ (x; y) · n(x)dSx ≈ 1

2
Q(y) + Ψ SI(y) + Q(y) · Π1(y)

+ Θ(y)Q(x∗) · Π2(y) + Θ2(y)
∑

x j∈A(x∗)

[ajΓ l(y) + bjΓ l+3(y)][Ql(x j) − Ql(x∗)]

+
∑

x j∈S\B(y)

Q(x j) · τFS(x j; y) · W (x j) +
∑
x j∈S

Q(x j) · τC(x j; y) · W (x j), (3.20)

with Γ l = (Γ 1
l , Γ 2

l , Γ 3
l ); the barrier Θ2(y) = 1 for ‖yIM − x∗‖ < h1 and zero otherwise.

The form (3.20) unloads the iterative part of the algorithm, but at the non-trivial expense
of precalculating matrices Π1, Π2 and Γ . Before addressing this issue, it is instructive
to consider the multipole-accelerated scheme for the last two sums in (3.20). To invoke
logical analogy with the algorithm of Zinchenko & Davis (2005) for two drops in free
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space, it is useful to view the last sum as the contribution from the mirror images (x j)IM

of nodes x j. Accordingly, the node and patch system are extended to the lower half-space:
for every node x j and patch Bγ in the upper half-space there are the corresponding node
xj+M = (x j)IM and patch Bγ+M = BIM

γ in the lower half-space. Assuming this extension,
a minimal spherical shell Dγ with centre xo

γ and radius do
γ is constructed (with sufficient

accuracy) around each patch Bγ . The total contribution to (3.20) from any patch Bγ (γ ≤
2M) is a Stokes flow as a function of y, regular outside the shell Dγ and expandable there
into Lamb’s singular series about the shell centre xo

γ . So, one can write either of the two
expansions for a patch B lying in the upper half-space

∑
x j∈B

Q(x j) ·
{

τFS(x j; y)
τC(x j; y)

}
· W (x j) =

∞∑
ν=0

[
∇ × (χ−(ν+1)Y γ ) + ∇Φ−(ν+1)

+ (ν + 1)p−(ν+1)Y γ

ν(2ν − 1)
− (ν − 2)Y2

γ ∇p−(ν+1)

2ν(2ν − 1)

]
(3.21)

(omitting the terms with p−(ν+1) and χ−(ν+1) when ν = 0). Here, the expansion vector
Y γ = y − xo

γ and the negative-order solid harmonics are

p−(ν+1)(Y γ ) =
ν∑

μ=−ν

Aγ

−(ν+1),μ

(do
γ

Yγ

)ν+1

Yν,μ(Y γ ),

Φ−(ν+1)(Y γ ) =
ν∑

μ=−ν

B γ

−(ν+1),μ

(do
γ

Yγ

)ν+1

Yν,μ(Y γ ),

χ−(ν+1)(Y γ ) =
ν∑

μ=−ν

Cγ

−(ν+1),μ

(do
γ

Yγ

)ν+1

Yν,μ(Y γ ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

with complex coefficients Aγ

−(ν+1),μ, Bγ

−(ν+1),μ and Cγ

−(ν+1),μ; Yν,μ(r) is the standard,
normalized spherical harmonic. For the choice τFS in (3.21), γ ≤ M is the one with
Bγ = B; for τC in (3.21), γ > M corresponds to the mirror image of B. For τFS, an
efficient algorithm (Zinchenko & Davis 2008) was used to generate Lamb’s A-, B- and
C-coefficients in (3.22) to an arbitrary order; for τC, it was a novel, far more involved task
undertaken in the present work (see Appendix C for details).

Based on Lamb’s singular series generated for every patch Bγ to a sufficiently high
order, the total of the last two sums in (3.20) is computed as follows. For every patch
Bγ (γ ≤ 2M) sufficiently separated from a chosen patch Bδ(δ ≤ M) (i.e. with enough
clearance between Dγ and Dδ), Lamb’s singular series (3.21) is re-expanded near Dδ

into Lamb’s regular series

∞∑
n=1

[
∇ × (χnY δ) + ∇Φn − npnY δ

(n + 1)(2n + 3)
+ (n + 3)Y2

δ ∇pn

2(n + 1)(2n + 3)

]
, (3.23)

with positive-order solid harmonics pn(Y δ), Φn(Y δ) and χn(Y δ). This re-expansion
employs rotational transformations of spherical harmonics by Wigner functions
(Zinchenko 1994; Zinchenko & Davis 2000), which makes this operation much less
cumbersome to implement and reduces the operation cost from ∼(max(ν, n))4 to

1000 A16-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.998


Drop motion on an inclined wall

∼(max(ν, n))3 compared with straightforward re-expansion without rotations. The
cumulative regular series (3.23) from all the above patches Bγ is then calculated pointwise
for all y ∈ Bδ .

Regarding remaining patches Bγ (not sufficiently separated from Bδ), their
contributions to the last two sums (3.20) for y ∈ Bδ are computed individually by either
pointwise calculation of their Lamb’s singular series (if y is sufficiently outside the shell
Dγ ) or (in very rare cases) by direct node-to-node summation using the explicit forms
(3.5) or (3.7).

Since the cumbersome elements Γ l(y) and Γ l+3(y) in (3.20) are required only for
y very close to the wall, it was sufficient to precalculate them before the iterations in
the simplest manner by direct node-to-node summation, with a small effect on the total
computational cost. In contrast, tensor Π2(y) (active in a much broader range ‖yIM −
x∗‖ < ho) and tensor Π1(y) (necessary on the entire surface S) had to be precalculated by
multipole-accelerated schemes. Such schemes mimic the parts of the already described
scheme for the last two sums in (3.20), just applied three times for constant vectors
Q(x j) = ek with k = 1, 2, 3.

Calculation of the inhomogeneous term (3.2) F (y) also required multipole acceleration
done along the same lines. Discretizing the non-singular right-hand side integrals (3.8) by
the rule (3.15), their contributions are then split into parts coming (i) from f̃ (x) (in both
integrals) (ii) from f̃ (y) and (iii) from Θ(y)f̃ (x∗) in the brackets. Part (i) logically parallels
the total contribution from the last two integrals in (3.20), while parts (ii) and (iii) are
calculated in the same logical manner as tensors Π1(y) and Π2(y), respectively. All these
tasks employ Lamb’s singular series (3.21), this time for single-layer patch contributions
generated to an arbitrary order, as outlined in Appendix C.

A crucial feature in all these multipole-accelerated operations is a broad spectrum of
economical truncation bounds for multipole expansions/re-expansions. Based on plausible
estimations of the convergence rate for Lamb’s series, the algorithm decides (in a
rational, nearly optimal way) how many terms to retain in singular-to-regular re-expansions
(depending primarily on the clearance between the spherical shells around patches), and
how to truncate singular Lamb’s series in pointwise calculations (depending mostly on
the clearance from an observation point to the spherical shell around a patch). The
construction of truncation bounds controlled by a single, intuitive precision parameter
ε mostly follows that for two nearly touching drops in free space (Zinchenko & Davis
2005), with technical details in Zinchenko & Davis (2000). Here, again, the logical
analogy between the drop mirror image in the present problem and the second drop in
Zinchenko & Davis (2005) is used; a few adjustments specific to the present problem
are listed in Appendix D. To enhance performance, the algorithm also has a threshold ko
(set to 20) of the order of multipoles: if, for a given ε, particular multipole operations
require higher orders, then direct node-to-node summations are invoked instead. There is
some freedom in construction of truncation bounds, but the multipole-accelerated solution
converges, as ε → 0, to the same (much slower) non-multipole solution, regardless of ko.
This convergence is demonstrated in Appendix D, together with performance benchmarks.

4. Numerical analysis

4.1. Validation test: a spherical drop near a vertical wall
Although the present work is largely devoted to the most challenging case of small
tilt angles θ , the opposite case of a drop in very close proximity to a vertical wall
(θ = 90◦) serves as a non-trivial check for correctness of the present multipole-accelerated
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Figure 7. Transient speed of a slightly deformable drop settling along a vertical wall by the
multipole-accelerated BI algorithm for (a) λ = 10 and (b) λ = 300. The drop starts from spherical, and its
surface centroid is constrained to stay at a distance 1 + δ0 from the wall for the entire simulation.

BI code. In the Stokes regime and with infinite surface tension, a spherical drop,
initially placed at an arbitrary clearance δo from the wall, would continue settling at
a constant speed and without lateral migration; the drop–wall interaction in this case
is conveniently characterized by the non-dimensional correction factor Δ(λ, δ0) to the
Hadamar–Rybchinsky drag force on an isolated drop. It is of interest to explore how
the present solution can approach this limiting case and predict Δ(λ, δ0). A deformable,
initially spherical drop in this situation, however, would drift away from the wall
for viscosity ratios λ > 3.12 (Magnaudet, Takagi & Legendre 2003). Since this drift
disappears in the limit B → 0, it was legitimate in our tests for small B /= 0 to exclude
this drift altogether by forcing the drop surface centroid to stay at a distance 1 + δ0
from the wall. That way, the long-time, steady-state (non-dimensional) drop velocity Ust
along the wall could be unambiguously attained (figure 7) for selected λ = 10 and 300.
It is this velocity (not the initial velocity at t = 0 when the drop was strictly spherical)
and the related drag coefficient Δ = 1/Ust that must be compared with those for a drop
with infinite surface tension. The reason is that, in the BI formulation (3.2), the fully
developed, small curvature variation �k (due to the normal stress balance on the interface)
is divided by the Bond number to produce an O(1) effect as B → 0. In contrast, the infinite
surface-tension formulation (see below) is only based on the tangential stress balance,
and replaces the normal stress balance by postulating the spherical shape. In this respect,
comparison with the case of a non-deformable drop is also a sensitive check on correctness
of drop shape perturbation in our BI simulations. The difference between U(t = 0) and Ust
is modest for λ = 300 (figure 7b), but is more significant (almost 1.4 times) for λ = 10,
δo = 0.005 and B = 0.007 (figure 7a).

Since small drop–wall clearances are of primary interest here, it would be attractive to
use for comparison a highly accurate, B = 0 bispherical (bipolar) coordinate solution for
a spherical drop moving parallel to the wall, but such a solution could not be found in
the literature (only the bubble case λ = 0 for δo ≥ 0.0453 was handled, Meyyappan &
Subramanian 1987). For this reason, the bispherical coordinate code of Zinchenko (1980)
for two generally unequal spherical drops with arbitrary viscosities and instantaneous
velocities normal to the line of centres had to be used at a size ratio of 10−6 and viscosity
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Drop motion on an inclined wall

δo λ B = 0.0625 0.03 0.015 0.007 0

0.0453 10 2.483 2.486 — — 2.487
0.0453 300 — 2.614 2.622 — 2.625
0.01 10 — — 3.051 3.060 3.063
0.01 300 — — 3.320 3.351 3.362
0.005 10 — — 3.250 3.287 3.303

Table 1. The drag force correction factor Δ for a drop moving parallel to a plane wall; the B /= 0 results
are from the present multipole-accelerated, BI code, and the B = 0 values are obtained by the bispherical
coordinate code of Zinchenko (1980).

of the larger drop 107 times larger than the medium viscosity to accurately represent the
case of one spherical drop near a solid wall. However, to overcome ill conditioning for
such extreme parameters, the code of Zinchenko (1980) had to be run in the quadruple
precision mode.

