
Can. J. Math. Vol. 50 (5), 1998 pp. 897–928

FOURIER MULTIPLIERS FOR LOCAL HARDY SPACES
ON CHÉBLI-TRIMÈCHE HYPERGROUPS

WALTER R. BLOOM AND ZENGFU XU

ABSTRACT. In this paper we consider Fourier multipliers on local Hardy spaces
hp (0 Ú p � 1) for Chébli-Trimèche hypergroups. The molecular characterization is
investigated which allows us to prove a version of Hörmander’s multiplier theorem.

The theory of Fourier multipliers is well developed on euclidean spaces, with various
results having been established to give sufficient conditions for a multiplier operator to
be bounded on the Lebesgue spaces Lp (p Ù 1) or Hardy spaces Hp (0 Ú p � 1). Among
these are Hörmander’s multiplier theorem and its variants. Over the past twenty years
considerable effort has been made to extend the classical Fourier multiplier theory to
groups and hypergroups (see [W], [FS], [Al], [FX] on Lie groups, [CS], [ST], [K], [An]
on noncompact symmetric spaces and [S] on Bessel-Kingman hypergroups). In the con-
sideration of this problem a dichotomy is emerging, based on the growth of the volume
of balls centered at the identity as their radii become large (polynomial or exponential
growth). While in the case of polynomial growth the condition on a multiplier is simi-
lar to that on euclidean spaces (see [Al], [FX], [FS] and [W]), some holomorphy of the
multiplier is necessary for the operator to be bounded on Lp (p Ù 1) when the volumes
of balls grow exponentially. In the latter situation, the Lp Fourier multiplier has to be an
analytic function having a holomorphic extension to a prescribed tube, the size of which
depends on p (see [CS], [An] and [BX3]). This is a consequence of the “holomorphic
extension” property of Fourier transforms of Lp-functions (1 � p Ú 2). It turns out
that the holomorphic extension property of the Fourier multiplier corresponds roughly
to exponential decay of the kernel.

Most of the work up till now on Fourier multipliers on Lie groups and symmetric
spaces has only been concerned with Lp-boundedness for p Ù 1, and the Hp-multiplier
results in [FS] were only proved on stratified Lie groups which are of polynomial growth.
A version of Hörmander’s multiplier theorem was established in [S] for Lp-functions
(p Ù 1) on Bessel-Kingman hypergroups, a particular class of Chébli-Trimèche hy-
pergroups with polynomial growth. For general Chébli-Trimèche hypergroups the Lp-
Fourier multipliers were investigated in [BX3].

A natural question that arises is whether we can extend the Lp (p Ù 1) Fourier multi-
plier theorem of Hörmander to the case 0 Ú p � 1 for those hypergroups, Lie groups and
symmetric spaces that are of exponential growth. There is indeed a natural candidate for
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898 W. BLOOM AND Z. XU

such a generalization, using the local Hardy spaces hp (see Section 3 for the definition).
In [K] there are some results on Fourier multipliers for the local Hardy space h1 on non-
compact symmetric spaces of rank 1 (which is of exponential growth), but the conditions
on the multipliers are not as sharp and natural as in the classical Hörmander multiplier
theorem. Moreover, the approach in [K] does not work for general hp when p Ú 1. In
fact the molecules defined in [K] are not appropriate to handle hp�hp boundedness of a
Fourier multiplier operator when p Ú 1. This is because the generalized translation of a
polynomial of degree½ 1 need not be a polynomial. We have modified the definition of
molecule to cater for this new phenomenon (see Definition 2.4 and Remark 2.5). To the
best of our knowledge, nobody has examined systematically the local Hardy spaces hp

and Fourier multipliers for hp on Chébli-Trimèche hypergroups and noncompact sym-
metric spaces (other than in [BX2]).

In this paper we establish a version of Hörmander’s multiplier theorem for the local
Hardy spaces hp (0 Ú p � 1) on Chébli-Trimèche hypergroups with exponential growth.
Because of the exponential volume growth and the generalized convolution on the hyper-
group, the standard constructions do not apply. Many basic facts relying on the structure
of a euclidean space are largely unavailable; the Fourier transform on hypergroups is far
less well understood than on euclidean spaces, and furthermore there is no “convenient”
dilation structure on hypergroups. Our method is a combination of the techniques for
euclidean spaces and for noncompact symmetric spaces, and indeed the approach used
here can be easily applied to noncompact symmetric spaces.

The paper is organized as follows. The basic Fourier analysis on hypergroups and
some useful estimates for characters are given in Section 1. In Section 2 we give an
appropriate definition of (local) molecules and investigate the molecular characterization
of local Hardy spaces hp for 0 Ú p � 1. Finally in Section 3 we use this molecular
characterization to obtain a version of Hörmander’s multiplier theorem.

1. Preliminaries on Chébli-Trimèche hypergroups. We begin by recalling some
basic facts of Fourier analysis on Chébli-Trimèche hypergroups; for a general reference
see [BH].

Throughout the paper we denote by
�
R+, Ł(A)

�
the Chébli-Trimèche hypergroup as-

sociated with a function A that is continuous on R+, twice continuously differentiable on
RŁ

+ ≥ ]0,1[, and satisfies the following conditions:
(1.1) A(0) ≥ 0 and A(x) Ù 0 for x Ù 0 ;
(1.2) A is increasing and unbounded;
(1.3) A0(x)

A(x) ≥ 2ã+1
x + B(x) on a neighbourhood of 0 where ã Ù � 1

2 and B is an odd
C1-function on R;

(1.4) A0(x)
A(x) is a decreasing C1-function on RŁ

+, and hence ö :≥ 1
2 limx!+1

A0(x)
A(x) ½ 0

exists.
In addition we assume that for each k 2 N0, ( A0(x)

A(x) )(k) is bounded for large x 2 R+.

The hypergroup
�
R+, Ł(A)

�
is noncompact and commutative with neutral element 0

and the identity mapping as the involution. Haar measure on
�
R+, Ł(A)

�
is given by
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m :≥ AïR+ where ïR+ is Lebesgue measure on R+. The growth of the hypergroup is
determined by the number ö in (1.4). If ö Ù 0 then (1.4) implies that A(x) ½ A(1)e2ö(x�1)

for x ½ 1 and so the hypergroup is of exponential growth. Otherwise we say that the
hypergroup is of subexponential growth. In this paper we restrict ourselves to Chébli-
Trimèche hypergroups of exponential growth.

Let L ≥ LA be the differential operator defined for x Ù 0 by

(1. 5) Lf (x) ≥ �f 00(x) � A0(x)
A(x)

f 0(x)

for each function f twice differentiable on RŁ
+. The multiplicative functions on

�
R+, Ł(A)

�
coincide with all the solutions ßï(ï 2 C) of the differential equation

(1. 6) Lßï(x) ≥ (ï2 + ö2)ßï(x), ßï(0) ≥ 1, ß0
ï(0) ≥ 0,

and the dual space R^
+ can be identified with the parameter set R+ [ i[0, ö].

For 0 Ú p � 1 the Lebesgue space Lp(R+, Adx) is defined as usual, and we denote
by kfkp,A the Lp-norm of f 2 Lp(R+, Adx). For f 2 L1(R+, Adx) the Fourier transform of
f is given by

(1. 7) f̂ (ï) ≥ Z
R+

f (x)ßï(x)A(x) dx.

THEOREM 1.8 (LEVITAN-PLANCHEREL; see [BH, THEOREM 2.2.13]). There exists a
unique nonnegative measure õ on R^

+ with support [ö2,1[ such that the Fourier trans-
form induces an isometric isomorphism from L2(R+, Adx) onto L2(R^

+ ,õ), and for any
f 2 L1(R+, Adx) \ L2(R+, Adx)Z

R+

jf (x)j2A(x) dx ≥ Z
R^

+

jf̂ (ï)j2õ(dï).

The inverse is given by
f (x) ≥ Z

R+

f̂ (ï)ßï(x)õ(dï).

To determine the Plancherel measure õ we must place a further (growth) restriction
on A. A function f is said to satisfy condition (H) if for some a Ù 0, f can be expressed
as

f (x) ≥ a2 � 1
4

x2
+ ê(x)

for all large x where Z 1

x0

xç(a)jê(x)j dx Ú 1
for some x0 Ù 0 and ê(x) is bounded for x Ù x0; here ç(a) ≥ a + 1

2 if a ½ 1
2 and ç(a) ≥ 1

otherwise. For x Ù 0 we put

G(x) :≥ 1
4

 
A0(x)
A(x)

!2

+
1
2

 
A0(x)
A(x)

!0
� ö2.
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THEOREM 1.9 (see [BX1, PROPOSITION 3.17] or [T2]). Suppose that G satisfies
condition (H) together with one of the following conditions:

(i) a Ù 1
2 ;

(ii) a Â≥ jãj;
(iii) a ≥ ã � 1

2 and
R1
0 t

1
2�ãê(t)ß0(t)A(t)

1
2 dt Â≥ �2ãpMA orR1

0 tã+ 1
2 ê(t)ß0(t)A(t)

1
2 dt ≥ 0 where MA :≥ limx!0+ x�2ã�1A(x) and ê(x) ≥ G(x)+

1
4�a2

x2 .
Then the Plancherel measure õ is absolutely continuous with respect to Lebesgue mea-
sure and has density jc(ï)j�2 where c(ï) satisfies the following: There exist positive con-
stants C1, C2, K such that for any ï 2 C with Im(ï) � 0

C1jïja+ 1
2 � jc(ï)j�1 � C2jïja+ 1

2 , jïj � K, a Ù 0

C1jïjã+ 1
2 � jc(ï)j�1 � C2jïjã+ 1

2 , jïj Ù K.

In the sequel we assume that A satisfies the conditions in Theorem 1.9. This together
with (1.1)–(1.4) with ö Ù 0 implies the following result (see [BX1, Lemmas 2.5 and
3.8]):

LEMMA 1.10. We have

A(x) ¾ x2ã+1 (x ! 0+)

A(x) ¾ e2öx (x ! +1).

Let èx be the unit point mass at x 2 R+. For any x, y 2 R+ the probability measure
èx Ł èy is m-absolutely continuous with

(1. 11) supp(èx Ł èy) ² [jx � yj, x + y].