In table 1, as B → 0, our results by the multipole-accelerated BI code (with moderately
adaptive, projective meshing and up to N� = 78 K elements to guarantee the accuracy
shown) are in excellent agreement with the B = 0 bispherical coordinate solution; this
limit is approached faster for smaller λ and larger δo. For λ = 300 and B = 0, our values
of Δ in table 1 are also consistent with the near-contact asymptotics

Δ(∞, δo) = 8
15

L + 0.954 − 4
3

(L/10 − 0.193)2

(2L/5 + 0.371)
, L = − ln(δo), (4.1)

for a solid sphere moving with free rotation (which is the extension of the results from
O’Neill & Stewartson 1967). A different validation (for small and large deformations) of
the present multipole-accelerated BI code will be demonstrated in Appendix D, including
code performance benchmarks.

4.2. The effect of high-order double-layer desingularization
The benefits of full double-layer BI desingularization, achieved through (3.11), are most
pronounced when it is applied to simulations with modest resolutions. In figure 8 for
λ = 30, θ = 15◦ and B = 0.125, all four simulations employed projective meshing with
the same pattern of near-contact adaptivity (as described in § 3.3.1 and § B.1) and started
from a spherical drop shape with the initial drop–wall clearance δo = 0.01 or 0.02.
The curves 1 and 2 are for high resolutions of N� = 46 and 61 K, respectively, with
full desingularization. Reliable steady state was achieved in these two runs for both the
drop–wall clearance δmin(t) (figure 8a) and the transient drop velocity U(t) (figure 8b);
the latter is graphically indistinguishable between the two runs. Numerical convergence
for δmin up to steady state (with δst

min ≈ 0.0061−0.0062) is also good, considering how
sensitive this small quantity is.

In contrast, the low-resolution run (N� = 8640) with only leading-order subtraction
in (3.11) (curves 3) crashed early due to drop–wall overlap (figure 8a), with subsequent
divergence of BI iterations not allowing the simulation to proceed to steady state for the
drop velocity (figure 8b). However, activating high-order desingularization for the same
low resolution N� = 8640 gives much better results (curves 4), with steady state achieved
for the clearance (figure 8a) and drop velocity (figure 8b). In this run, roughly 12 %
of the mesh nodes participated in the high-order desingularization (3.11) at large times.
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Figure 8. (a) Drop–wall clearance δmin(t) and (b) transient drop speed in the simulations with λ = 30, θ = 15◦
and B = 0.125. Lines 1: N� = 46 K; 2: N� = 61 K; 3 and 4: N� = 8640. The run for lines 3 was performed
without high-order double-layer desingularization, leading to a crash at t ≈ 10 with drop–wall overlap.

Although δst
min for this run is only half of the correct value, Ust is in fair agreement

with the correct result from the high-resolution simulations in figure 8(b). Note that
such an improvement is achieved in a fundamental way through full BI desingularization,
without attempts to impose an artificial repulsive barrier to prevent drop–wall overlap. Full
desingularization is still beneficial for much higher resolutions, which is demonstrated in
the next subsection.

4.3. Drop velocity: convergence analysis
Below, for the difficult combination λ = 60, θ = 7.5◦, we explore the effects of
discretization and solution strategies, primarily on the steady-state drop velocity Ust. It
is far from obvious which of the three discretization strategies: (i) projective meshing
of § 3.3.1, labelled as PR in what follows, (ii) n3-based meshing (N3) of § 3.3.2 or
(iii) non-adaptive meshing (NA) of § 3.3.3 to choose in each case, and the answer depends
on the Bond number. In all the cases, acceptable results required very high surface
resolutions only possible in dynamical simulations owing to multipole acceleration.

For B = 0.125, with the drop exhibiting small deformation all the way to steady state,
the drop speed trajectory U(t) is presented in figure 9(a) for four simulations. Runs 1 and
2 employ projective meshing and started from a spherical drop shape with δo = 0.01. The
steady-state meshing pattern for this B is well represented by the low-resolution run in
figure 3, but successful simulations of the steady-state drop speed and thin-film profile
required much finer resolutions than N� = 8640 could provide. Indeed, for runs 1 and 2
in figure 9(a) with N� = 61 and 78 K, respectively, Ust still differs by 2 %. To increase the
resolution further, a one-time surface remeshing to N� = 138 K was done at the end of run
2 preserving the mesh adaptivity pattern (by rebuilding the parametric mesh, as described
in Appendix D), to provide the initial conditions for run 3 in figure 9(a), until a new
steady-state drop velocity was reached. The difference between the Ust values for 78 and
138 K resolutions is 1 %, indicating sufficient convergence (an additional run PR-246K
done in a similar manner, but not included in figure 9(a), changed the steady-state drop
speed from PR-138K by less than 0.17 %); the converged steady-state drop–wall clearance
δst

min is 0.0034.
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Figure 9. Transient drop speed for λ = 60, θ = 7.5◦, with (a) B = 0.125, (b) B = 1, (c) B = 2 and (d) B = 5,
using various discretization schemes (PR, N3, NA) combined with various resolutions N�. In (b), run 5 (dashed
line) is the repeat of run 3, but without the default high-order double-layer desingularization. In each panel, the
inset shows the steady-state drop–wall configuration (side view along x1) from the highest-resolution run.

To test the alternative, n3-based discretization scheme of § 3.3.2, the run N3-61K (line 4)
was performed with α therein set to 0.84, to have approximately the same near-contact
adaptivity as for the other runs in figure 9(a) (judging by the same maximum-to-minimum
mesh edge ratio of four at this B). However, the steady-state drop speed prediction by
N3-61K is only half as accurate as by PR-61K. Presumably, superiority of PR discretization
is due to the higher accuracy of surface integration (after desingularization) though a
uniform parametric mesh on the auxiliary unit sphere, while in the N3 scheme such
integration has to be done on a strongly non-uniform native mesh on the drop surface.
Additional tests confirmed that projective meshing is the method of choice for all Bond
numbers B ≤ 0.5 at small tilts θ .

For higher B ≥ 1, however, projective meshing is not a robust approach, and the
choice was only between the n3-based (with default α = 0.7) and non-adaptive surface
discretizations. At B = 1 and this θ , the steady-state adaptivity pattern for n3-based
meshing is well represented by the lower-resolution run in figure 4. For this B, an excellent
agreement is observed in figure 9(b) between the runs N3-61K and N3-78K all the
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way to steady state, with only 0.75 % difference in the steady-state drop velocities (the
additional runs N3-138K and N3-246K, not included in figure 9(b), gave indistinguishable
steady-state drop speed, to within 0.1 %). The convergent steady-state drop–wall clearance
is 0.0066. Compared with the case B = 0.125 (figure 9a), the numerical convergence for
B = 1 is faster, but it still requires high surface resolutions only feasible with multipole
acceleration. For the N3-46K run (line 3 in figure 9b), the steady-state drop speed is only
accurate to 6 %. Although the lubrication effects are now spread on a wider near-contact
area than for B = 0.125, near-contact mesh adaptivity is still essential for accurate results.
For example, run 4 in figure 9(b) with non-adaptive mesh and N� = 46 K is not nearly
as good as N3-46K. Finally, the dashed line 5 in figure 9(b) demonstrates, again, the
significance of full double-layer desingularization (3.11) for small tilt angles θ even
in high-resolution simulations. This run was a repeat of N3-46K, only the default full
desingularization was replaced by the simple leading-order subtraction (i.e. h1 set to zero);
the result was a crash with drop–wall overlap and quite incorrect drop speed not reaching
the steady state. Note also that the pronounced shoulder of the curves in figure 9(b) (even
upon numerical convergence) is due to the artificial initial condition (spherical shape
at the small gap of 0.01) and drop deformability, making the surface clearance δmin(t)
non-monotonic, so that it grows in a small time interval after the initial decrease. Once
δmin(t) resumes its regular decline, the shoulder of the curves for U(t) disappears.

For B = 2 in figure 9(c), only the simulations N3-78K and N3-138K show good
convergence, with Ust differing by 1.2 % between the two runs (further increase of Ust
in an additional run N3-246K was only 0.5 %); the steady-state drop–wall gap is 0.0064.
The run N3-61K underestimates the steady-state drop speed by approximately 5 %. The
cruder resolution N� = 46 K could not give satisfactory results at all, especially with
non-adaptive meshing (line 5 for NA-46K), and so n3-based meshing is still a preferable
discretization strategy for this B = 2.

It was particularly difficult to obtain the correct steady-state drop speed for a strongly
pancaked drop, B = 5 (figure 9d), with imperative ultrahigh surface resolutions; also,
the partially deflated form of the BI equation (3.1) (instead of fully deflated) was
mostly beneficial in this case to reach numerical convergence. The steady-state pattern
of non-adaptive meshing for this B is well represented by the lower-resolution run in
figure 5. In figure 9(d), runs NA-246K and NA-328K both reliably reached the steady
state, with excellent convergence all the way (the difference in Ust between the two runs
being only 0.5 %); the steady-state drop–wall clearance is 0.0046 for NA-246K and 0.0049
for NA-328K. However, run NA-138K (curve 3) could not reach the steady state due
to discretization errors and had to be stopped (it would significantly underpredict Ust
anyway). Run NA-46K (line 4) had to be stopped even sooner due to poor accuracy. Since
a strongly pancaked drop on a gently inclined wall is characterized by a large near-contact
spot, one could expect a meshing adaptive to that region to perform better. However,
the opposite is observed, and run N3-46K (line 5) is even less successful than NA-46K.
Among possible explanations for this phenomenon, it can be noted that, for a given N�,
mesh concentration in a large near-contact area significantly depletes the node density on
the rest of the drop and makes it less uniform there, thus negatively affecting the accuracy
of global surface integration. Such numerical integration errors are amplified at λ� 1,
because of the proximity of (λ− 1)/(λ+ 1) to the spectrum of the BI equation (3.1).
Also, for a strongly pancaked drop, the near-contact stresses are distributed on a larger
area (than for small or moderate B), which makes them smaller, and it may be even less
important to use very fine mesh in the spot area at the expense of the outer and transition
regions. Thus, non-adaptive meshing with an ultrahigh number N� of elements appears to
be the only successful way in this case.
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Figure 10. Steady-state drop speed for tilt angles (a) θ = 7.5◦, (b) θ = 15◦, (c) θ = 22.5◦ and (d) θ = 30◦.
In each panel, curves (top to bottom) correspond to viscosity ratios λ = 1, 3, 10, 30, 60 and 300, respectively.

5. Physical results

Figure 10(a–d), the main result of this effort, presents the non-dimensional steady-state
drop speed U (as defined in § 2) for small-to-moderate tilt angles 7.5◦ ≤ θ ≤ 30◦ in the
wide ranges of the Bond number 0.0625 ≤ B ≤ 5 and viscosity ratios 1 ≤ λ ≤ 300. For
each data point, the relative error does not exceed 0.5 % (and is often much smaller). To
this end, super-resolutions with up to N� = 328 K had to be used for the most difficult
combinations of the small tilt θ = 7.5◦ with high viscosity ratios λ ≥ 60. However, the
case θ = 7.5◦, λ = 300, B = 5 still could not be studied, requiring even higher resolution
to avoid non-convergence of BI iterations on the way to steady state. (This difficulty
did not stem from the surface curvature/normal vector calculations by the default best
paraboloid-spline method employed here for all B ≥ 1. Using instead the high-order
normal vector/curvature algorithm from Appendix B of Zinchenko & Davis (2006) for
θ = 7.5◦, λ = 300, B = 5 and N� = 328 K, the run stalled at almost the same time
moment, with non-convergence of BI iterations. It remains to be seen in future work if
improved schemes for surface integration could handle this case better.) On the other
hand, for λ = O(1) and moderate tilt angles θ ≥ 22.5◦, the resolution N� = 35 K was
always sufficient for high accuracy of U. For convenience, all the data from figure 10(a–d)
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A.Z. Zinchenko

B = 0.0625 0.125 0.25 0.5 1 2 3 4 5

Present solution 0.332 0.338 0.342 0.345 0.343 0.334 0.323 0.312 0.300
Griggs et al. (2008) — 0.334 0.341 0.344 0.342 0.332 0.322 0.312 0.300

Table 2. Non-dimensional steady-state drop speed for θ = 30◦ and λ = 1. The results from figure 5(c) of
Griggs et al. (2008) are taken with the factor of two to account for our scale (2.2).

are also presented in the Supplementary Material in tabular form available at https://doi.
org/10.1017/jfm.2024.998.

The early efforts of Griggs et al. (2008, 2009) used a much simpler BI algorithm without
multipole acceleration and high-order, double-layer near-singularity subtraction, and they
focused on the range of tilt angles θ ≥ 30◦ and viscosity ratios λ = O(1) to calculate the
steady-state drop speed. While their resolution (up to N� ∼ 8640) was quite acceptable
in that generic range (especially in the simpler, most favourable case λ = 1, see table 2),
a few attempts therein to consider just slightly smaller tilts θ and/or slightly higher λ
quickly led to loss of accuracy. For example, at θ = 15◦, B = 3 and λ = 1, their solution
underestimates U by just 5 % (compared with the present code), but the error reaches
−12 % for λ = 10 at the same θ and B. In contrast, for λ = 20 (the highest viscosity ratio
in Griggs et al. 2008, 2009), θ = 15◦ and B = 4, their solution overpredicted the drop
speed by 15 %. A similar loss of accuracy is observed in the results of Griggs et al. (2009)
for θ = 7.5◦, λ = 8.5 and 0.25 ≤ B ≤ 2. Moreover, just slightly more extreme conditions
could not be simulated at all with such algorithm and resolutions N� ∼ 8640 due to
non-convergence of BI iterations on the way to steady state. For example, simulations with
λ = 60, θ = 30◦ and B = 5 failed; so did the runs with λ = 60, θ = 22.5◦ and all B ≥ 2.
Simulations with λ = 300 and θ = 30◦ could not succeed for any B for the same reason (let
alone more challenging, small tilt angles θ ). Thus, the present solution in figure 10(a–d)
not only greatly improves the accuracy for generic values of θ , λ and B, but also greatly
expands the parameter range owing to superhigh resolutions, feasible through multipole
acceleration combined with the high-order near-singularity subtraction in the double-layer
BI.

Inclusion of sin θ in the velocity scale (2.2) considerably mitigates the dependence of U
on θ (for small B), but U is still a sharp function of the Bond number at small tilt angles
(figure 10a), especially with high viscosity ratios and near the spherical drop limit. For
θ = 7.5◦, U is a decreasing function of B in the whole range B ≥ 0.0625 for all λ ≥ 1,
which is confirmed by some simulations (with λ = 1, 60 or 300) extended to B = 0.0625
(figure 10a). At a larger tilt θ = 15◦ (figure 10b), the same behaviour is observed, except for
λ = 1 where the trend is just starting to reverse and U(B) reaches a maximum at B ≈ 0.15;
high accuracy of our simulations (especially at λ = 1) gives confidence that this trend
reversal is not a numerical effect. For θ = 22.5◦ (figure 10c) and λ = 1, this maximum of
U(B) becomes more noticeable; also, the trend reversal is seen to emerge at λ = 60 while
U(B) remains monotonic to B = 0.0625 for the higher viscosity ratio of 300. Finally, at
the tilt angle of 30◦ (figure 10d) and λ = 1, the maximum of U(B) is most pronounced,
shifting to a higher Bond number B ≈ 0.5; the λ = 60 curve also shows a (very weak)
maximum at B ≈ 0.1, but the trend reversal is still not seen to B = 0.0625 for λ = 300.
Note that Griggs et al. (2009) also observed weakly non-monotonic behaviour of U(B) at
θ = 30◦ and λ ≈ 1, in both their experiments and simulations (table 2).

In their analytical study, Hodges et al. (2004) identified 11 asymptotic regimes for a
non-wetting drop sedimenting on a gently inclined wall, to give leading-order estimates for
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Drop motion on an inclined wall

the steady-state drop velocity and thin-film thickness depending on the relations between
θ , λ and B. Their analysis naturally assumes logarithmically very broad variation of these
parameters; the boundaries on different asymptotic regions are very tight, unless the tilt
θ can be made extremely small (which was not possible in the present simulations). For
strongly pancaked drops B = 5 at θ = 7.5◦ and moderate viscosity ratios λ = 10−30, an
approximate agreement between our precise drop-speed results and the asymptotic theory
predictions (region PII1 in Hodges et al. 2004) was observed, although the difference could
reach 1.5 times. With this exception, even though the present solution greatly expands the
parameter space compared with Griggs et al. (2008, 2009), it was still hardly possible
to make quantitative connections with the asymptotic theory of Hodges et al. (2004).
For B � 1, one source of such difficulties is obvious from our figure 10. According to
Hodges et al. (2004), as B → 0 for fixed θ and λ, our U(B) must approach zero, albeit
slowly like ∼| ln(θ2B)|−1 (note the difference in the definitions of the non-dimensional
drop speed U between the present work and their work). Even at θ = 30◦ and λ = 1,
it would require extremely small B (well past the reversal trend for U(B) in figure 10d)
to observe a substantial decrease of the drop speed, let alone smaller tilt angles and/or
higher viscosity ratios. Such Bond numbers are computationally not feasible and would
correspond to extremely small drop–wall clearance (see below), where surface roughness
and other small-scale effects can come into play in practice.

Qualitatively, our trend reversal for U(B) can be explained by the theory of Hodges et al.
(2004). Namely, before reaching zero as B → 0, U(B) must first go through either FIII1 or
FIII2 asymptotic regions of the map in their figure 12, with the scalings U(B) ∼ B−1/4θ1/2

in both regions. Quantitatively, however, the asymptotics of Hodges et al. (2004) for these
regions do not describe the well-tested results in our figure 10 at small B. One reason
may be the neglect (in theory) of rim-edge energy dissipation, which scales (for B � 1)
like 1.4B−1/5(Ca)2/15 relative to the total dissipation elsewhere in the rim (Hodges et al.
2004); here, Ca = μeUdim/σ is the capillary number based on the dimensional drop speed
Udim; this ratio must be small for the asymptotic theory to be applicable. However, based
on our drop-speed results (figure 10), this ratio is approximately unity for all small B. (By
a similar analysis, pancaked drops B ∼ 5 are only slightly more favourable for the neglect
of rim-edge dissipation.)

It was possible, however, to make comparisons with the experimental work of Rahman
& Waghmare (2018) who measured the steady-state drop speed on a tilted glass plane
submerged in a different liquid with viscosity ratio λ = 0.1, 10 or 110 at very small Bond
numbers. No sticking threshold was reported, and so their data presumably do not suffer
from the contact angle hysteresis and correspond to the present model of a non-wetting
drop. For λ ≥ 10, θ ≤ 15◦ and B ≤ 0.04, the dimensional drop speed Udim was fitted in
Rahman & Waghmare (2018) by a semi-empirical relation

Udim ∼ Bσ sin θ

μdB3/2 + 6πμe
(5.1)

(although it is difficult to judge how accurately this fit represents their data since their
dimensional speed covers a very broad range represented logarithmically). Using our
velocity scale (2.2) to make (5.1) non-dimensional, comparison was made with our precise
results in figure 10 for all pairs with θ ≤ 15◦, λ ≥ 10 and B ≤ 0.125 (table 3). In most
cases, there is only a modest difference, although, in a few instances (with θ = 7.5◦ and
large λ ≥ 30), (5.1) overpredicts our U by 38 %–42 %. This equation does not capture the
non-monotonic behaviour of our U(B) in figure 10 and quickly becomes inadequate with
the increase in the Bond number. Again, the lack of simulation data for B � 0.0625 did not
allow for more representative comparisons with the experiments of Rahman & Waghmare
(2018).
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A.Z. Zinchenko

θ B λ = 10 30 60 300

7.5◦ 0.0625 — — 0.159 0.149
0.230 0.230 0.226 0.191

7.5◦ 0.125 0.181 0.159 0.151 0.136
0.226 0.221 0.208 0.140

15◦ 0.0625 — — 0.191 0.181
0.230 0.230 0.226 0.191

15◦ 0.125 0.213 0.193 0.187 0.171
0.226 0.221 0.208 0.140

Table 3. Comparison of the non-dimensional steady-state drop speed U from the present simulations with the
semi-empirical formula of Rahman & Waghmare (2018). For each set of θ , B and λ, the upper value is from
our figure 10; the lower value is from (5.1) scaled on (2.2).

Another difficulty with connecting our work to Hodges et al. (2004) is that their 3-D
thin-film thickness is characterized by a single parameter ε, while we pursue a more
complete description of the dimple observed in the present simulations (as well as in those
of Griggs et al. 2008, 2009); this dimple very slowly disappears as B → 0. Instead of
the topographic maps (Griggs et al. 2008, 2009) for the film profile, we use here a more
compact dimple characterization in steady state by three parameters, δmin, δav and δmax.
The first one (already used in § 4.2) is the global minimum of the mesh node-to-wall
distances, while δav and δmax are, respectively, the surface average and maximum of such
distances calculated in the dimple region only. This region is unambiguously defined as
the set of drop-mesh nodes where at least one of the principal surface curvatures k1 or k2
is negative. Obviously, such definition makes sense for small tilt angles, when the drop is
in near contact with the wall; note that δmin is reached very slightly outside the rim of the
so-defined dimple.

These three metrics, δmin, δav and δmax (all well convergent with respect to resolutions)
are presented in figure 11 for θ = 7.5◦ (a–c) and 15◦ (d–f ). In each panel, red squares
are for λ = 1, green circles for λ = 60 and black diamonds for λ = 300. For small B,
each quantity in figure 11(a–c) approximately obeys the scaling ∼B1/2 sin θ , in qualitative
agreement with the asymptotic analysis of Hodges et al. (2004), although this scaling
is likely not the ultimate one for B → 0, since their theoretical estimate also includes
a logarithmically weak factor of O(| ln(θ2B)|−1) (without the after-log term). However,
the above scaling fits our B � 1 results in figure 11(a–c) with numerical factors almost
independent of λ = 1−300, but sensitive to the choice of the metric (namely, the factor is
within 0.07–0.076 for δmin, and 0.13–0.14 for δmax). The asymptotic theory does not discern
such thin-film details sufficiently for comparison with our simulations (in particular, δmin
is not resolved in the theory).

For a pancaked drop B ≥ O(1), the geometry of the lubrication space becomes strongly
sensitive to the viscosity ratio. While the film thickness saturates with the increase in
the Bond number to B ≈ 1−2 for a highly viscous drop λ = 60, it continues to grow for
λ = 1, at least in the range B ≤ 5, thus making the film much thicker for a homoviscous
drop compared with a drop with high viscosity ratio. This observation is confirmed for all
the metrics in figure 11(a–c).