The generalized translation Txf of a function f by x 2 R+ is defined by

(1. 12) Txf (y) :≥ Z
R+

f (z)èx Ł èy(dz).

The convolution of two functions f and g is defined by

(1. 13) f Ł g(x) ≥ Z
R+

Txf (y)g(y)A(y) dy.

Let us introduce Schwartz functions and distributions on the hypergroup (see [BX4]).
For 0 Ú p � 2 the generalized Schwartz space Sp

�
R+, Ł(A)

�
consists of the restrictions

to R+ of all functions in Sp(R) where

Sp(R) :≥ fg 2 C1(R) : g is even and ñp
k,l(g) Ú 1, k, l 2 N0g
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and
ñp

k,l(g) :≥ sup
x2R+

(1 + x)lß0(x)�
2
p jg(k)(x)j.

For 0 Ú p � 2 set
Fé :≥ fz 2 C : j Im(z)j � éög

where é ≥ 2
p � 1 and ö Ù 0 as in (1.4). Let S(Fé) denote the extended Schwartz

space defined by all functions h that are even and holomorphic in the interior of Fé,
and such that h together with all its derivatives extend continuously to Fé and satisfy
supï2Fé

jh(k)(ï)j Ú 1 for any k, l 2 N0. Also we denote by Sèö(R+) the space of the
restrictions to R+ of the functions in Sèö(R) where

Sèö(R) ≥ fg 2 C1(R) : g is even and ó(è)
k,l(g) Ú 1g

with
ó(è)

k,l(g) :≥ sup
t2R+

(1 + t)leèötjg(k)(t)j.

Notice that S0 ≥ S(F0) is the usual Schwartz space on R+ and will be denoted by S(R+).
In the sequel we use F to denote the Fourier transform on the hypergroup, F0 the classical
Fourier transform and A the Abel transform (see [T] for the definition).

THEOREM 1.14 (see [BX4]). Let é ≥ 2
p � 1 with 0 Ú p � 2. Then the Fourier

transform F on
�
R+, Ł(A)

�
is an isomorphism from Sp

�
R+, Ł(A)

�
to S(Fé), the classical

Fourier F0 an isomorphism from Sèö(R+) to S(Fé), and the Abel transform A an isomor-
phism from Sp

�
R+, Ł(A)

�
to Sèö(R+) satisfying Ff ≥ F0(Af ).

A p-distribution on R+ is a continuous linear functional on Sp

�
R+, Ł(A)

�
; the totality

of p-distributions on R+ is denoted by S 0
p

�
R+, Ł(A)

�
. For f 2 S 0

p

�
R+, Ł(A)

�
we define the

Fourier transform of f by

f̂ (û) :≥ f (F�1û), û 2 S(Fé).

By Theorem 1.14, f̂ is well defined as a distribution in S 0(Fé) and F is continuous on
Sp

�
R+, Ł(A)

�
. For f 2 S 0

p

�
R+, Ł(A)

�
and û 2 Sp

�
R+, Ł(A)

�
the convolution of f and û is

a p-distribution defined by

f Ł û(†) :≥ f (û Ł †), † 2 Sp

�
R+, Ł(A)

�
.

We now give some useful estimates for characters and their derivatives.

LEMMA 1.15 (see [C], [AT]). (i) For each ï 2 C, ßï is an even C1-function and
ï 7! ßï(x) is holomorphic.

(ii) For each ï 2 C, ßï has an integral representation (i.e. the Laplace representa-
tion)

ßï(x) ≥ Z x

�x
e(iï�ö)tóx(dt), x 2 R+
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where óx is a probability measure on R supported in [�x, x].

LEMMA 1.16. Let ï ≥ ò + ië 2 C. Then
(i) jßï(x)j � ejëjxß0(x),
(ii) e�öx � ß0(x) � C(1 + x)e�öx.

PROOF. The lemma follows from the Laplace representation of ßï in Lemma 1.15
and the following estimate given in [AT]:

jßï(x)j � CA(1 + x)e�öx, x,ï 2 R+.

LEMMA 1.17. Let ï ≥ ò + ië 2 C and k 2 N0. Then

jß(k)
ï

(x)j �
8>><>>:

CA(1 + jïj)kejëjx, jïjx � 1, x � 1,
CAxA(x)�

1
2 ejëjx, jïjx � 1, x Ù 1,

CAA(x)�
1
2 jc(ï)j(1 + jïj)kejëjx, jïjx Ù 1.

We also have the following alternative estimate:

jß(k)
ï

(x)j � CAA(x)�
1
2 (jïjx)

1
2�ajc(ï)j(1 + ï)kejëjx, jïjx � 1, x Ù 1.

PROOF. The lemma can be proved similarly to [BX2, Lemma 2.4] using
Lemma 1.16.

In the sequel we use [å] to denote the largest integer not exceeding å.

LEMMA 1.18. Let ï ≥ ò + ië 2 C and k 2 N0.
(i) For all x 2 R+

jßï(x)j �
(

CAxe(jëj�ö)x, jëj Ú ö,
CAe(jëj�ö)x, jëj ½ ö.

(ii) For all x Ù 1

jß(k)
ï

(x)j �
8<:CA(1 + jïj)2[ k+1

2 ]xe(jëj�ö)x, jëj Ú ö,
CA(1 + jïj)2[ k+1

2 ]e(jëj�ö)x, jëj ½ ö.

PROOF. Part (i) follows readily from Lemma 1.16 and the Laplace representation of
ßï in Lemma 1.15. Appealing to (1.5) and (1.6) we have

ß0
ï(x) ≥ �ï

2 + ö2

A(x)

Z x

0
ßï(t)A(t) dt

and for k ≥ 2, 3, . . .

ß(k)
ï

(x) ≥ �
k�2X
j≥0

0@k � 2
j

1A A0(x)
A(x)

!(j)

ß(k�1�j)
ï

(x) � (ï2 + ö2)ß(k�2)
ï

(x).
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Therefore (ii) follows by induction using (i) and Lemma 1.10 together with our assump-
tion on the derivatives of A0(x)

A(x) .

For an m-measurable subset E we denote by jEj its Haar measure and üE its char-
acteristic function. For x0 2 R+ and r Ù 0, B(x0, r) denotes the open interval
] maxf0, x0 � rg, x0 + r[. Also in the sequel N0 will denote the set of all nonnegative
integers. Finally we shall use C to denote a positive constant whose value may vary from
line to line. Dependence of such constants upon parameters of interest will be indicated
through the use of subscripts.

2. The molecular characterization of local Hardy spaces. In this section we in-
troduce an appropriate definition of (local) molecules and explore the molecular con-
struction of the local Hardy spaces hp (see [TW] for the general theory of molecules on
euclidean spaces).

We begin with the definition of the local Hardy space hp and detail its characterization
by atomic decomposition (see [BX2]). For f 2 S 0

1

�
R+, Ł(A)

�
the local heat maximal

function is defined by

H+
0 f (x) :≥ sup

0Út�1
jf Ł ht(x)j

where ht is the heat kernel.

DEFINITION 2.1. Let 0 Ú p Ú 1. The local Hardy space hp ≥ hp
�
R+, Ł(A)

�
is

defined by

hp :≥ n
f 2 S 0

1

�
R+, Ł(A)

�
: H+

0 f 2 Lp(R+, Adx)
o
.

Moreover we introduce the quasi-norm kfkhp :≥ kH+
0 fkp,A defining the topology on

hp.
We recall that for 1 Ú p Ú 1, hp coincides with Lp(R+, Adx). The elementary build-

ing blocks of hp are the (local) (p, q, s)-atoms. Assume throughout that the exponents p
and q are admissible in the sense that 0 Ú p � 1, 1 � q � 1 and p Ú q, and put
s ≥ [(2ã + 2)(1

p � 1)].

DEFINITION 2.2. A (local) (p, q, s)-atom is a function a 2 Lq(R+, Adx) such that for
some x0 2 R+ and r Ù 0, supp(a) ² B(x0, r) and

kakq,A � m
�
B(x0, r)

� 1
q�

1
p

together with the following (local) moment condition: if r can be chosen not exceeding
1 then Z 1

0
a(x)xkA(x) dx ≥ 0

for all integers k satisfying 0 � k � s.
The following result characterizes hp in terms of atoms.
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THEOREM 2.3 (see [BX2]). Let 0 Ú p � 1. Then f 2 hp if and only if f can be
represented as a linear combination of (p, q, s)-atoms for any 1 � q � 1, q Ù p:

f ≥X
i
ïiai

where the ai are (local) (p, q, s)-atoms and
P

i jïijp Ú 1. Moreover there exist two pos-
itive constants C1 and C2 depending only on p and A such that

C1

²X
i
jïijp

¦1Ûp � kfkhp � C2

²X
i
jïijp

¦1Ûp
.

Atoms are very convenient for studying the behaviour of certain operators, like radial
maximal operators, on hp (see [BX2]). For example, the continuity of an operator T can
often be proved by estimating Ta when a is an atom. However when we consider the
hp � hp boundedness of an operator T it is possible that for a general local atom a, Ta
may not be an atom itself but has to be decomposed into atoms; indeed in general Ta
will not have compact support. As in the case of euclidean spaces we can find a class of
functions more general than atoms which still generate hp. These functions will naturally
decompose into atoms, and will be called (local) molecules.

We now introduce the (local) molecules corresponding to the atoms defined above.

DEFINITION 2.4. For admissible components p, q and s and è Ù maxf s
2ã+2 , 1

p � 1g
set a ≥ 1 � 1

p + è and b ≥ 1 � 1
q + è. A (local) (p, q, s, è)-molecule centred at x0 2 R+

is a function M 2 Lq(R+, Adx) with M(x)
þþþB(x0, jx � x0j)

þþþb 2 Lq(R+, Adx) satisfying the
conditions

(i) kMkaÛb
q,A




M(x)
þþþB(x0, jx � x0j)

þþþb


1�aÛb

q,A
:≥ Nq(M) Ú 1, and

(ii) Let õ be the positive number defined by jB(x0,õ)j 1
q�

1
p ≥ kMkq,A. If õ Ú 1 then

for any R with õ � R � 1,þþþþZB(x0,R)
M(x)(x � x0)lA(x) dx

þþþþ � CA,l

�õ
R

�å
RljB(x0, R)j1� 1

p

for l ≥ 0, 1, . . . , s where å ≥ minfa, s + 2� 1
pg.