For a larger tilt θ = 15◦ and high viscosity ratios, only δmin saturates with the increase
in the Bond number (figure 11d), while the two other thin-film metrics continue to grow
monotonically with B (figure 11e, f ); the film is still thicker for a homoviscous drop than
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Figure 11. Steady-state thin-film metrics (a,d) δmin, (b,e) δav and (c, f ) δmax vs Bond number for
(a–c) θ = 7.5◦ and (d–f ) θ = 15◦. Red squares: λ = 1, green circles: λ = 60, black diamonds: λ = 300.

for a drop with λ ≥ 60. Comparison between (a–c) and (d–f ) shows that a linear scaling of
the film thickness parameters with the tilt angle θ or sin θ roughly holds for δav and δmax
in case of highly viscous drops, and for all three metrics in case of homoviscous drops.
However, significant deviations from this scaling are observed for δmin in case of highly
viscous pancaked drops.
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Figure 12. Profile of the steady-state thin-film thickness in the central cross-section of the dimple region for
θ = 7.5◦. Panels show (a) B = 2; (b) B = 0.0625. Lines 1: λ = 1, 2: λ = 60, 3: λ = 300.

The asymptotic lubrication analysis of Hodges et al. (2004) for θ � 1 predicts, to the
leading order, uniform film thickness δ from the back to the front of the film, i.e. in the
notations of our figure 1, δ must be only a function of x1. To verify this prediction, δ

was computed for θ = 7.5◦ on the central cross-section of the dimple region (i.e. in the
(x2, x3)-plane drawn through the drop centroid xc) and plotted vs x2 − xc

2. (Some lack
of smoothness in figure 12 may be due to presentation, with the simplest, zero-order
interpolation from the 3-D mesh of triangles to the central plane.) For a pancaked drop
B = 2 (figure 12a), δ is indeed practically constant in the dimple cross-section, except
for the narrow range of x2 − xc

2 at the tail where the film is substantially thinner. This
behaviour is observed for λ = 1, 60 and especially for 300. Note that the global minimum
of δ for each of these λ is not approached in figure 12(a); it is significantly smaller (see
figures 11(a) and 13(a)) and reached well outside the central plane (x2, x3), so that δ

remains a strong function of x1. For a slightly deformable drop B = 0.0625 (figure 12b),
however, even film uniformity along the drop motion direction cannot be assumed as an
approximation; here, a large portion of the film cross-section (near the tail) is much thinner
than the rest of the film in the (x2, x3)-plane and does not approach a constant thickness as
x2 grows.

The lubrication space geometry in the entire near-contact spot is also much different
between the B = 2 and B = 0.0625 cases, as demonstrated in figure 13 for λ = 300. While
the contour lines for drop–wall clearance in figure 13(a) tend to be parallel to the x2-axis,
there is no such region at B = 0.0625 in figure 13(b). On the other hand, the distribution of
δ in the trailing part of the spot resembles axisymmetric for B = 0.0625 – a feature absent
for B = 2. These observations additionally explain particular difficulties of comparison
with the asymptotic theories for B � 1, requiring much smaller θ and B than possible in
rigorous simulations.

Finally, all the results in figures 11 and 12 indicate that a non-uniform 3-D film profile
with finite thickness is approached, albeit slowly, for every fixed θ and B, as λ→ ∞. This
last observation is in line with the arguments of Hodges et al. (2004) that the steady-state,
high viscosity ratio limit must correspond to pure drop sliding as a rigid body, since
tumbling is prohibited by the drop non-sphericity. It can be added to their arguments
that the lack of fore–aft symmetry of the drop shape developing in this limit explains
how such mode of the drop motion is possible at all at zero Reynolds number. A solid
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Figure 13. Contour plots of the steady-state thin-film thickness δ(x1, x2) in the near-contact spot for θ = 7.5◦
and λ = 300. (a) B = 2; (b) B = 0.0625. View from the drop bottom. In (a), the outer boundary shows the
entire drop projection on the (x1, x2)-plane. The minimum clearance δmin is 0.0049 for (a) and 0.00248 for (b).

sphere moving parallel to the wall would only experience a lateral hydrodynamic force,
not capable to counter the gravity effect and maintain a steady-state film thickness. More
generally, lateral translation of a non-spherical solid particle with fore–aft symmetry would
not produce a normal hydrodynamic force either (as follows from the reciprocal theorem)
necessary for the particle to glide, and so a loss of such symmetry is crucial to maintain a
steady-state regime.

Besides sliding, Hodges et al. (2004) also classify other possible steady-state kinematics
for a drop motion down an inclined wall. One of them is tank treading for a pancaked drop,
where the circulation fluid velocity inside the drop is comparable in magnitude to the drop
speed, and is uniform over the near-contact spot. The other regime is rolling of a nearly
spherical drop, with rigid-body rotational motion comparable in magnitude to the drop
speed. It is of interest to see if the present simulations for λ� 1 and small tilt angles fall,
at least qualitatively, into any of these regimes.

To this end, the fluid circulation velocity u − U was computed along the central
cross-section of the whole drop surface (i.e. in the (x2, x3)-plane drawn through the drop
centroid) and presented in figure 14(a–l) for different combinations of λ, θ and B. For each
combination, a reference vector (placed inside the drop) represents the steady-state drop
velocity U . For each field vector, its length relative to the length of the reference vector
gives the local circulation intensity C = ‖u − U‖/U at the starting surface point of the
field vector. The maximum and minimum values of C over the entire cross-section contour
are also listed for each set of λ, θ and B; the maximum is reached in the near-contact spot
close to the trailing edge, while the minimum is observed just in front of the spot. The
global drop shape in figure 14 is a strong function of B, but is almost insensitive to λ and
θ , since it is close (for small tilts) to the hydrostatic equilibrium shape on a horizontal
plane unaffected at all by the viscosity ratio (e.g. Hodges et al. 2004).

However, λ and θ have a strong effect on the circulation intensity C. For a pancake
drop B = 2 and tilt θ = 15◦, the sliding regime is quickly approached as λ is increased
from 60 to 300: in figure 14(b), the circulation intensity is within 5 % on the whole drop
contour, which is an almost perfect sliding regime, while the λ = 60 motion (a) is better
described as tank treading (with large slip at the wall). Decreasing the Bond number to
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Figure 14. Steady-state circulation velocity u − U along the central cross-section of the drop surface. Length
of each field vector on a contour relative to the length of the reference vector (inside this contour) gives local
circulation intensity C = ‖u − U‖/U.

0.5 (c,d) enhances the circulation, especially for λ = 300, but the kinematics in (d) is still
close to sliding, judging by the small values of C. For an even smaller B = 0.0625 in (e, f ),
only the vicinity of the near-contact spot is shown; the rest of the drop is nearly spherical,
with nearly constant C ≈ Cmin. A marked difference between (e, f ) is much more uniform
circulation for λ = 300, and so the kinematics in ( f ) is best described as rolling with
sliding; the circulation here does not exceed 27 %.

At the smaller tilt θ = 7.5◦ (g–l), convergence to the pure sliding regime λ = ∞ is much
slower and would require much larger values of the viscosity ratio; in (h) for λ = 300 and
B = 2, the circulation intensity still reaches 11 % (cf with (b)). Again, for the smallest
B = 0.0625, increasing λ from 60 (k) to 300 results in a much more uniform circulation,
so that the kinematics in (l) resembles rolling with sliding; the value of Cmax = 0.35 is
still away from unity. It appears that for liquid–liquid systems in a purely hydrodynamical
formulation, with a smooth solid wall and in the absence of singular adhesive forces, the
thin-film lubrication can never provide for perfect rolling (i.e. C ≈ 1).

It is not obvious from figure 10 how our results could be used to accurately predict the
drop speed for an arbitrary viscosity ratio from 1 to 300, or in a wider range λ > 300.
In this respect, it was found helpful (mostly for moderate-to-large Bond numbers) to
plot U(λ+ 1)/(λ+ 2/3) vs λ−1/3 (figure 15). For B = 1, 2 and 5, and all tilt angles
from 7.5◦ to 30◦, a smooth dependence on λ−1/3 is observed, allowing for accurate
interpolation to an arbitrary λ ∈ (1, 300). Moreover, at the small tilt of 7.5◦, the results are
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Figure 15. Steady-state values of U(λ+ 1)/(λ+ 2/3) for (a) θ = 7.5◦, (b) θ = 15◦, (c) θ = 22.5◦ and
(d) θ = 30◦. Curves (top to bottom) are for B = 1, 2 and 5, respectively.

almost linear with λ−1/3 to λ = 300, allowing for reasonably credible predictions of the
drop speed to λ ≈ 1000 by extrapolation. Theoretical explanation of such, almost linear,
behaviour in a wide range of λ is lacking and it is, obviously, not the ultimate behaviour
for λ→ ∞. Indeed, for fixed B and θ , the finite-λ correction to the drop speed must be
asymptotically O(λ−1) (since it would become a problem of regular perturbation). This
change of behaviour is seen most vividly for the moderate tilt of 30◦ (figure 15d), where
the convergence to the sliding limit λ = ∞ is much faster for B = 5 than for B = 1 due
to larger drop–wall separation in the former case. Again, a qualitative connection is seen
with the work of Hodges et al. (2004): from their figure 12, the sliding regime requires
λ� (B1/2 sin2 θ)−1, i.e. smaller viscosity ratios as the Bond number and/or the tilt angle
are increased.

It would be interesting, albeit challenging, to have special simulation or semi-analytical
methods for the sliding limit λ = ∞. One difficulty is that the relevant solid-body shape
with a dimple and wide near-contact spot is unknown a priori and must be a part of
the solution. Also, the available asymptotic approach to handle close hydrodynamical
interaction of a non-spherical solid particle with a wall or another particle (Cox 1974;
Claeys & Brady 1989; Staben, Zinchenko & Davis 2006) is based on lubrication analysis
at the single point of near contact and would not be applicable in the present case.
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6. Conclusions

Gravity-driven, low-Reynolds-number, steady-state motion of a viscous, immiscible
deformable drop on an inclined plane wall in another liquid has been studied from first
principles, by rigorous 3-D BI simulations. In the absence of singular adhesive forces
and wall surface roughness, such a drop is unable to make contact with the wall, and
remains separated by a lubricating film due to drop motion. The focus has been on
small-to-moderate wall inclination angles θ and high drop-to-medium viscosity ratios λ.
In these conditions, the drop stays extremely close to the wall with strong hydrodynamical
interaction, and the successful solution has met a much greater challenge than for the
generic case (Griggs et al. 2008, 2009) of moderate λ and θ . The BI formulation is
based on the half-space Green function and related fundamental stresslet to reduce the
problem to a BI equation for the interfacial velocity on the drop surface only. The
wall-correction contribution to this equation leads to near-singular integrands for a drop
in near contact with the wall. A novel high-order near-singularity subtraction in the
double-layer BI offers (for the first time) full desingularization of the BI equation for
any drop–wall clearance, and greatly reduces the numerical trend for drop–wall overlap.
Still, the proximity of (λ− 1)/(λ+ 1) (for λ� 1) to the spectrum of the BI equation
necessitates extreme drop surface resolutions to avoid non-convergence of BI iterations on
the way to steady state, eliminate overlaps altogether and obtain the convergent steady-state
drop speed with respect to discretization. Such superhigh resolutions (with up to 3 × 105

boundary elements) were made possible in dynamical simulations through highly efficient
multipole acceleration; the techniques for such acceleration are far more involved in some
aspects than in the case of the free-space Green function and stresslet. Fixed topology
triangulations were used to discretize the drop surface and track its evolution to steady state
with different adaptive/non-adaptive versions required, depending mostly on the Bond
number range.