REMARK 2.5. The moment condition enjoyed by a typical molecule on a euclidean
space is now replaced by (ii) (which is an immediate consequence of the moment con-
dition in the case of euclidean spaces). In contrast to the case for euclidean spaces, the
generalized translation of a polynomial on

�
R+, Ł(A)

�
is not necessarily a polynomial.

Hence for a local atom a, Ta may not satisfy the moment condition. However (ii) can
be satisfied by Ta for the most important convolution operators T if a is a local atom
supported in B(x0, r) with r Ú 1.

For x0 2 R+ and õ Ù 0 we define the following subsets of R+:

E0 :≥ fx 2 R+ : jx � x0j � õg and

Ek :≥ fx 2 R+ : 2k�1õ Ú jx � x0j � 2kõg, k ≥ 1, 2, . . .
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and put

J1,õ :≥ fk 2 N0 : 2kõ Ú 1g and J2,õ :≥ fk 2 N0 : 2kõ ½ 1g.

In the particular case 0 Ú x0 � 1 we associate with x0 two intervals as follows. First
choose the unique integer k0 such that 2k0�1õ � x0 Ú 2k0õ, and then define

Fk0�1 :≥
(

[0, x0 � 2k0�1õ[, k0 ½ 2,
[0, x0 + õ

2 [, k0 ≥ 1,

Fk0 :≥ ]x0 + 2k0�2õ, x0 + 2k0õ], k0 ½ 1.

For this k0 we then use Ek0�1 :≥ Fk0�1 and Ek0 :≥ Fk0 in place of the Fk0�1 and Fk0

defined above. We refer to these intervals Ek with left endpoint 0 as of type I, and the
remaining subsets Ek as of type II.

LEMMA 2.6. Let p, q and s be admissible exponents. Then for each k 2 J1,õ there
exist functions †k

l (l ≥ 0, 1, . . . , s) on R+ such that supp(†k
l ) ² Ek, l ≥ 0, 1, . . . , s,

1
Ek

Z
Ek

†k
l (x)(x � x0)jA(x) dx ≥ élj, l, j ≥ 0, 1, . . . , s

and

j†k
l (x)j �

(
CA,p(2kõ)�l�1jEkjA(x)�1, if Ek is of type I and p Ú 1,
CA,p(2kõ)�l, otherwise

where élj ≥ 1 if l ≥ j and 0 otherwise.

PROOF. We follow the idea in the proof of [K, Lemma 4.6] and only consider the
type I case (the proof for type II intervals is easier and runs similarly). Then Ek has the
following form:

Ek ≥
8>>><>>>:

[0,õ], if x0 ≥ 0 and k ≥ 0,
[0, x0 + õ], if 0 Ú x0 � 1, k0 � 0 and k ≥ 0,
[0, x0 + õ

2 ], if 0 Ú x0 � 1, k0 ≥ 1 and k ≥ 0,
[0, x0 � 2k0�2õ], if 0 Ú x0 � 1, k0 ½ 2 and k ≥ k0 � 1.

For 0 Ú p � 1 put d ≥ [2ã + 2] if p ≥ 1 and d ≥ s otherwise. Denote by Pi(d; x)
(i ≥ 0, 1, . . . , d) the polynomials of degree � d on the real line determined uniquely by
the conditions

1
Ek

Z
Ek

Pi(d; x)xj dx ≥ éij, i, j ≥ 0, 1, . . . , d.

Let R be the right endpoint of the interval Ek and define for l ≥ 0, 1, . . . , d and k 2 J1,õ

†k
l (x) :≥

8>><>>:
jEkjR�1A(x)�1üEk(x)

Pd
i≥l

�
i
l

�
xi�l

0 R�iPi

�
d, x

R

�
, p Ú 1,

jEkjR�d�1xdA(x)�1üEk (x)Pd

�
d, x

R

�
, p ≥ 1.

Using Lemma 1.10 we can verify that †k
l satisfy the desired conditions.
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LEMMA 2.7. Let x0 2 R+ and õ Ù 0. Then

jB(x0,õ)j � CA2�kjB(x0, 2kõ)j, k 2 N0

and

Ek ²
(

B(x0, 2k+1õ), k 2 J1,õ,
B(x0, 2kõ), k 2 J2,õ,

jEkj ¾ jB(x0, 2kõ)j, k 2 N0.

PROOF. Appealing to (1.2) and Lemma 1.10 we obtain for any R Ù 0

(2. 8) jB(x0, R)j ¾
8><>:

R2ã+2, x0 � R, R � 1,
RA(x0), x0 Ù R, R � 1,
e2ö(x0+R), R Ù 1.

The lemma then follows from (2.8) and the definition of Ek.

The following result shows that molecules are generalization of atoms.

LEMMA 2.9. Every (p, q, s)-atom a is a (p, q, s, è)-molecule for all è Ù 0, and
Nq(a) � 1.

PROOF. Condition (i) in Definition 2.4 can be verified in the same way as for eu-
clidean spaces. To prove that a satisfies condition (ii) in Definition 2.4 we can assume
supp(a) ² B(x0, r) where r Ú 1. Such an atom satisfies the moment condition

Z 1

0
a(x)xlA(x) dx ≥ 0, l ≥ 0, 1, . . . , s

and then the result follows using (2.8).

We now prove the main result of this section: every molecule has an atomic decom-
position. From this the molecular characterization of hp will be evident.

THEOREM 2.10. Let M be a (local) (p, q, s, è)-molecule centred at x0. Then M 2 hp

and
kMkhp � CA,pNq(M)

with CA,p independent of M.

PROOF. Consider the sets Ek (k ≥ 0, 1, 2, . . .) where õ Ù 0 is defined as in 2.4(ii),
and abbreviate üEk by ük. Put Mk ≥ Mük. For each integer k 2 J1,õ define

(2. 11) Pk(x) :≥
sX

j≥0
mkj†k

j (x)ük(x)

where

mkj ≥ 1
jEkj

Z 1

0
Mk(x)(x � x0)jA(x) dx.
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Then

(2. 12) M ≥
1X

k≥0
Mk ≥

X
k2J1,õ

(Mk � Pk) +
X

k2J2,õ

Mk +
X

k2J1,õ

Pk.

The proof will consist of three parts:
1) To show that each Mk � Pk (k 2 J1,õ) is a multiple of a local (p, 1, s)-atom if Ek

is of type I and p Ú 1 and a local (p, q, s)-atom otherwise, and that the coefficients sum
appropriately.

2) To show that each Mk (k 2 J2,õ) is a multiple of a local (p, q, s)-atom and that the
coefficients sum appropriately.

3) To show that
P

k2J1,õ Pk can be written as a sum of local (p, 1, s)-atoms and (p,1, s)-
atoms if p Ú 1 and a sum of local (1,1, s)-atoms if p ≥ 1, and that the coefficients sum
appropriately.

The theorem will then follow from Theorem 2.3.
Without loss of generality we may assume that Nq(M) ≥ 1. For each k 2 N0 applying

Lemma 1.10 we obtain from Definition 2.4(ii)

kMkkq,A � CA,pjB(x0, 2k�1õ)j�b



M(x)

þþþB(x0, jx � x0j)
þþþb




q,A

� CA,p

 jB(x0,õ)j
jB(x0, 2k�1õ)j

!a

jB(x0, 2k�1õ)j 1
q�

1
p

where a ≥ 1� 1
p + è is as in Definition 2.4. Hence by Lemma 2.7

(2. 13) kMkkq,A � CA,p(2k)�ajB(x0, 2kõ)j 1
q�

1
p

and similarly

(2. 14) kMkk1,A � CA,p(2k)�ajB(x0, 2kõ)j1� 1
p .

Let us start with Part 1. Clearly supp(Mk � Pk) ² B(x0, 2kõ) and, by Lemma 2.6 and
(2.11), Mk � Pk has the right cancellation properties:

Z 1

0

�
Mk(x) � Pk(x)

�
(x � x0)jA(x) dx ≥ jEkjmkj � jEkj

sX
i≥0

mkiéij ≥ 0.

By Lemma 2.6 and (2.11) we have for k 2 J1,õ

jPk(x)j �
(

CA,p(2kõ)�1A(x)�1 R
Ek
jMk(u)jA(u) du, if Ek is of type I and p Ú 1,

CA,pjEkj�1 R
Ek
jMk(u)jA(u) du, otherwise.

Consequently for k 2 J1,õ

(2. 15) kPkk1,A � CA,pkMkk1,A, if Ek is of type I and p Ú 1

and

(2. 16) kPkkq,A � CA,pkMkkq,A, if Ek is of type II or p ≥ 1.
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Therefore appealing to (2.13)–(2.16) we obtain for each k 2 J1,õ

kPk �Mkk1,A � CA,p(2k)�ajB(x0, 2kõ)j1� 1
p , if Ek is of type I and p Ú 1

and

kPk �Mkkq,A � CA,p(2k)�ajB(x0, 2kõ)j 1
q�

1
p , if Ek is of type II or p ≥ 1

and hence a(1)
k :≥ (ï(1)

k )�1(Mk�Pk) is a local (p, 1, s)-atom if Ek is of type I and p Ú 1, and
a local (p, q, s)-atom otherwise. Here ï(1)

k ≥ CA,p(2k)�a satisfies
P

k2J1,õ jï(1)
k jp � CA,p.

For Part 2 we observe that for each k 2 J2,õ, Mk is supported in B(x0, 2kõ) and 2kõ ½ 1.
From (2.13) we see that a(2)

k :≥ (ï(2)
k )�1Mk is a local (p, q, s)-atom, and ï(2)

k ≥ CA,p(2k)�a

satisfies
P

k2J2,õ jï(2)
k jp � CA,p.

Finally we turn to Part 3. Let K 2 N0 be the integer such that 2Kõ Ú 1 � 2K+1õ and
put †̃k

l ≥ jEkj�1†k
lük. Then by (2.11)

X
k2J1,õ

Pk(x) ≥
sX

l≥0

KX
k≥0

mkljEkj†̃k
l (x)

≥
KX

k≥0

sX
l≥0

Nk
l ûk

l (x)

where Nk
l ≥ Pk

j≥0 mjljEjj and

ûk
l (x) ≥

8<: †̃
k
l (x) � †̃k+1

l , k ≥ 0, 1, . . . , K � 1,

†̃K
l (x), k ≥ K.

By the definition of Ek we see that for k 2 J1,õ and l ≥ 0, 1, . . . , s

(2. 17)

Nk
l ≥

kX
j≥0

Z
Ej

Mj(x)(x � x0)lA(x) dx

≥
8>><>>:
R

B(x0,2k0�2õ) M(x)(x � x0)lA(x) dx
+
R

Ek0�1
M(x)(x � x0)lA(x) dx, if 0 Ú x0 � 1, k ≥ k0 � 1,R

B(x0,2kõ) M(x)(x � x0)lA(x) dx, otherwise.

Applying Definition 2.4(i) and Lemmas 1.10 and 2.7 we obtain for j ½ 1

Z
Ej

jM(x)j jx � x0jlA(x) dx � (2jõ)ljEjj
(

1
jEjj

Z
Ej

jM(x)jqA(x) dx

9>=>;
1
q

� CA,p(2jõ)ljEjj1� 1
q jB(x0, 2jõ)j�b




M(x)
þþþB(x0, jx � x0j)

þþþb



q,A

� CA,p(2jõ)ljB(x0, 2jõ)j1� 1
q�bjB(x0,õ)ja

� CA,p(2j)�a(2jõ)ljB(x0, 2jõ)j1� 1
p

and Z
E0

jM(x)j jx � x0jlA(x) dx � õljE0j1� 1
q kMkq,A

� CA,põljB(x0,õ)j1� 1
p .
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Thus for each integer j 2 N0

(2. 18)
Z

Ej

jM(x)j jx � x0jlA(x) dx � CA,p(2j)�a(2jõ)ljB(x0, 2jõ)j1� 1
p .

Now by (2.17) and (2.18) we apply Definition 2.4(ii) with R ≥ 2kõ for each k 2 J1,õ to
obtain

jNk
l j � CA,p(2k)�å(2kõ)ljB(x0, 2kõ)j1� 1

p

whereå ≥ minfa, s+2� 1
pg. By Lemmas 2.6 and 2.7 we observe supp(ûk

l ) ² B(x0, 2k+2õ)
for k ≥ 0, 1, . . . , K and Z 1

0
ûk

l (x)(x � x0)jA(x) dx ≥ 0

for j ≥ 0, 1, . . . , s and k ≥ 0, 1, . . . , K�1. Notice that Ek and Ek+1 cannot simultaneously
be of type I. Therefore using Lemmas 1.10, 2.6 and 2.7 we have for k ≥ 0, 1, . . . , K

sX
l≥0
jNk

l jkûk
l k1,A � CA,p(2k)�åjB(x0, 2kõ)j1� 1

p

if p Ú 1 and either Ek or Ek+1 is of type I, and

sX
l≥0
jNk

l ûk
l (x)j � CA,p(2k)�åjB(x0, 2kõ)j� 1

p

otherwise. Consequently a(3)
k :≥ (ï(3)

k )�1 Ps
l≥0 Nk

l ûk
l is a local (p, 1, s)-atom if p Ú 1 and

either Ek or Ek+1 is of type I, and a local (p,1, s)-atom otherwise. Hereï(3)
k :≥ CA,p(2k)�å

satisfies
P

k2J1,õ jï(3)
k jp � CA,p since å ≥ minfa, s + 2� 1

pg Ù 0. The theorem is therefore
proved.

We are now in a position to give the following molecular characterization of hp.

COROLLARY 2.19. Let f 2 S 0
1

�
R+, Ł(A)

�
. Then f 2 hp if and only if it has a molec-

ular decomposition:

f ≥X
j

Mj

where the Mj are (local) (p, q, s, è)-molecules such that

X
j

Nq(Mj)p Ú 1.

Moreover if the above decomposition holds then

kfkhp ¾X
j

Nq(Mj)p.
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3. Fourier multipliers for hp. We now turn to the Fourier multipliers for hp on�
R+, Ł(A)

�
. After giving estimates for the Fourier transform of functions in hp we intro-

duce the Fourier multipliers for local Hardy spaces and give a necessary condition for
a bounded function on the dual space R^

+ to be a Fourier multiplier for hp. We then es-
tablish a version of Hörmander’s multiplier theorem for hp using atomic and molecular
theory.

LEMMA 3.1. If a is a local (p, q, s)-atom then the Fourier transform of a is holo-
morphic in the interior of Fé, continuous on Fé and satisfies

jâ(ï)j � CA,p(1 + jïj)s+1, ï 2 Fé

where s ≥ [(2ã + 2)(1
p � 1)].

PROOF. Suppose that a is supported in B(x0, r) for some x0 2 R+ and r Ù 0. If r ½ 1
then we apply (1.7), Lemma 1.18(i), Definition 2.2 and (2.8) to obtain for ï ≥ ò+ië 2 Fé

jâ(ï)j � Z 1

0
ja(x)ßï(x)jA(x) dx

� kak1,A � jB(x0, r)j1� 1
p � CA,p

if jëj � ö, and
jâ(ï)j � kak1,Ae(jëj�ö)(x0+r)

� jB(x0, r)j1� 1
p e(jëj�ö)(x0+r) � CA,p

if ë Ù ö.
Now assume r Ú 1. Using (1.7) and the cancellation property of a and the Taylor

expansion of ßï about x0 of order s we have

(3. 2) â(ï) ≥ 1
(s + 1)!

Z 1

0
a(x)(x � x0)s+1ß(s+1)

ï
(òx)A(x) dx

where òx 2 B(x0, r). First consider x0 � 2. Then by Lemmas 1.17 and 1.10 and (2.8) we
obtain for ï 2 Fé

jâ(ï)j � CA,prs+1
Z

B(x0,r)
ja(x)jA(x) dx

� CA,prs+1jB(x0, r)j1� 1
p � CA,prs+1+n� n

p

if jïj � 1, and

jâ(ï)j � CA,prs+1(1 + jïj)s+1
 Z 1Ûjïj

maxfx0�r,0g
ja(x)jejëjxA(x) dx

+
Z x0+r

1Ûjïj
ja(x)jïj�ã� 1

2 A(x)�
1
2 ejëjxA(x) dx

!

� CA,prs+1(1 + jïj)s+1jB(x0, r)j1� 1
p � CA,p(1 + jïj)s+1rs+1+n� n

p

if jïj Ù 1.
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If x0 Ù 2 then for x 2 B(x0, r) we have x Ù x0 � r Ù 1. Thus appealing to (3.2),
Lemmas 1.18(ii) and 1.10 and (2.8) we obtain for ï 2 Fé and jïj � 2

jâ(ï)j � CA,prs+1kak1,Ae(é�1)ö(x0+r)

� CA,prs+1jB(x0, r)j1� 1
p e2ö( 1

p�1)(x0+r) � CA,prs+2� 1
p ,

and to Lemma 1.17 in place of Lemma 1.18(ii) we obtain for ï 2 Fé and jïj Ù 2

jâ(ï)j � CA,prs+1jïj)s+1�ã� 1
2 kak1,Ae(jëj�ö)(x0+r)

� CA,prs+1jïjs+1jB(x0, r)j1� 1
p e2ö( 1

p�1)(x0+r) � CA,prs+2� 1
p jïjs+1.

Therefore for ï 2 Fé

(3. 3) jâ(ï)j �
8>><>>:

CA,p, r Ù 1,
CA,p(1 + jïj)s+1rs+1+n� n

p , r � 1, x0 � 2,

CA,prs+2� 1
p (1 + jïj)s+1, r � 1, x0 Ù 2.

The result now follows from Lemma 1.12(i), (1.7) and (3.3).

From the definition and Theorem 1.14 we see that the Fourier transform of a tempered
distribution is a distribution in S 0(F1). The following result shows that if f 2 hp then f̂
is actually analytic on Fé.

THEOREM 3.4. Let f 2 hp, 0 Ú p � 1. Then the Fourier transform f̂ is an even
function holomorphic in the interior of Fé and continuous on Fé satisfying

jf̂ (ï)j � CAkfkhp(1 + jïj)[ n
p�n]+1, ï 2 Fé.

PROOF. By Theorem 2.3 we have a decomposition

f ≥X
j
ïjaj

where the aj are local (p, q, s)-atoms and

X
j
jïjjp � CA,pkfkhp .

Since the series converges in S 0
�
R+, Ł(A)

�
and the Fourier transform is continuous on

S 0
�
R+, Ł(A)

�
we have

f̂ ≥X
j
ïjcaj.

Thus Lemma 3.1 and the fact that

X
j
jïjj �

�X
j
jïjjp

�1Ûp � CA,pkfkhp
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give the theorem.

For a bounded function m on
�
R+, Ł(A)

�
consider the operator Tm defined by

(3. 5) (Tmf )^(ï) ≥ m(ï)f̂ (ï).

By Theorem 3.4, Tm is a well-defined continuous operator from hp (0 Ú p � 1) to
S 0
�
R+, Ł(A)

�
and by Theorem 1.8, Tm is bounded on L2(R+, Adx) whenever m is a

bounded function. A bounded function m is said to be a Fourier multiplier for hp if
the operator Tm takes hp continuously into hp.

The following theorem shows that some holomorphy of the function m is necessary
for Tm to be bounded on hp. This new phenomenon, different from the euclidean case,
arises from the exponential growth of the hypergroups.

LEMMA 3.6. Let 0 Ú p � 1. Then every Fourier multiplier m for hp extends to an
even function holomorphic in the interior of the strip Fé and continuous on Fé.

PROOF. Choose f (x) ≥ h1(x) where ht(x) is the heat kernel (see [AT]). Now applying
the semigroup property of the heat kernel:

ht1 Ł ht2 ≥ ht1+t2

and Definition 2.1 we see that f 2 hp for 0 Ú p � 1. Observe that f̂ (ï) ≥ e�(ï2+ö2) is
holomorphic and does not vanish. If m is a Fourier multiplier for hp then Tmf 2 hp and,
by (3.5), m(ï) ≥ (Tmf )^(ï)

f̂ (ï)
. The lemma now follows readily from Theorem 3.4.