Using this novel algorithm, the non-dimensional steady-state drop speed U (scaled
on the Hadamar–Rybchinsky settling speed (2.2) in reduced gravity g sin θ ) was studied
systematically, and with high accuracy, for θ down to 7.5◦, λ up to 300 and the Bond
number 0.0625 ≤ B ≤ 5 covering the range from nearly spherical to strongly pancaked
drops. The results are consistent with the semi-empirical formula of Rahman & Waghmare
(2018) roughly describing their experimental data for small B and λ = 10−100. At
θ = 7.5◦, our U is a monotonically decreasing function of B for all λ = 1−300; the
dependence on B is strong for high viscosity ratios. In contrast, at θ = 30◦, U(B)

becomes noticeably non-monotonic for λ = 1, but not for high λ. Comparison with the
leading-order asymptotic theory of Hodges et al. (2004) could not be made here, since
their drop-speed behaviour U(B) → 0 presumably requires much smaller Bond numbers
than it is possible to simulate. Our results for the thickness of the dimpled lubrication
zone (δmin, δav and δmax), however, all approximately obey the scaling ∼B1/2 sin θ for
small B, in qualitative agreement with the asymptotic analysis of Hodges et al. (2004)
(although their additional, inverse logarithmic factor could not be verified). For small B,
the above thin-film metrics are practically unaffected by λ from 1 to 300. In contrast, for
pancaked drops B ≥ O(1) and small inclination angles, the lubrication space geometry
becomes strongly sensitive to the viscosity ratio. While the film thickness saturates with
the increase in the Bond number to B ≈ 1−2 for highly viscous drops, it continues to grow
for λ = 1, at least in the range B ≤ 5, thus making the film much thicker than for λ� 1
drops.

At θ � 1, the asymptotic analysis of Hodges et al. (2004) predicted almost uniform
film thickness in the drop motion direction (but strong non-uniformity in the orthogonal
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Drop motion on an inclined wall

direction). The present simulations confirm this prediction for a pancaked drop (B = 2)
at all viscosity ratios λ = 1−300, but not for a nearly spherical drop (B = 0.0625). For
this reason, quantitatively, the regime B → 0 of the asymptotic theory may require much
smaller inclination angles than possible to simulate.

The steady-state fluid circulation velocity u − U on the central cross-section of the drop
surface was also monitored to observe changes in the flow kinematics. Increasing λ from
60 to 300 for a pancaked drop B = 2 leads to a sliding regime (with small circulation);
this approach to sliding is much faster for the 15◦ than for 7.5◦ tilt angle. For a slightly
deformed drop (B = 0.0625) at λ = 300 and θ = 7.5◦, the circulation is close to uniform,
and the mode of motion is best described as rolling, but with a large slip (|u − U | � U).
Neither perfect tank treading, nor perfect rolling (with the drop fluid locally pinned to the
wall in both cases) can be approached for liquid–liquid systems in the pure hydrodynamical
formulation considered herein; those modes of motion could only result with the help from
additional mechanisms (e.g. strong adhesive forces or wall surface roughness).

Finally, it was shown in this work how our drop-speed results obtained for a limited set
of λ ∈ [1, 300] can be very accurately interpolated to an arbitrary viscosity ratio in that
range, at least for B ≥ 1; also, for small tilt angles, a reasonably credible extrapolation
to λ ≈ 1000 can be made. The present results can stimulate further experimental work, as
well as the development of advanced, high-order asymptotic theories for better comparison
with simulations.

The present methodology can be applied to a variety of other problems, e.g. motion of
a surfactant-covered drop or a vesicle on an inclined wall. The ability to handle extremely
small drop–wall clearances through multipole acceleration with ultrahigh surface
resolutions opens a way to directly include short-range colloidal forces (Van der Waals
attraction and electrostatic repulsion from the Derjaguin–Landau–Verwey–Overbeek
theory) in 3-D BI simulations (although first-principle simulations with rough walls still
present a formidable challenge). The full double-layer desingularization tool found in this
work is even more universal, since it is also applicable to near-singular integrals with the
free-space fundamental stresslet. Hence, numerous problems of near-contact drop–drop,
or drop–particle interaction in free space or a periodic box with extreme viscosity ratio
can be solved using this tool (thus breaking the tradition that such 3-D BI problems have
been addressed so far for λ = O(1) only).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.998.
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Appendix A. Details of full double-layer desingularization

Let g(x) be a smooth scalar field on a smooth closed surface S with the outward
unit normal n(x), and ϕ(x) be a harmonic function regular inside and around S.
Then, for any x∗ ∈ S∫

S
g(x)ϕ(x) dS =

∫
S
[g(x) − g∗(n∗ · n)]ϕ(x) dS +

∫
S

g∗[(x − x∗) · n∗]
∂ϕ

∂n
dS. (A1)
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Here and below, the asterisk denotes the values at x = x∗; where the argument of n, g
(or other quantities) is omitted for brevity, it is assumed to be the integration point x. To
derive (A1), Green’s formula is applied to the harmonic functions w(x) = (x − x∗) · n∗
and ϕ(x)∫

S
ϕ

∂w
∂n

dS =
∫

S
ϕ(n∗ · n) dS =

∫
S

w
∂ϕ

∂n
dS =

∫
S

[
(x − x∗) · n∗] ∂ϕ

∂n
dS, (A2)

which immediately gives (A1). Note that, if ϕ(x) is near singular at x ≈ x∗, this near
singularity is suppressed in the right-hand side integrals (A1), since g − g∗(n∗ · n) =
O(‖x − x∗‖) and (x − x∗) · n∗ = O(‖x − x∗‖2) for x → x∗.

Another identity, necessary to derive (3.11), holds for an arbitrary x∗ ∈ S, arbitrary
vector field f (x) = f ‖(x) + fn(x)n(x) on S, decomposed into the tangential ( f ‖) and
normal ( fn = f · n) components, and arbitrary Stokes velocity field G(x) regular inside
and around S∫

S
f (x) · G(x) dS =

∫
S
[ f − (n · n∗)f ∗

‖−( f ∗
‖ · n)n∗−f ∗

n n] · G(x) dS

+
∫

S
[(x − x∗) · n∗] f ∗

‖ · τ (x) · n dS. (A3)

Here, τ is the stress tensor for flow G(x) (assuming unit viscosity)

τij(x) = −p(x)δij + ∇iGj(x) + ∇jGi(x), (A4)

with the corresponding pressure field p(x) and Cartesian derivatives ∇i = ∂/∂xi; relation
(A3) was derived in Zinchenko & Davis (2017) irrespective of the form of G(x).

Using a linear vector field L(x − x∗) (3.12), Gauss’ theorem and zero divergence of τ ,
we have ∫

S
LiτijnjdS = L j

i

∫
V
(−pδij + ∇iGj + ∇jGi) dV. (A5)

A part of the integral (A5) over the drop volume V can be transformed back to a surface
integral

L j
i

∫
V
(∇iGj + ∇jGi) dV = (L j

i + Li
j)

∫
S

niGj dS, (A6)

which has the left-hand side form (A3) and can be replaced by the right-hand side, if the
vector field f (x) is defined by (3.13). Note that f ∗

n = 0 is dictated by our construction of
L(x − x∗).

To apply all these prerequisites to the derivation of (3.11), G(x) and τ (x) in the above
relations must be replaced with the wall-correction parts (Gk)C(x; y) and (τ k)C(x; y) of
the Green vector Gk and related fundamental stresslet τ k

ij , respectively, for a fixed k =
1, 2, 3. The corresponding wall-correction pressure part ( pk)C(x; y), to replace p(x) in
(A5), can be written as

( pk)C(x; y) = ∇kϕ
k(x; y), (A7)

with the auxiliary function (3.14), using the explicit form Pozrikidis (1992) and Blake
(1971) for ( pk)C. Note there is no summation here over k. Accordingly, the remaining part
of the volume integral (A5) can be also transformed into a surface integral and handled
by (A1) (with g(x) and ϕ(x) replaced by nk(x) and ϕk(x; y), respectively), since ϕk is a
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Drop motion on an inclined wall

harmonic function of x. As a result, all the L-related contributions to the right-hand side
of (3.11) total to zero, which completes the proof of this identity.

It is useful to note that the above novel approach also resolves the long-standing issue
of full desingularization of double-layer BIs over an arbitrary deformable surface with
the free-space fundamental stresslet, when the observation point y is slightly outside this
surface. Such issues arise, e.g. in challenging BI problems for near-contact drop–drop or
drop–particle interactions in free space or a periodic box. The only changes, compared
with (3.11), are in the choice of x∗ to be the nearest mesh point to y, and in a simpler
form for ϕk(x; y), namely, ϕk = 1/(4πr) for all k = 1, 2, 3 (with our normalization of the
free-space Green function).

Appendix B. Details of meshing algorithms and discretization

B.1. Projective meshing
At each time moment t, the projection centre O(t) = (xc

1, xc
2, O3) is placed between the

drop surface centroid xc and the wall by the rule O3 = xc
3 − c/xc

3. The empirical factor c
was chosen to be 0.18, 0.28, 0.40 and 0.5 for B = 0.5, 0.25, 0.125 and 0.0625, respectively,
regardless of λ, tilt angle θ and the resolution. Of the two schemes detailed in Zinchenko
& Davis (2005) for non-iterative calculation of the normal vector n and local curvature
k in the mesh nodes on S, the fourth-order scheme for n(x j) and k(x j) is chosen herein,
requiring two layers of mesh nodes around x j. (Note the typos in their (3.17): there must
be (∂R/∂x)2 and (∂R/∂y)2 in lines 1 and 3, respectively, instead of ∂R/∂x and ∂R/∂y.)
Computation of regularized BIs on S(t) is reduced to integration over Ω(t), using dS =
ρ3dΩ/(ρ · n) with ρ = x − O. Contribution of each geodesic mesh triangle �sph ∈ Ω(t)
is calculated as outlined in Appendix A of Zinchenko & Davis (2013) (high-order version)
based on the integrand values in the vertices of the corresponding triangle � ∈ S(t) and
three more mesh nodes x j around �. The node velocities V j to update the mesh nodes x j

are calculated as (Zinchenko & Davis 2005)

V j = Ȯ + u(x j) · n(x j) − Ȯ · n(x j)

(x j − O) · n(xj)
(xj − O), (B1)

to satisfy the constraint imposed by the BI solution and also keep all the vectors ρj/‖ρj‖
of the parametric mesh stationary, i.e. dρj/dt ‖ ρj.

The projection centre velocity Ȯ can be expressed in terms of the drop centroid velocity
ẋc. For the purposes of mesh control (B1), it was sufficient to regard the mesh triangles
on S as flat, which gives ẋc as a relatively simple function of all nodes x j and their time
derivatives V j, and so (B1) can be satisfied precisely by a few iterations. However, as in
Zinchenko & Davis (2005), ẋc is almost insensitive to the tangential components of V j,
and it was sufficient to take these components from the preceding time step, in addition to
the normal components provided at the current step by the BI solution, for very accurate
calculation of ẋc and Ȯ in (B1) without iterations. That way, in the reference frame moving
with the projection centre O, all the nodes ρj/‖ρj‖ of the parametric mesh remained
stationary to about five digits for the entire simulation, from t = 0 to steady state. Note
how projective meshing does not require surface interpolations whatsoever.