We now establish a version of the Hörmander-Mihlin multiplier theorem for hp

Fourier multipliers on
�
R+, Ł(A)

�
, but first we begin with some definitions. The notation

K is reserved for the kernel obtained as the Fourier transform of m in the distributional
sense. Then Tmf ≥ f Ł K. Choose an even C1-function † on R such that †(x) ≥ 1
for jxj � 1

2 and †(x) ≥ 0 for jxj ½ 1, and fix once and for all a kernel decomposition
K ≥ K0 + K1 where K0 ≥ K† and K1 ≥ K(1� †).

DEFINITION 3.7. For a positive integer N we say that a bounded function m satisfies
a Hörmander condition of order N (and denote this by m 2 M (2, N)) if m extends to
an even analytic function inside Fé and the derivatives m(i) extend continuously to the
whole of Fé and satisfy

sup
ï2Fé

(1 + jïj)ijm(i)(ï)j Ú 1, i ≥ 0, 1, . . . , N.

For m 2 M (2, N) set kmkM (2,N) :≥ max0�i�N supï2Fé
(1 + jïj)ijm(i)(ï)j.

Let û be an even nonnegative C1-function supported in fx 2 R : 1
2 Ú jxj Ú 2g

and satisfying
P1

j≥�1 û(2�jx) ≥ 1 for x Â≥ 0. Put ûj(x) ≥ û(2�jx) for j ≥ 1, 2, . . .
and û0(x) ≥ 1 � P1

j≥1 û(2�jx). For m 2 M (2, N) we fix once and for all a dyadic
decomposition m(ï) ≥ P1

k≥0 mk(ï) where mk(ï) ≥ m(ï)ûk(ï). Thus the corresponding
decomposition for the kernel K is K(x) ≥ P1

k≥0 Kk(x) where K̂k(ï) ≥ mk(ï). Throughout
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the remainder of the paper we shall always assume that m is in fact rapidly decreasing
(i.e. m 2 S(F0), the usual Schwartz space) though none of our estimates will depend
upon the actual rate of decrease. It suffices to flatten m or, equivalently, to regularize K
in the standard way. Thus by Theorem 1.14, K 2 S2

�
R+, Ł(A)

�
.

The proof of the following lemma is similar to that of [An, Proposition 5].

LEMMA 3.8. Suppose that m 2 M (2, N) with N ≥ [ 2ã+2
p �ã�1]+1 and 0 Ú p � 1.

Then K1 2 L1(R+, Adx) and

kK1k1,A � CAkmkM (2,N).

LEMMA 3.9. For any 0 Ú R � 1 we have

Z R

0
yjK0(y)jA(y) dy � CAkmkM (2,N)R

and Z 1

R
y�1jK0(y)jA(y) dy � CAkmkM (2,N)R

�1.

PROOF. We only give the proof of the first inequality (the second can be handled
similarly). Let k0 be the positive integer such that 1 � 2k0R Ú 2. Using the dyadic
decomposition of m we observe

Z R

0
yjK0(y)jA(y) dy �

1X
k≥0

Z R

0
jK0

k (y)jyA(y) dy

≥
k0X

k≥0

Z R

0
jK0

k (y)jyA(y) dy +
1X

k≥k0+1

Z 2�k

0
jK0

k (y)jyA(y) dy

+
1X

k≥k0+1

Z R

2�k
jK0

k (y)jyA(y) dy

:≥ õ1 + õ2 + õ3

where K0
k ≥ †K. Now applying Theorems 1.8 and 1.9 and properties of the classical

Fourier transform we have

õ1 � CARã+2
k0X

k≥0

²Z 1

0
jK0

k (y)j2A(y) dy
¦1Û2

� CARã+2
k0X

k≥0

²Z 1

0
jmk(ï)j2(1 + ï)2ã+1 dï

¦1Û2

� CAR
3
2

k0X
k≥0

²Z 1

0
jmk(ï)j2 dï

¦1Û2

� CAR
3
2 kmkM (2,N)

k0X
k≥0

2
k
2 � CAkmkM (2,N)R
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and

õ2 � CA(2�k)ã+2
1X

k≥k0

²Z 1

0
jK0

k (y)j2A(y) dy
¦1Û2

� CA(2�k)ã+2
1X

k≥k0

²Z 1

0
jmk(ï)j2(1 + ï)2ã+1 dï

¦1Û2

� CA(2�k)
3
2

1X
k≥k0

²Z 1

0
jmk(ï)j2 dï

¦1Û2

� CAkmkM (2,N)R.

To estimate õ3 we introduce smooth cut-off functions as in [An]. Let °0 be an even
C1-function on R such that °0(x) ≥ 1 for jxj � 1

4 and °0(x) ≥ 0 for jxj ½ 1
2 , and

set °0
j (x) ≥ °0(2jx) for each j 2 N0. Then °0

j (x) ≥ 1 for jxj � 2�j�2, °0
j (x) ≥ 0

for jxj ½ 2�j�1 and j di

dxi°0
j (x)j � Ci2ij, i ≥ 0, 1, 2, . . . . Denote by l the inverse clas-

sical Fourier transform of m. For a dyadic decomposition of m let l(u) ≥ P1
k≥0 lk(u)

be the corresponding decomposition where F0lk(ï) ≥ mk(2�kï). Put l0kj ≥ (1 � °0
j )lk

and let K0
kj ≥ A�1(l0kj) and m0

kj ≥ F0(l0kj). Then lk � l0kj is an even C1-function sup-
ported in [�2�j�1, 2�j�1], and hence using the property of the Abel transform (see [T,
Théorème 6.4]) we see that Kk�K0

kj ≥ A�1(lk� l0kj) is also supported in [�2�j�1, 2�j�1].
Consequently

(3. 10) Kk(x) ≥ K0
kj(x), x Ù 2�j�1.

We now apply (3.10), Theorems 1.8 and 1.9 and the properties of the classical Fourier
transform to obtain

õ3 � CA

1X
k≥k0+1

kX
j≥k0�1

Z 2�j

2�j�1
jK0

k (y)jyA(y) dy

� CA

1X
k≥k0+1

kX
j≥k0�1

(2�j)ã+2
²Z 2�j

2�j�1
jKk(y)j2A(y) dy

¦1Û2

≥ CA

1X
k≥k0+1

kX
j≥k0�1

(2�j)ã+2
²Z 2�j

2�j�1
jK0

kj(y)j2A(y) dy
¦1Û2

� CA

1X
k≥k0+1

kX
j≥k0�1

(2�j)ã+2
²Z 2�j

2�j�1
jm0

kj(ï)j2(1 + ï)2ã+1 dï
¦1Û2

.

Put Ω0
j ≥ 1� °0

j . Then m0
kj ≥ F0(Ω0

j lk) and hence

õ3 � CA

1X
k≥k0+1

kX
j≥k0�1

(2�j)ã+2
²Z 2�j

2�j�1
jF0(Ω0

j lk)(ï)(1 + ï)ã+ 1
2 j2 dï

¦1Û2
.

Arguing as in [An, Lemma 15] we have for å1 Ú å2

� kX
j≥0

(2�å2jkΩ0
j lkkH

å1
2

)2
� 1

2 � CA2k( 1
2 +å1�å2)kmkM (2,N)
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where Hå

2 is the usual Sobolev space. Therefore by substitutingå1 ≥ ã+ 1
2 and å2 ≥ ã+2

we obtain

õ3 � CAkmkM (2,N)

1X
k≥k0+1

2�k � CAkmkM (2,N)R

and this completes the proof of the lemma.

Let† be the function defining K0, and for R Ù 0 and l 2 N0 put QR,l(x) ≥ †R(x)(x�x0)
where †R(x) ≥ †( x�x0

R ).

LEMMA 3.11. For any 0 Ú R � 1 and k, l 2 N0 we have
(i) j ∂k

∂xk TyQR,l(x)j � CA,k,lRl�k, jx � x0j Ú R, y 2 R+,

(ii) j ∂
∂y

∂k

∂xk TyQR,l(x)j � CA,k,lRl�k�1, jx � x0j Ú R, 0 Ú y � 1, and

(iii) j ∂k

∂xk TyQR,l(x)j � CA,k,lRl�k+1y�1, jx � x0j Ú R, R � y � 1.
Here Ty is the generalized translation defined by (1.12).

PROOF. By the definition of QR,l we see that

jQ(k)
R,l(x)j � CA,k,lR

l�k, k 2 N0.

Thus the lemma can be proved in the same way as in [BX2, Lemma 3.15] using Theo-
rem 1.9 and Lemmas 1.10 and 1.17.

LEMMA 3.12. Suppose that m 2 M (2, N) with N ≥ [ n
p � n

2 ] + 1 and 0 Ú p � 1, and
a is a local (p, q, s)-atom supported in B(x0, r) with r Ú 1. If Tma is a local (p, q, s, è)-
molecule then for any õ � R � 1þþþþZB(x0,R)

Tma(x)(x � x0)lA(x) dx
þþþþ � CA,lR

ljB(x0, R)j1� 1
p

�õ
R

�å
for l ≥ 0, 1, . . . , s, where õ is the positive number defined by jB(x0,õ)j 1

q�
1
p ≥ kTmakq,A

and å ≥ minf1� 1
p + è, s + 2� 1

pg as in Definition 2.4.

PROOF. We first observe that an application of the Hörmander’s multiplier theorem
for Lq(R+, Adx) (q Ù 1) gives

(3. 13) kTmakq,A � CA,qkakq,A.

By Definition 2.2 we see that (3.13) implies that

(3. 14) jB(x0, r)j � CA,qjB(x0,õ)j.
If R Ú 2r then we apply the Cauchy-Schwarz inequality, (3.14) and (2.8) to obtainþþþþZB(x0,R)

Tma(x)(x � x0)lA(x) dx
þþþþ � CARlkTmakq,AjB(x0, R)j1� 1

q

≥ CARljB(x0, r)j1� 1
q jB(x0,õ)j 1

q�
1
p

≥ CARljB(x0, R)j1� 1
p

 jB(x0, R)j
jB(x0,õ)j

! 1
p�

1
q

� CA,pRljB(x0, R)j1� 1
p

�õ
R

�å
.
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We now assume that R ½ 2r and writeZ
B(x0,R)

Tma(x)(x � x0)lA(x) dx ≥ Z
B(x0,R)

Tma(x)†R(x)(x � x0)lA(x) dx

+
Z

B(x0,R)
Tma(x)

�
1� †R(x)

�
(x � x0)lA(x) dx

:≥ I(1)
R + I(2)

R .