The above values of c were found empirically to provide moderate mesh adaptivity to
the near-contact zone, with maximum-to-minimum mesh edge ratio (over the entire drop
surface) rmax = 2.9, 3.3, 4.0 and 4.7 for B = 0.5, 0.25, 0.125 and 0.0625, respectively,
at the steady state. Although optimal adaptivity is unknown and would require more
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experimenting, overly aggressive mesh node concentration in the film region (e.g. with
rmax = 12) was clearly disadvantageous, making it more difficult to reach convergence for
the drop steady-state velocity with respect to N�; much larger rmax could even lead to a
crash. Also, it was not a robust approach in the present work to base mesh adaptivity on
the local value of the drop–wall surface clearance.

B.2. The n3-based passive mesh stabilization
The ‘kinetic mesh energy function’ is defined as

F =
∑
xij

[
d
dt

(
x2

ij

h2
ij

+
h2

ij

x2
ij

)]2

+ 0.4
∑
�

1
C2

�

(
dC�

dt

)2

. (B2)

In the second term of (B2) (which resists mesh triangle quality deterioration), summation
is over all mesh triangles �, where C� = S�/(a2 + b2 + c2) is the compactness of
triangle � with flat area S� and sides a, b, c. The precise value of the coefficient before
the second sum (B2) is unimportant, it should be just O(1) for intermediate B.

In the first term of (B2), summation is over all mesh edges xij = x j − xi between directly
connected nodes, and this term works to prevent significant deviation of ‖xij‖ from local
target values hij. With an empirical coefficient α close to 1

h2
ij = 1

2(h2
i + h2

j ), h2
i = K[1 + αn3(xi)]. (B3)

The factor K is calculated at each time step as

K = 4√
3N�

∑
x j∈S

�Sj

1 + αn3(x j)
, (B4)

as if all mesh triangles were ideally equilateral with side h slowly varying along the
surface. Now, the area element �Sj associated with node x j, is simply 1/3 of the sum
of flat mesh triangle areas sharing the node x j, corresponding to the standard trapezoidal
integration rule. These area elements are also used in numerical evaluation (3.15) of the
desingularized BIs to solve the BI problem; the local curvature and normal vector are
calculated in the mesh nodes by the best paraboloid-spline method of Zinchenko & Davis
(2000).

Regardless of the form (B3) for the target values hij, a great simplification (Zinchenko &
Davis 2013) can be made to the kinetic energy (B2), still allowing for sufficient, adaptive
mesh control. Namely, hij is regarded as time independent in the differentiation (B2),
since spatial variation of the internode distances ‖xij‖ is far more important. With this
simplification, (B2) can be handily written as a quadratic function of all the velocities V i
and conditionally minimized by conjugate-gradient iterations (as in the simplest, original
passive mesh stabilization version of Zinchenko et al. (1997)).

Assuming that the drop starts from spherical, the initial distribution of mesh nodes is
made compatible with the form (B3), although not exactly. This form implies that the
mesh size on the top of the spherical drop must be p times larger than on the bottom, with
p = [(1 + α)/(1 − α)]1/2. This minimal requirement is satisfied if the initial mesh on the
drop is obtained by projection from a uniform mesh of triangles on a unit sphere (§ 3.3.1)
centred at O, provided that the projection centre O is placed closer to the wall than the
drop centre by ( p − 1)/( p + 1).

Again, to avoid overadaptive meshing, the default α coefficient is set to 0.7. With this
choice, the steady-state mesh edge ratio rmax was about 3.0 and 3.5 in the B = 1 and B = 2
simulations, respectively.

1000 A16-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.998


Drop motion on an inclined wall

B.3. Non-adaptive meshing
The form of Zinchenko & Davis (2002) (Appendix A therein) is used for the kinetic mesh
energy function

F =
∑
xij

1
‖xij‖4

[
d
dt

‖xij‖2
]2

+ 8
∑
�

1
C2

�

(
dC�

dt

)2

. (B5)

To within a factor, the second term in (B5) is the same as in (B2) and helps to maintain
the quality of mesh triangles. The curvature, normal vectors and area elements �Sj are
calculated in the mesh nodes the same way as for n3-based meshing (§ B2).

Appendix C. Lamb’s singular series for patch contributions

Unlike in the rest of the paper, this section assumes, for more compact algebra,
Pozrikidis’ (1992) normalization of the Green function and related fundamental pressure.
Accordingly, all Lamb’s singular series generated as described in this section, will need
an additional multiplication by −1/(8π) to be used in the algorithm of § 3.

C.1. Double-layer wall-correction contributions
Technically, the most complicated element is generation of Lamb’s series (3.21) for
a double-layer patch contribution coming from the wall-correction part τC of the
fundamental stresslet. In the systematic approach below, allowing one to generate, without
approximations, an arbitrary number of terms of the expansion (3.21), the first few, general
steps almost parallel the scheme developed by Zinchenko & Davis (2008) for free-space
stresslet contributions, but then the algebra becomes far more involved in the present case,
due to the cumbersome form of τC(x; y) (see (3.5)). Additional care must be taken from
the beginning, however, because τC depends on both x and y (not only on x − y) and is
lacking symmetry properties inherent in the free-space case. To simplify the notations for
the following derivations, let

Ψ (y) =
∑
x∈B

Qk(x)Ws(x)τ ks(x; y), (C1)

where the summation is over all mesh nodes x within a patch B (lying in the upper
half-space x3 > 0), and only the wall-correction part is retained in τ ks = (τ 1

ks, τ
2
ks, τ

3
ks).

Accordingly,

τ ks(x; y) = −P(x; y)δks + ∇sGk(x; y) + ∇kGs(x; y), (C2)

where the Green vectors Gk = (G1
k, G2

k, G3
k) and the corresponding vector of pressures P

only include parts coming from the wall correction. Unless otherwise stated, the Cartesian
derivatives ∇k = ∂/∂xk are with respect to x.

The Stokes equations ∇2Gk = ∇kP and harmonicity of P(x; y) (with respect to x)
imply ∇2τ ks(x; y) = 2∇k∇sP(x; y) and harmonicity of auxiliary vector fields

tks(x; y) = τ ks(x; y) − 1
4 [(x − xo)kP̃s(x; y) + (x − xo)sP̃k(x; y)], (C3)

where the vectors P̃k(x; y) are defined as 2∇kP(x; y), and xo is chosen as the centre of
the minimal spherical shell around the block B.
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Next, a special form (Zinchenko & Davis 2000) of the Taylor series for harmonic
functions is used

f (x) =
∞∑

ν=0

ν∑
μ=−ν

∂ν,μf (x)|x=xoZν,μ(x − xo). (C4)

Here, the differential operator ∂ν,μ is defined for 0 ≤ |μ| ≤ ν as

∂ν,μ = (∇1 − i∇2)
μ∇ν−|μ|

3 , (C5)

(with (∇1 − i∇2)
μ = (−1)μ(∇1 + i∇2)

−μ when μ < 0) i = √−1, and positive-order
solid harmonics Zν,μ(r) are related to standard normalized spherical harmonics Yν,μ(r)
as

Zν,μ(r) = 2π1/2rνYν,μ(r)
[(2ν + 1)(ν − μ)!(ν + μ)!]1/2 . (C6)

Relation (C4) can be shown to be equivalent to (27) of Sangani & Mo (1996).
Substituting τ ks(x; y) from (C3) into (C1) and applying (C4) to the harmonic functions

tks(x; y), P̃k(x; y) and P̃s(x; y) yields

Ψ (y) =
∞∑

ν=0

ν∑
μ=−ν

[Ẽν,μ,k,s∂ν,μtks(x; y) + D̃ν,μ,k∂ν,μP̃k(x; y)]x=x0 . (C7)

Here, the patch double-layer moments are

Ẽν,μ,k,s =
∑
x∈B

W(sQk)(x)Zν,μ(x − xo), (C8)

and

D̃ν,μ,k = 1
4

∑
x∈B

(x − xo) · [Qk(x)W (x) + Wk(x)Q(x)]Zν,μ(x − xo), (C9)

with symmetrization W(sQk) = (WsQk + WkQs)/2 in (C8).
The next step is to introduce the auxiliary vectors

gk(x; y) = Gk(x; y) − 1
2 (x − xo)kP(x; y) (C10)

(still only keeping the parts of G and P coming from the wall correction). These vectors,
as well as P(x; y), are harmonic functions of x. Also, as follows from (C2) and (C10),
tks = ∇kgs + ∇sgk. For these reasons, the high-order derivatives in (C7) can be expressed
in terms of ∂ν+1,μ′gk, ∂ν+1,μ′gs and ∂ν+1,μ′Pk (with μ′ = μ − 1, μ or μ + 1) by the same
algebra as in Zinchenko & Davis (2008, § 4.2 therein) to arrive at a more tractable form

Ψ (y) =
∞∑

ν=1

ν∑
μ=−ν

[Eν,μ,k∂ν,μgk(x; y) + Dν,μ∂ν,μP(x; y)]x=xo . (C11)

The new E- and D-coefficients are calculated as

Eν,μ,k = Ẽν−1,μ−1,k,1 + iẼν−1,μ−1,k,2 − Ẽν−1,μ+1,k,1 + iẼν−1,μ+1,k,2 + 2Ẽν−1,μ,k,3,
(C12)

and

Dν,μ = D̃ν−1,μ−1,1 + iD̃ν−1,μ−1,2 − D̃ν−1,μ+1,1 + iD̃ν−1,μ+1,2 + 2D̃ν−1,μ,3 (C13)

(assuming that any coefficients Ẽν′,μ′,k,s or D̃ν′,μ′,k with |μ′| > ν′ appearing on the
right-hand side of (C12) or (C13) are set to zero).

1000 A16-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.998


Drop motion on an inclined wall

The explicit form of gk (not as complicated as for τ ks) can be derived from our definition
(C10) and the relations from Blake (1971) or Pozrikidis (1992) for G and P

gk(x; y) = 2y3

[
∇3

1
R

ek − y3∇∇k
1
R

− δ3k∇ 1
R

+ Ro
k∇∇3

1
R

]IM

− 1
R

ek + Ro
k∇

1
R

. (C14)

Here, R = ‖x − yIM‖, Ro = xo − yIM and the superscript IM stands for the mirror image
of a vector or a point with respect to the wall. Applying the operator ∂ν,μ to (C14), one can
obtain

Eν,μ,k∂ν,μgk(x; y) = 2y3

[(
∇3∂ν,μ

1
R

)
Eν,μ − y3∇

(
Eν,μ · ∇∂ν,μ

1
R

)
− Eν,μ,3∇∂ν,μ

1
R

+ (Eν,μ · Ro)∇
(

∇3∂ν,μ

1
R

)]IM

−
(

∂ν,μ

1
R

)
Eν,μ + (Eν,μ · Ro)∇∂ν,μ

1
R

, (C15)

where, for brevity, Eν,μ = (Eν,μ,1, Eν,μ,2, Eν,μ,3); the expression (C15) must be used at
x = xo to give the first contribution Ψ

g
ν,μ(y) in the brackets of (C11).