Let ER :≥ fx 2 R+ : R
2 Ú jx � x0j Ú Rg. As Tma is a (p, q, s, è)-molecule by assumption

we argue similarly as in showing (2.18) to obtain

jI(2)
R j � CA,pRljB(x0, R)j�èjB(x0,õ)j1� 1

p +è.

Hence by (2.8)

jI(2)
R j � CA,pRljB(x0, R)j1� 1

p

�õ
R

�å
.

It remains to estimate I(1)
R for R ½ 2r. Using the property of the generalized translation

Ty and the decomposition of the kernel K we observe

I(1)
R ≥ Z

B(x0,R)
Tma(x)†R(x)(x � x0)lA(x) dx

≥ Z 1

0
K(y)

�Z 1

0
a(x)TyQR,l(x)A(x) dx

½
A(y) dy

≥ Z 1

0
K0(y)

�Z 1

0
a(x)TyQR,l(x)A(x) dx

½
A(y) dy

+
Z 1

0
K1(y)

�Z 1

0
a(x)TyQR,l(x)A(x) dx

½
A(y) dy

≥ Z R

0
K0(y)

�Z 1

0
a(x)TyQR,l(x)A(x) dx

½
A(y) dy

+
Z 1

R
K0(y)

�Z 1

0
a(x)TyQR,l(x)A(x) dx

½
A(y) dy

+
Z 1

0
K1(y)

�Z 1

0
a(x)TyQR,l(x)A(x) dx

½
A(y) dy

:≥ I(1,1)
R + I(1,2)

R + I(1,3)
R

where QR,l ≥ †R(x)(x � x0)l is as in Lemma 3.11. Note that †R(x) ≥ 1 for jx � x0j � 1
2 .

Hence using properties of the generalized translation we have

T0QR,l(x) ≥ QR,l(x) ≥ (x � x0)l, jx � x0j Ú r, R ½ 2r.

Now using the cancellation properties and the Taylor expansion of F(x, y) ≥ TyQR,l(x)
we obtainZ 1

0
a(x)TyQR,l(x)A(x) dx ≥ Z

B(x0,r)
a(x)[TyQR,l(x) �QR,l(x)]A(x) dx

≥ y
(s + 1)!

Z 1

0

Z 1

0
(1 � v)s

�Z
B(x0,r)

a(x)(x � x0)s+1

ð
� ∂s+1

∂ë∂òs+1
TëQR,l(ò)

�
ò≥x0+v(x�x0 )

ë≥uy
A(x) dx

½
du dv.
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Thus applying Lemma 3.11(ii) and Definition 2.2 we have for 0 Ú y � 1þþþþZ 1

0
a(x)TyQR,l(x)A(x) dx

þþþþ � CA,prs+1Rl�s�2yjB(x0, r)j1� 1
p

and hence by Lemma 3.9, (2.8) and (3.14)

jI(1,1)
R j � CA,lR

ljB(x0, R)j1� 1
p

�õ
R

�å
.

Similarly using the Taylor expansion of TyQR,l about x0 and Lemma 3.11(i), (iii) we
obtain for R � y � 1þþþþZ 1

0
a(x)TyQR,l(x)A(x) dx

þþþþ � CA,prs+1Rl�sy�1jB(x0, r)j1� 1
p

and for any y 2 R+þþþþZ 1

0
a(x)TyQR,l(x)A(x) dx

þþþþ � CA,prs+1Rl�s�1jB(x0, r)j1� 1
p .

Therefore applying Lemmas 3.8 and 3.9, (2.8) and (3.14) we obtain

jI(1,i)
R j � CA,lR

ljB(x0, R)j1� 1
p

�õ
R

�å
, i ≥ 2, 3

and this completes the proof of the lemma.

We also need the following estimates concerning m and its corresponding kernel K.

LEMMA 3.15. Suppose that m 2 M (2, N) with N ≥ [ 2ã+2
p �ã� 1] + 1, ã ½ 0 and

0 Ú p � 1. Then for 0 Ú t � 1 and jx � yj ½ 2

jTx(K Ł ht)(y)j � CAM (2, N)jx � yj�NA(x)�
1
2 A(y)�

1
2 e�éöjx�yj

where é ≥ 2
p � 1, ht is the heat kernel and K is the kernel corresponding to m.

PROOF. We follow [An] and choose ° 2 C1(R) such that °(x) ≥ 0 for x � 1
2 and

°(x) ≥ 1 for x ½ 1. For any fixed x, y 2 R+ with jx � yj ½ 2 write

°jx�yj(u) :≥ °(jx � yj + u)°(jx � yj � u).

Then °jx�yj is an even C1-function on R satisfying °jx�yj(u) ≥ 1 for juj Ú jx � yj � 1
and °jx�yj(u) ≥ 0 for juj ½ jx � yj � 1

2 . Writing l :≥ A(K Ł ht) and m̃ :≥ F0l we see

that m̃(ï) ≥ m(ï)e�t(ï2+ö2). Put ljx�yj :≥ l(1 � °jx�yj), Kjx�yj :≥ A�1ljx�yj and mjx�yj :≥
F0ljx�yj. Now l � ljx�yj is supported in [0, jx � yj � 1

2 ]. Hence by [T, Théorème 6.4] we
have supp(K Ł ht � Kjx�yj) ² [0, jx � yj � 1

2 ] which implies that

K Ł ht(u) ≥ Kjx�yj(u), u Ù jx � yj � 1
2

.

Thus by (1.12), Tx(K Ł ht)(y) ≥ TxKjx�yj,t(y), and by [BH, Theorem 2.2.36] and [BX1,
(2.17) and (2.18)]

(3. 16) Tx(K Ł ht)(y) ≥ Z 1

0
mjx�yj,t(ï)ßï(x)ßï(y)jc(ï)j�2 dï.
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We claim now that for any L with 0 � L Ú N � 1
2 and jx � yj ½ 2

(3. 17)
²Z 1

0
jmjx�yj(ï)(1 + ï)Lj2 dï

¦1Û2 � CAkmkM (2,N)jx � yj�Neéöjx�yj.

In fact by interpolation we can restrict ourselves to the case when l 2 N0. In view of the
properties of the classical Fourier transform and the analyticity of m we have²Z 1

0
jmjx�yj(ï)(1 + ï)Lj2 dï

¦1Û2

� CA

LX
i≥0

²Z 1

0
jl(i)
jx�yj(u)j2 du

¦1Û2

� CA

LX
i≥0

iX
j≥0

t�i+j
²Z 1

jx�yj�1
jl(j)(u)j2 du

¦1Û2

� CAjx � yj�Ne�éöjx�yj
LX

i≥0

iX
j≥0

²Z 1

0
juNeéöul(j)(u)j2 du

¦1Û2

� CAjx � yj�Ne�éöjx�yj
LX

i≥0

iX
j≥0

²Z 1

0

þþþþ dN

dïN

�
(ï + iéö)jm(ï + iéö)

�þþþþ2 dï
¦1Û2

� CAjx � yj�Ne�éöjx�yj
LX

i≥0

²Z 1

0

þþþ(ï + iéö)L�im(N�i)(ï + iéö)
�þþþ2 dï

¦1Û2

� CAjx � yj�Ne�éöjx�yjkmkM (2,N).

The lemma now follows from (3.16) and (3.17) using Theorem 1.8, Lemmas 1.17 and
1.10 and a straightforward calculation.

Let ° be the function as in the proof of Lemma 3.15. For any integer j Ù 1 we define
an even C1-function °j by

°j(u) ≥ °�2(u + j � 1)
�°�2(�u + j � 1)

�
,

and denote by l the Abel transform of K. Then by Theorem 1.14, m ≥ F(K) ≥ F0(l). Put
lj ≥ (1� °j)l, mj ≥ F0(lj) and Kj ≥ A�1(lj). Since l� lj is supported in [�j + 5

4 , j � 5
4 ],

by the properties of the Abel transform in [T, Théorème 6.4] we see that K � Kj is also
supported in [�j + 5

4 , j � 5
4 ] and hence

(3. 18) K(x) ≥ Kj(x), if x Ù j � 5
4

.

LEMMA 3.19. Suppose that m 2 M (2, N) with N ≥ [ 2ã+2
p � n

2 ] + 1, ã ½ 0 and

0 Ú p � 1. Then for any L with 0 � L Ú N � 1
2²Z 1

0
jmj(ï)(1 + ï)Lj2 dï

¦1Û2 � CAkmkM (2,N)j
�Neéöj, j ≥ 2, 3, . . . .

PROOF. The proof of the lemma is similar to that of (3.17).
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For m 2 M (2, N) fix a dyadic decomposition m ≥ P1
k≥0 mk and the corresponding

decompositions K ≥ P1
k≥0 Kk and l ≥ P1

k≥0 lk where F(Kk) ≥ F0(lk) ≥ mk. Choose an
even C1-function °0 such that

°0 ≥
8>>><>>>:

1, jxj � 1
4

,

0, jxj ½ 1
2

.

For any positive integer j and r Ù 0 put lkj :≥ (1�°̃j)lk , Kkj :≥ A�1(lkj) and mkj :≥ F0(lkj)
where °̃j(x) :≥ °0( x

2jr ). Observe that lk � lkj is supported in fu : juj � 2jrg. Using the
properties of the Abel transform in [T] we have

(3. 20) Kk(x) ≥ Kkj(x), if x Ù 2j�2r.

LEMMA 3.21. Suppose that m 2 M (2, N) with N ≥ [ 2ã+2
p �ã� 1] + 1, ã ½ 0 and

0 Ú p � 1. Given j 2 N0 and r Ù 0 such that 2jr � 1 we have for any nonnegative
numbers L1 and L2 with L2 � N²Z 1

0
jmkj(ï)(1 + ï)L1 j2 dï

¦ 1
2 �

8<:CA,m(2jr)�L12
k
2 , 2j+kr Ú 1,

CA,m(2jr)�L22k(L1�L2+ 1
2 ), otherwise.

where CA,m ≥ CAkmkM (2,N).

PROOF. We only consider the case when L1 � L2 and 2j+kr ½ 1 (the proof of the
other cases is similar), and by interpolation we can restrict ourselves to integers L1 and
L2. Applying properties of the classical Fourier transform and the classical Plancherel
theorem we obtain²Z 1

0
jmkj(ï)(1 + ï)L1 j2 dï

¦1Û2 � CA

L1X
i≥0

²Z 1

0
jl(i)kj (u)j2 du

¦1Û2

� CA

L1X
i≥0

²Z 2j�2r

2j�3r
jl(i)kj (u)j2 du

¦1Û2

+ CA

L1X
i≥0

²Z 1

2j�2r
jl(i)k (u)j2 du

¦1Û2

:≥ I1 + I2.

Using the definition of lkj and mkj and properties of the classical Fourier transform we
have

I1 � CA

L1X
i≥0

iX
n≥0

(2jr)n�i
nZ 2j�2r

2j�3r
jl(n)

k (u)j2 du
¦1Û2

� CA(2jr)�L2
L1X

i≥0

iX
n≥0

²Z 2j�2r

2j�3r
jl(n)

k (u)un�i+L2 j2 du
¦1Û2

� CA(2jr)�L2
L1X

i≥0

iX
n≥0

²Z 1

0

þþþþ dL2+n�i

dïL2+n�i

�ïnmk(ï)
�þþþþ2 dï

¦1Û2

� CA(2jr)�L2
L1X

i≥0

²Z 1

0
jïL�im(N�i)

k (ï)j2 dï
¦1Û2

.

https://doi.org/10.4153/CJM-1998-047-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-047-9


920 W. BLOOM AND Z. XU

Now recall that

mk(ï) ≥ m(ï)û(2�kï) for k ≥ 1, 2, . . . and m0(ï) ≥ m(ï)
�
1�

1X
k≥1

û(2�kï)
�
.

Hence

jm(L2�i)
k (ï)j � CA2k(i�L2)

and

I1 � CAkmkM (2,N)(2
jr)�L22k(L1�L2+ 1

2 ).

Similarly

I2 � CAkmkM (2,N)(2
jr)�L22k(L1�L2+ 1

2 ),

and this completes the proof of the lemma.

We now give a version of Hörmander’s multiplier theorem for local Hardy spaces.

THEOREM 3.22. Suppose that m 2 M (2, N) with N ≥ [ 2ã+2
p � ã � 1] + 1, ã ½ 0

and 0 Ú p � 1. Then m is a Fourier multiplier for hp.

PROOF. By Definition 2.1 and Theorem 2.3 we are reduced to showing that for any
(local) (p,1, s)-atom a

(3. 23) kTmakhp � CA,p

where the constant CA,p is independent of a.
Suppose that a is supported in B(x0, r) with x0 2 R+ and r Ù 0. If r Ù 1 then we write

kH+
0 (Tma)kp

hp ≥
Z x0+r+2

0
jH+

0 (Tma)(x)jpA(x) dx

+
Z 1

x0+r+2
jH+

0 (Tma)(x)jpA(x) dx

:≥ I1 + I2.

Note that both H+
0 and Tm are L2-bounded (see [BX2]) and any (p,1, s)-atom must be a

(p, q, s)-atom for all q Ù p, 1 � q Ú 1. Applying Hölder’s inequality, Lemma 1.10 and
(2.8) then gives

I1 � CA,pkH+
0(Tma)kp

2,Ae2ö(x0+r+2)(1� p
2 )

� CA,pkakp
2,Ae2ö(x0+r+2)(1� p

2 )

� CA,pjB(x0, r)j p
2�1e2ö(x0+r+2)(1� p

2 ) � CA,p.

To estimate I2 we first observe

Tma Ł ht ≥ a Ł ht Ł K(x) ≥ Z 1

0
a(y)Tx(ht Ł K)(y)A(y) dy.
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For y 2 B(x0, r) and x Ù x0 + r + 2 we have x � y Ù 2. Hence by Lemmas 3.15 and 1.10
we have for x Ù x0 + r + 2 and 0 Ú t � 1

jTma Ł ht(x)j � CA,pA(x)�
1
2 e�éöx

Z 1

0
ja(y)j(x � y)�NeéöyA(y)

1
2 dy

� CA,pA(x)�
1
p (x � x0 � r)�Nkak2,Aeéö(x0+r)

� CA,pA(x)�
1
p (x � x0 � r)�Ne(é+1� 2

p )ö(x0+r)

≥ CA,pA(x)�
1
p (x � x0 � r)�N.

Consequently by the definition of H+
0

I2 � CA,p

Z 1

x0+r+2
(x � x0 � r)�Np dx � CA,p

and (3.23) follows for r Ù 1.
We now assume r � 1. As before let † be an even C1-function such that †(x) ≥ 1 if

jxj � 1
2 and †(x) ≥ 0 if jxj ½ 1, and û an even nonnegative C1-function supported in

fx 2 R : 1
2 Ú jxj Ú 2g and satisfying

P1
j≥�1 û(2�jx) ≥ 1 if x Â≥ 0. Write

Tma(x) :≥
1X

j≥�1
Tma(x)ûj(x)†̃(x) + Tma(x)

�
1� †̃(x)

�
:≥ (Tma)1(x) + (Tma)2(x)

where ûj(x) ≥ û( x�x0
2jr ) and †̃(x) ≥ †( x�x0

4 ). We first prove that (Tma)2 has an atomic
decomposition and then that (Tma)1 is a (p, 2, s, è)-molecule.

For each j ≥ 2, 3, . . . let Qj ≥ fx 2 R+ : j Ú jx�x0j � j+1g. Note that (Tma)2(x) ≥ 0
if jx � x0j � 2. Hence

(Tma)2(x) ≥
1X

j≥2
(Tma)2(x)üQj (x) :≥

1X
j≥2

bj(x).

Using (3.18), (1.11) and (1.12) together with the cancellation property of an atom we
observe for x 2 Qj

Tma(x) ≥ Z 1

0
a(y)TxK(y)A(y) dy

≥ Z 1

0
a(y)TxKj(y)A(y) dy

≥ Z 1

0
a(y)(y � x0)s

Z 1

0
(1� u)s�1Fj,y,u,s(x) duA(y) dy

≥ Z 1

0
(1 � u)s�1

Z 1

0
a(y)(y � x0)sFj,y,u,s(x)A(y) dy du

if s Ù 0, and
Tma(x) ≥ Z 1

0
a(y)Fj,y,u,s(x)A(y) dy

if s ≥ 0, where
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Fj,y,u,s(x) ≥
(

(TxKj)(s)
�
x0 + u(y � x0)

�� (TxKj)(s)(x0), s Ù 0,
TxKj(y)� TxKj(x0), s ≥ 0.

By [BH, Theorem 2.2.36] and [BX1, (2.17) and (2.18)]

(TxKj)(k)(y) ≥ Z 1

0
mj(ï)ßï(x)ß(k)

ï
(y)jc(ï)j�2 dï, k 2 N0.

Thus

F̂j,y,x0,u(ï) ≥
(

mj(ï)
hß(s)

ï

�
x0 + u(y � x0)

� �ß(s)
ï

(x0)
i
, s Ù 0,

mj(ï)[ßï(y) �ßï(x0)], s ≥ 0.

We only consider s Ù 0 (the case s ≥ 0 can be handled similarly). Applying Theo-
rems 1.8 and 1.9 gives

kFj,y,u,sk2,A

≥
²Z 1

0

þþþþmj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

��ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

� CA
X

ujy�x0 j2k�1

²Z 1

0

þþþþm̃jk(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

� �ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

+ CA
X

ujy�x0j2kÙ1

²Z 1

0

þþþþm̃jk(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

�� ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

:≥X
1 +

X
2

where m̃jk(ï) ≥ mj(ï)ûk(ï), û0(ï) ≥ 1�P1
i≥1 û(2�iï) and ûk(ï) ≥ û(2�kï). For x0 � 1

choose ç Ù 0 such that ç Ú min(N� 2ã+2
p +ã+ 1, N� s�ã� 1, s� 2ã+2

p + 2ã+ 3), and
in addition ç Ú N� s�ã�2 if N� s�ã�2 Ù 0. Then we use Lagrange’s mean-value
theorem, Theorem 1.9 and Lemmas 1.17 and 3.19 to obtain

X
1 � CAujy � y0j X

ujy�x0 j2k�1

²Z 1

0
jm̃jk(ï)ß(s+1)

ï
(ò)j2jc(ï)j�2 dï

¦ 1
2

� CAujy � y0j
²Z 1

0
jmj(ï)û0(ï)(1 + ï)s+1j2jc(ï)j�2 dï

¦ 1
2

+ CAujy � y0j X
0Úujy�x0 j2k�1

²Z 1

0
jmj(ï)ûk(ï)(1 + ï)s+1j2jc(ï)j�2 dï

¦ 1
2

� CAujy � y0j
²Z 1

0
jmj(ï)j2 dï

¦ 1
2

+ CAujy � y0j X
0Úujy�x0 j2k�1

2k(s+ã+3�N+ç)
²Z 1

0
jmj(ï)(1 + ï)N� 1

2�çj2 dï
¦ 1

2

�
8>><>>:

CAj�Ne�éöjkmkM (2,N)ujy � x0j, N � s � ã � 2 Ù 0,
CAj�Ne�éöjkmkM (2,N)(ujy � x0j)N�s�ã�1�ç, N � s � ã � 2 Ú 0,
CAj�Ne�éöjkmkM (2,N)(ujy � x0j)1�ç, N � s � ã � 2 ≥ 0
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and

X
2 � CA

X
ujy�x0 j2kÙ1

²Z 1

0
jm̃jk(ï)(1 + ï)sj2(1 + ï)2ã+1 dï

¦1Û2

� CA
X

0Úujy�x0 j2kÙ1

2k(s+ã+1�N+ç)
²Z 1

0
jmj(ï)ûk(ï)(1 + ï)N� 1

2�çj2 dï
¦1Û2

� CAj�Ne�éöjkmkM (2,N)(ujy � x0j)N�s�ã�1�ç.

Thus for x0 � 1 we have by the definition of an atom and (2.8)

kbjk2,A �
Z 1

0
(1 � u)s�1

�Z 1

0
a(y)(y � x0)skFj,y,u,sk2,AA(y) dy

½
du

� CAj�Ne�éöjkmkM (2,N)

� j�NkmkM (2,N)jB(x0, j + 1)j 1
2�

1
p .