For the wall-correction part P = 4y3[∇∇3(1/R)]IM + 2∇(1/R) of the vector of
pressures, we have a simpler expression

Dν,μ∂ν,μP(x; y) = Ψ P
ν,μ(y) = Dν,μ

[
4y3

(
∇∇3∂ν,μ

1
R

)IM

+ 2∇∂ν,μ

1
R

]
, (C16)

again to be used at x = xo.
To convert (C11) into Lamb’s singular series (3.21) for the Stokes flow Ψ (y) and to

generate the harmonics p−(n+1)(Y ), Φ−(n+1)(Y ) and χ−(n+1)(Y ), we use general relations
from Happel & Brenner (1986), in particular

Ψ (y) · Y =
∞∑

n=0

[
n + 1

2(2n − 1)
Y2p−(n+1) − (n + 1)Φ−(n+1)

]
. (C17)

Instead of Y γ defined in § 3.4, a simpler notation Y is sufficient here for the expansion
vector y − (xo)IM .

Using Y IM = −Ro, one can obtain for the contribution from (C15) to Ψ (y) · Y

Eν,μ,kY · ∂ν,μgk(x; y) = −2y3

[
(Eν,μ · R)

(
1 + R

∂

∂R

)(
∇3∂ν,μ

1
R

)

− y3R
∂

∂R

(
Eν,μ · ∇∂ν,μ

1
R

)
− Eν,μ,3R

∂

∂R
∂ν,μ

1
R

]

+ (EIM
ν,μ · R)∂ν,μ

1
R

+ (Eν,μ · R)

(
−R

∂

∂R
∂ν,μ

1
R

+ 2R3∇3∂ν,μ

1
R

)
. (C18)

Here, R∂/∂R = R · ∇ contains only differentiation along R = x − yIM , which must be set
to Ro = xo − yIM in the final result. Since ∂ν,μ(1/R) and ∇∂ν,μ(1/R) are homogeneous
functions of R of degrees −(ν + 1) and −(ν + 2), respectively, the terms with R∂/∂R are
simplified by the Euler theorem. Also, using y3 = R3 − xo

3, the right-hand side of (C18)
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A.Z. Zinchenko

can be transformed after some algebra into

(ν + 2)

{
−2y3[Eν,μ,1(R3∇1 − R1∇3) + Eν,μ,2(R3∇2 − R2∇3) − xo

3Eν,μ · ∇]∂ν,μ

1
R

+ (EIM
ν,μ · R)∂ν,μ

1
R

}
+ 2xo

3[(ν + 1)Eν,μ,3 + (Eν,μ · R)∇3]∂ν,μ

1
R

. (C19)

In a similar, but simpler manner, one can account for the pressure contribution in (C11)
to Ψ (y) · Y . Using (C16), we have at x = xo

Dν,μY · ∂ν,μP(x; y) = Dν,μ[4(ν + 3)R3∇3 − 4(ν + 2)xo
3∇3 + 2(ν + 1)]∂ν,μ

1
R

. (C20)

The following steps employ the recurrent relations between the fundamental derivatives
∂ν,μ(1/R) with respect to R:

(∇1 + i∇2)∂ν,μ = −∂ν+1,μ−1, (∇1 − i∇2)∂ν,μ = ∂ν+1,μ+1, ∇3∂ν,μ = ∂ν+1,μ,

(C21a–c)

(R1 + iR2)∂ν,μ = R2

2ν + 1
∂ν+1,μ−1 − (ν + μ − 1)(ν + μ)

2ν + 1
∂ν−1,μ−1, (C22)

(R1 − iR2)∂ν,μ = − R2

2ν + 1
∂ν+1,μ+1 + (ν − μ − 1)(ν − μ)

2ν + 1
∂ν−1,μ+1, (C23)

R3∂ν,μ = −(ν − μ)(ν + μ)

2ν + 1
∂ν−1,μ − R2

2ν + 1
∂ν+1,μ (C24)

(R2∇3 − R3∇2)∂ν,μ = i
2

[(ν + μ)∂ν,μ−1 + (ν − μ)∂ν,μ+1], (C25)

(R3∇1 − R1∇3)∂ν,μ = 1
2

[(ν + μ)∂ν,μ−1 − (ν − μ)∂ν,μ+1], (C26)

(R1∇2 − R2∇1)∂ν,μ = −iμ∂ν,μ (C27)

(omitting, for brevity, the argument 1/R of ∂ν,μ). Of course, (C21a–c)–(C27) are
equivalent to recurrent formulae for standard negative-order solid harmonics owing to
Maxwell’s relation

∂ν,μ

1
R

= (−1)ν−μ

[
4π(ν − μ)!(ν + μ)!

2ν + 1

]1/2 Yν,−μ(R)

Rν+1 , (C28)

but using (temporarily) ∂ν,μ(1/R) instead of such harmonics makes algebra simpler and
more attractive.

Using y3 = Ro
3 − xo

3 and the recurrent relations (C21a–c)–(C27) in (C19) and (C20)
allows one to write cumulative contributions from (C19) and (C20) to Ψ (y) · Y in
the form (C17) and thereby generate p−(n+1) and Φ−(n+1), first as combinations of
∂n,m(1/R). It remains to use (C28) and Yν,μ(R)/Rν+1 = (−1)μYν,μ(Y )/Yν+1 to complete
calculation of the coefficients A−(ν+1),μ and B−(ν+1),μ in Lamb’s singular series (3.21) for
a double-layer patch contribution coming from the wall-correction part of the fundamental
stresslet.
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Drop motion on an inclined wall

A different technique is used to generate the harmonics χ−(n+1) in Lamb’s series (3.21)
based on the general identity (Happel & Brenner 1986)

[∇ × Ψ (y)] · Y =
∞∑

n=1

n(n + 1)χ−(n+1). (C29)

First, (C15) is recast in terms of differentiations with respect to the observation point.
Assuming that all further derivatives till the end of this subsection are now with respect to
y, we have

Ψ g
ν,μ(y) = 2y3[(∇3f )EIM

ν,μ − y3∇(EIM
ν,μ · ∇f ) + Eν,μ,3∇f + (EIM

ν,μ · Y )∇(∇3f )]

− f Eν,μ + (EIM
ν,μ · Y )∇f − 2(EIM

ν,μ · Y )(∇3f )e3, (C30)

where, for brevity, f = (−1)μ∂ν,μ(1/Y). After some algebra, we have from (C30)

∇ × Ψ g
ν,μ(y) = 4e3 × [(EIM

ν,μ · Y )∇(∇3f ) + (∇3f )EIM
ν,μ − y3∇(EIM

ν,μ · ∇f )]

+ 2Eν,μ × ∇f , (C31)

so that

Y · [∇ × Ψ g
ν,μ(y)] = 4[(EIM

ν,μ · Y )(Y2∇1 − Y1∇2) + Y2Eν,μ,1 − Y1Eν,μ,2]∇3f

+ [4Y3(Y1∇2 − Y2∇1) + 4xo
3(Y2∇1 − Y1∇2)](EIM

ν,μ · ∇f ) + 2Eν,μ · (∇f × Y ),

(C32)

where the split y3 = Y3 − xo
3 was used. Matching the form (C32) to the expansion (C29)

is not obvious and requires further detailed derivation. Using repeatedly the recurrent
formulae (C21a–c)–(C27) (with Y instead of R), (C32) can be transformed to

Y · [∇ × Ψ g
ν,μ(y)] = (−1)μ{(ν − μ)(2μ + 1)(iEν,μ,1 − Eν,μ,2)∂ν,μ+1

− (ν + μ)(2μ − 1)(iEν,μ,1 + Eν,μ,2)∂ν,μ−1 + 2iμEν,μ,3∂ν,μ

+ 2xo
3[(μ + 1)(iEν,μ,1 − Eν,μ,2)∂ν+1,μ+1

− (μ − 1)(iEν,μ,1 + Eν,μ,2)∂ν+1,μ−1 − 2iμEν,μ,3∂ν+1,μ]},
(C33)

where the argument 1/Y of the differential operator (C5) has been omitted for brevity. The
terms with Y2∂ν+2,μ±1 and Y2∂ν+2,μ, appearing at the intermediate stage of derivations,
cancel out in (C33), making it, indeed, a harmonic function.

The contribution of Ψ P
ν,μ(y) to the left-hand side of (C29) is easy to handle. Recasting

(C16) in terms of differentiations with respect to y, then taking the curl and using the
recurrent relations (C21a–c) and (C27), we have

Y · [∇ × Ψ P
ν,μ(y)] = 8(−1)μ+1iμDν,μ∂ν+1,μ

1
Y

. (C34)

Summing up (C33) and (C34), rearranging indices and comparing the result with (C29)
yields the solid harmonics χ−(n+1)(Y ), first as combinations of ∂n,m(1/Y). Finally, (C28)
allows us to complete calculation of the coefficients C−(ν+1),μ in Lamb’s singular series
(3.21) for a wall-induced double-layer patch contribution.

Apart from the validations (§ 4 and Appendix D) of the whole algorithm, correctness
of our generated coefficients A−(ν+1),μ, B−(ν+1),μ and C−(ν+1),μ was confirmed for
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randomly selected patches B in the upper half-space and observation points y just slightly
outside the minimal spherical shell around the mirror image of B. For randomly set Qk(x)

and Ws(x), calculation of (C1) by Lamb’s singular series (3.27) could be made arbitrarily
close to the exact result by direct point to summations with increasing the number of terms
in Lamb’s series; the agreement to 9 or more digits was observed.

C.2. Double-layer free-space contributions
Efficient generation of Lamb’s singular series for free-space patch contributions (3.21)
based on the patch double-layer moments was developed earlier (Zinchenko & Davis
2008) and later used in many multipole-accelerated BI simulations for deformable drops
(e.g. Zinchenko & Davis 2013). Still, it is helpful to note how the above methodology for
wall-correction contributions is easily adapted for the free-space contributions. If τ ks(x; y)
in (C1) is the free-space part −6rkrsr/r5 of the fundamental stresslet (with r = x − y),
then (C2) to (C13) still hold, but the expressions for the vector of pressures and auxiliary
functions (C10) are now much simpler

gk(x; y) = 1
r

ek − ro
k∇x 1

r
, P(x; y) = −2∇x 1

r
. (C35a,b)

Here, ro = xo − y, and the expansion vector Y is now −ro. The same logic as for
wall-correction contributions, but with much less effort, applies to convert the free-space
version of (C11) into Lamb’s singular series (3.21).

C.3. Single-layer patch contributions
To generate Lamb’s singular series (3.21) for single-layer patch contributions related to
the discretized form of the right-hand side of (3.8), with either GFS or GC, the patch
moments Eν,μ,k and Dν,μ must be redefined. Instead of the operations (C12) and (C13),
these coefficients are now directly calculated as

Eν,μ,k =
∑
x∈B

Wk(x)Zν,μ(x − xo), Dν,μ = 1
2

∑
x∈B

(x − xo) · W (x)Zν,μ(x − xo),

(C36a,b)

where W (x) is either f̃ (x j)n(x j)�Sj or n(x j)�Sj. With these definitions, the single-layer
patch contributions still have the form (C11). Accordingly, the rest of § C.1, starting from
(C14), applies without changes to generate Lamb’s singular series (3.21) for single-layer,
wall-correction patch contributions. For free-space, single-layer patch contributions, just
a different form (C35a,b) of gk and P with the expansion vector Y = y − xo is used.

Appendix D. Miscellaneous details of the algorithm

D.1. Time stepping
Not only the minimum mesh size limits a stable time step (as the Courant stability rule
requires), but this step is also affected by elevated local surface curvatures and (in our
case) the drop proximity to the wall; there are no rational and universal strategies, though,
for all BI problems. Combining the semi-empirical approaches of Zinchenko & Davis
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Drop motion on an inclined wall

(2005, 2008), the dimensional time step was set as

�t = K�t
μe

σ
min(Δ1, 0.7Δ2), (D1)

where K�t is a numerical factor

Δ1 = min
i

{
�xi

a max[|k1(xi)|, |k2(xi)|]
}

, (D2)

and
Δ2 = min

i,j
‖xi − x j‖, xi ∈ S, x j ∈ SIM. (D3)

In (D2), the minimum is over all mesh nodes xi ∈ S with principal curvatures k1 and k2;
the shortest distance from xi to the nodes directly connected to it is �xi. In (D3), Δ2 is
the minimum node-to-node distance between S and its mirror image SIM , but excluding
pairs (i, j) with x j being the nearest node to xi (since such influences are excluded by the
leading-order near-singularity subtraction in BI); the Δ2 term rarely came into play in the
present simulations due to extreme resolutions used.

The simulations used mostly K�t = 5−10 (with typically 4–6 BI iterations per time
step) to avoid sharp temporal changes. Remarkably, for high λ ≥ 60, as the steady state
was roughly approached, it was possible to gradually increase K�t to much higher values
(∼100–200) without losing numerical stability, and accurately finalize the steady state
without excessive computational expenses. This highly beneficial feature may be due to
using passive mesh stabilization with its soft stability limitations.

D.2. One-time projective remeshing
For small to moderately small B, when projective meshing was used to discretize and track
the drop surface (§ 3.3.1), there was an easy way to continue any such simulation with a
new number of mesh triangles (N′

�) and a new number of patches M′ (if necessary to retain
efficiency of multipole acceleration) by one-time remeshing of the parent triangulation
(of N� elements), while inheriting near-contact adaptivity from the parent mesh. This is,
for example, how curve 3 in figure 9(a) with N� = 138 K was continued from curve 2
(with N� = 78 K), instead of doing the 138 K resolution run from scratch. First, a new
uniform, parametric mesh is generated on the unit sphere Ω(t) centred at O(t), with N′

�
elements and nodes partitioned into M′ patches. The radial distance ρ = ‖x − O(t)‖ for
nodes x ∈ S of the parent mesh, which serves mapping between S(t) and Ω(t) (figure 2b),
is interpolated from the old to new parametric mesh. To this end, a local fourth-order
polynomial of the two coordinates in the tangential plane at an old node ξ ∈ Ω(t) is used,
best fitted to the values of ln ρ in the two layers of nodes around ξ . Once ρ is known
on the new parametric mesh, it gives the new nodes on S(t) to continue the simulation.
The validity and accuracy of this approach was verified in selected cases by repeating the
new-resolution simulation from scratch, only to arrive at the same steady-state results.

D.3. Economical truncation bounds
Construction of bounds for patch contributions with f̃ (x) on the right-hand side of (3.8),
and for double-layer expansions (3.21), closely follows that of Zinchenko & Davis (2000)
for many deformable drops composed of blocks. Namely, their blocks are replaced here
by an extended system of patches (figure 6), and only their near-field bounds are relevant
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to our problem. The strength factors Cγ and C̃γ given by (3.85) and (3.92) therein are
additionally increased 4 times for x3 < 0 patches to account for complexity of GC and τC.
In other respects, their (3.82) to (3.92) are applied without changes to give the bounds for
singular-to-regular Lamb’s series re-expansion, and for pointwise calculation of Lamb’s
singular series. With enf = 0.1 and ẽnf = 10 chosen here, these truncation bounds are
controlled by a single intuitive precision parameter ε. They are calculated before the
iterations (using Q from the preceding time step to estimate C̃γ for double-layer expansions
(3.21)).

A modification of this scheme to construct truncation bounds for patch contributions
associated with f̃ (y) and f̃ (x∗) on the right-hand side of (3.8), and with the subtraction
tensors (3.17) Π1(y) and (3.18) Π2(y) mostly follows Appendix B of Zinchenko & Davis
(2005). However, with our enf = 0.1 and ẽnf = 10, the strength factors in their (B6) were
increased 10 and 40 times for x3 > 0 and x3 < 0 patches, respectively.

D.4. Validation and performance of multipole acceleration
As an additional check of correctness and efficiency of our multipole-accelerated
BI algorithm, the inhomogeneous term (3.2) F (y) and iterative solution of the BI
equation (3.1), corresponding to the final drop–wall configuration with λ = 60, θ =
7.5◦, B = 0.125 and N� = 138 K in figure 9(a), were computed differently by simple
node-to-node summations in the regularized integrals (3.8), (3.10) and (3.11), without
any multipole operations. Two metrics were used to quantify deviations of such a
direct-summation solution (F ex, uex) from our multipole-accelerated solutions (F , u) for
the same configuration, controlled by the intuitive precision parameter ε. Namely, for the
inhomogeneous term (3.2)

δ1(F , F ex) = 1

〈F 2
ex〉1/2

max
xi∈S

‖F (xi) − F ex(xi)‖, (D4)

δ2(F , F ex) = 1

〈F 2
ex〉1/2

[〈(F − F ex)
2〉]1/2, (D5)

where the angular brackets stand for averaging over the whole drop surface S; δ1
quantifies maximum pointwise deviation between F and F ex in the mesh nodes relative to
root-mean-square F ex, while δ2 is the integral measure of such deviation. The deviations
δ1(u, uex) and δ2(u, uex) are defined the same way through u and uex; however, for
test purposes below in the multipole-accelerated solution of BI equation (3.1), the
inhomogeneous term F is set to F ex to isolate the effect of multipole truncation errors
on the double-layer integral calculation. The initial approximation for the iterative solution
uex was taken from the prelast time step of the multipole-accelerated dynamical simulation
(with ε = 10−6), followed by 50 GMRES iterations to make uex fully independent of the
initial approximation. For consistency, the same initial approximation and 50 iterations
were also used below in multipole-accelerated calculations of u at various values of the
intuitive precision parameter ε.

Table 4 demonstrates that δi(F , F ex) and δi(u, uex) tend to zero, as ε → 0, which
proves convergence of our code to the direct-summation code. The CPU times in
table 4 are for single-core calculations on a personal Linux workstation with 3.6 GHz
clock speed. As ε tightens, the multipole-accelerated solution (F , u) becomes practically
indistinguishable from (F ex, uex) and is still much faster than by the direct summations.
Somewhat surprisingly, values of ε ∼ 10−5−10−6 were always sufficient in the present
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Drop motion on an inclined wall

ε = 10−5 10−6 10−7 10−8 10−9 10−10

δ1(F , F ex) 1.2 × 10−1 1.8 × 10−2 1.9 × 10−3 1.1 × 10−4 1.0 × 10−5 1.2 × 10−6

δ2(F , F ex) 1.2 × 10−3 2.1 × 10−4 2.6 × 10−5 2.7 × 10−6 2.9 × 10−7 2.9 × 10−8

CPU time (F ) 2.5 2.9 3.6 4.7 5.8 7.1
δ1(u, uex) 1.0 × 10−4 1.1 × 10−5 7.6 × 10−7 2.3 × 10−8 5.3 × 10−9 5.2 × 10−10

δ2(u, uex) 6.7 × 10−5 7.0 × 10−6 4.8 × 10−7 1.8 × 10−8 3.6 × 10−9 3.7 × 10−10

CPU time per it. 1.9 2.5 3.1 4.1 5.7 7.1

Table 4. Convergence of the multipole-accelerated solution (F , u) to the direct-summation solution (F ex, uex),
as the precision parameter ε → 0, for one steady drop configuration with λ = 60, θ = 7.5◦, B = 0.125 and
N� = 138 K. The CPU times are in seconds on a single core. The direct-summation solution requires 67 s for
the inhomogeneous term F ex and 64 s per iteration for uex.

ε = 10−5 10−6 10−7 10−8 10−9 10−10

δ1(F , F ex) 3.6 × 10−2 5.7 × 10−3 8.5 × 10−4 1.2 × 10−4 2.1 × 10−6 1.9 × 10−7

δ2(F , F ex) 7.8 × 10−4 1.1 × 10−4 1.3 × 10−5 1.1 × 10−6 6.1 × 10−8 6.5 × 10−9

CPU time (F ) 5.6 6.6 7.8 9.3 11.8 17.6
δ1(u, uex) 9.6 × 10−4 7.7 × 10−5 4.4 × 10−6 4.8 × 10−7 4.0 × 10−8 3.7 × 10−9

δ2(u, uex) 3.1 × 10−5 3.1 × 10−6 3.4 × 10−7 3.5 × 10−8 3.1 × 10−9 2.3 × 10−10

CPU time per it. 5.1 6.4 8.1 10.3 13.8 21.0

Table 5. Convergence of the multipole-accelerated solution (F , u) to the direct-summation solution (F ex, uex),
as ε → 0, for one steady drop configuration with λ = 60, θ = 7.5◦, B = 5 and N� = 246 K. The
direct-summation solution requires 224 s for the inhomogeneous term F ex and 197 s per iteration for uex, to be
compared with the CPU times (in seconds) for multipole-accelerated solution at various ε.

dynamical simulations, as further tightening of ε did not affect four significant figures
of the steady-state drop speed (and could only marginally affect the minimum drop–wall
clearance in rare cases); an appreciable maximum error δ1(F , F ex) appears not to have a
significant effect, since the root-mean-square error δ2(F , F ex) is two orders of magnitude
less. For ε ∼ 10−5−10−6 and resolution N� = 138 K in table 4, multipole acceleration
speeds up F -calculation by a factor of 23–27, and makes BI iterations 25–35 times faster,
compared with the direct-summation algorithm. Precalculation of matrices (3.17), (3.18)
and Γ before the iterations adds insignificantly to the cost of the multipole-accelerated
solution.

A similar analysis was performed for a strongly pancaked drop with a large contact
spot and higher resolution N� = 246 K, corresponding to the final, steady-state drop–wall
configuration in the run λ = 60, θ = 7.5◦, B = 5 of figure 9(d). Again, tightening
ε can make the multipole-accelerated solution arbitrarily close to the result by the
simplest node-to-node summations (table 5). Compared with the above case of small
drop deformation, even more dramatic advantage of the multipole-accelerated solution
is observed. For ε ∼ 10−5−10−6 sufficient for the present dynamical simulations, our
algorithm calculates the inhomogeneous term F 34–40 times faster, and performs the BI
iteration 31–39 times faster than by direct node-to-node summations.

In most of the runs, the parallel version of the multipole-accelerated code (achieved
through OMP programming) was used, with an additional boost in performance; for
example, the speed up due to parallelization was 4.5-fold on eight cores of a personal Linux
workstation with 3.6 GHz clock speed. Parallelization of the direct-summation code only
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gave a similar boost, so it was still far from possible to use such a code in high-resolution
dynamical simulations of the present work.

Despite crucial speed up in the BI solution owing primarily to multipole acceleration
and (to a lesser extent) OMP programming, the dynamical high-resolution simulations are
still extensive because of a large number of time steps to reach steady state. It took 260
and 230 K steps to generate curve 3 in figure 9(a) and curve 1 in figure 9(d), respectively.
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