If x0 Ù 1 then we argue similarly to obtain

X
1 �

8>>><>>>:
CAj�Ne�éöjkmkM (2,N)A(x0)�

1
2 ujy � x0j, N � s � 3

2 Ù 0,

CAj�Ne�éöjkmkM (2,N)A(x0)�
1
2 (ujy � x0j)N�s� 1

2�ç1 , N � s � 3
2 Ú 0,

CAj�Ne�éöjkmkM (2,N)A(x0)�
1
2 (ujy � x0j)1�ç1 , N � s � 3

2 ≥ 0

and X
2 � CAj�Ne�éöjkmkM (2,N)A(x0)�

1
2 (ujy � x0j)N�s� 1

2�ç1

where ç1 Ù 0 is chosen so that ç1 Ú min(N� 1
p + 1

2 , N� s� 1
2 , s� 1

p + 2), and in addition

ç1 Ú N � s � 3
2 if N � s � 3

2 Ù 0. Hence by (2.8)

kbjk2,A � CAj�Ne�éöjkmkM (2,N)A(x0)
1
2�

1
p

� j�NkmkM (2,N)jB(x0, j + 1)j 1
2�

1
p .

Observe that supp(bj) ² B(x0, j + 1). Therefore aj :≥ C�1
A kmk�1

M (2,N)
jNbj is a (local)

(p, 2, s)-atom for each j ≥ 2, 3, . . . and

(3. 24)
k(Tma)2khp � CA,pkmkM (2,N)

²1X
j≥2

j�Npkajkp
hp

¦1Û2

� CA,pkmkM (2,N).

It remains to show that

(3. 25) k(Tma)1khp � CA,pkmkM (2,N)

https://doi.org/10.4153/CJM-1998-047-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-047-9


924 W. BLOOM AND Z. XU

and then (3.23) for r � 1 will follow from (3.24) and (3.25). Let j0 be the unique non-
negative integer such that 1 � 2j0r Ú 2. Then

(Tma)1(x) ≥
1X

j≥�1
Tma(x)†̃(x)ûj(x) ≥

j0+2X
j≥�1

Tma(x)†̃(x)ûj(x)

:≥
j0+2X

j≥�1
b̃j(x).

Fix a dyadic decomposition m ≥ P1
k≥0 mk and the corresponding decomposition K ≥P1

k≥0 Kk as before. By (3.20), (1.11) and (1.12) and using the moment condition of an
atom we observe for j ≥ 2, 3, . . . , j0 + 2 and x 2 supp(ûj)

b̃j(x) ≥ †̃(x)ûj(x)
1X

k≥0

Z 1

0
a(y)TxKk(y)A(y) dy

≥ †̃(x)ûj(x)
1X

k≥0

Z 1

0
a(y)TxKkj(y)A(y) dy

≥ †̃(x)ûj(x)
Z 1

0
(1� u)s�1

²Z 1

0
a(y)(y � x0)sGk,j,y,u,s(x)A(y) dy

¦
du

where

Gk,j,y,u,s(x) ≥
8<: (TxKkj)

(s)
�
x0 + u(y � x0)

�� (TxKkj)
(s)(x0), s Ù 0,

TxKkj(y) � TxKkj(x0), s ≥ 0.

Note that Ĝk,j,y,u,s(ï) ≥ mkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

� � ß(s)
ï

(x0)
�

if s Ù 0 and

Ĝk,j,y,u,s(ï) ≥ mkj(ï)
�ßï(y) �ßï(x0)

�
if s ≥ 0. Hence by Theorems 1.8 and 1.9

1X
k≥0

k†̃ûjGk,j,y,u,sk2,A

� kGk,j,y,u,sk2,A

≥
1X

k≥0

²Z 1

0

þþþþmkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

� �ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

� CA
X

ujy�x0j2k�1

²Z 1

0

þþþþmkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

� �ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

+ CA
X

ujy�x0 j2kÙ1

²Z 1

0

þþþþmkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

�� ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

:≥ J1 + J2.

Assume that x0 � 2r. Then by Lagrange’s mean-value theorem, Theorem 1.9 and Lem-
mas 1.17 and 3.21 with L1 ≥ s + ã + 3

2 and L2 ≥ N we have
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J1 � CAujy � x0j X
ujy�x0 j2k�1

²Z 1

0
jmkj(ï)ß(s+1)

ï
(ò)j2jc(ï)j�2 dï

¦ 1
2

� CAujy � y0j X
ujy�x0 j2k�1

²Z 1

0
jmkj(ï)(1 + ï)s+ã+ 3

2 j2 dï
¦ 1

2

� CAujy � x0j X
ujy�x0 j�1

2k+jr�1

(2jr)�s�ã� 3
2 2

k
2

+ CAujy � x0j X
ujy�x0j�1

2k+j rÙ1

(2jr)�N2k(s+ã+2�N)

� CAujy � x0j(2jr)�s�ã�2

if N � s � ã � 2 Ù 0, and

J1 � ujy � x0j(2jr)�N X
ujy�x0j�1

2k(s+ã+2�N)

� CA(ujy � x0j)N�s�ã�1(2jr)�N

if N � s � ã � 2 Ú 0. For the particular case when N � s � ã � 2 ≥ 0 we write

J1 ≥ CA
X

ujy�x0 j�1
2k+jr�1

²Z 1

0

þþþþmkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

�� ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

+ CA
X

ujy�x0j�1
1Ú2k+j r�2j

²Z 1

0

þþþþmkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

� �ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

+ CA
X

ujy�x0j�1
2k+jrÙ2j

²Z 1

0

þþþþmkj(ï)
�
ß(s)
ï

�
x0 + u(y � x0)

� �ß(s)
ï

(x0)
�þþþþ2õ(dï)

¦ 1
2

:≥ J1,1 + J1,2 + J1,3.

Now using Theorem 1.9 and Lemmas 1.17 and 3.21 (with L1 ≥ s + ã + 3
2 and L2 ≥ N

for J1,1 and L1 ≥ s + ã + 1
2 for J1,3) we obtain

J1,1 � CAujy � x0j X
ujy�x0j�1

2k+jr�1

²Z 1

0

þþþþmkj(ï)(1 + ï)s+ã+ 3
2

þþþþ2 dï
¦ 1

2

� CAujy � x0j(2jr)�N

and

J1,3 � CA
X

ujy�x0j�1
2k+jrÙ2j

²Z 1

0

þþþþmkj(ï)(1 + ï)s+ã+ 1
2

þþþþ2 dï
¦ 1

2

� CAr(2jr)�N.
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For J1,2 we choose å Ù 0 sufficiently small such that N� 2ã+2
p +ã+ 1�å Ù 0 and apply

Lemma 3.21 with L1 ≥ s + ã + 3
2 and L2 ≥ N � å to obtain

J1,2 � CAujy � x0j(2jr)�N+å X
ujy�x0j�1
1Ú2k+j r�2j

2kå

� CAujy � x0j(2jr)�N+år�å.

Hence

J1 �
8><>:

CAr(2jr)�s�ã�2, N � s � ã � 2 Ù 0,
CAr1�å(2jr)�N+å, N � s � ã � 2 ≥ 0,
CArN�s�ã�1(2jr)�N, N � s � ã � 2 Ú 0.

Similarly applying Theorem 1.9 and Lemmas 1.17 and 3.21 (with L1 ≥ s + ã + 1
2 and

L2 ≥ N) we have

J2 � CA
X

ujy�x0j2kÙ1

²Z 1

0

þþþþmkj(ï)(1 + ï)s
þþþþ2õ(dï)

¦ 1
2

� rN�s�ã�1(2jr)�N.

Therefore by Definition 2.2, (2.8) and Lemma 1.10

(3. 26) kb̃jk2,A � CA,p2�jñ1 jB(x0, 2j+1r)j 1
2�

1
p

where

ñ1 ≥
8>>><>>>:

s� 2ã+2
p + 2ã + 3, if N � s � ã � 2 Ù 0,

N � 2ã+2
p + ã + 1, if N � s � ã � 2 Ú 0,

N � 2ã+2
p + ã + 1� å, if N � s � ã � 2 ≥ 0

and j ≥ 2, 3, . . . , j0 + 2. If x0 Ù 2r then a similar argument gives

(3. 27) kb̃jk2,A � CA,p2�jñ2 jB(x0, 2j+1r)j 1
2�

1
p

where

ñ2 ≥
8>>><>>>:

s� 1
p + 2, if N � s � 3

2 Ù 0,

N � 1
p + 1

2 , if N � s � 3
2 Ú 0,

N � 1
p + 1

2 � å, if N � s � 3
2 ≥ 0

and j ≥ 2, 3, . . . , j0 + 2.

We now prove that (Tma)1 is a (local) (p, 2, s, è)-molecule with è satisfying
maxf s

2ã+2 , 1
p � 1g Ú è Ú minf s+1

2ã+2 , N
2ã+2 � 1

2 � å

2ã+2g. First by Definition 2.2 and

the fact that Tm is L2-bounded we observe

k(Tma)1k2,A � kTmak2,A � kak2,A � CA,pjB(x0, r)j( 1
2�

1
p ).
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Put ñ ≥ ñ1 if x0 � 2r and ñ ≥ ñ2 otherwise. By (3.26), (3.27) and (2.8) we have with
a ≥ 1� 1

p + è and b ≥ 1
2 + è as in Definition 2.4.




(Tma)1(x)
þþþB(x0,jx � x0j)

þþþb


1� a
b

2,A

� CA,pk
1X

j≥�1
b̃jk1� a

b
2,A jB(x0, r)jb�a

+ CA,p

j0+2X
j≥2

kb̃jk1� a
b

2,A jB(x0, 2j+1r)jb�a

� CA,pjB(x0, r)j 1
p�

1
2 kTmak1� a

b
2,A

+ CA,p

j0+2X
j≥2

2�jñ(1� a
b )jB(x0, 2j+1r)j a

b ( 1
p�

1
2 )

� CA,p

j0+2X
j≥1

2�jñ(1� a
b )jB(x0, 2j+1r)j a

b ( 1
p�

1
2 )

�
8><>:

CA,pr
a
b ( 2ã+2

p �ã�1) Pj0+2
j≥1 (2�j)(1� a

b )(ñ�(2ã+2)a), x0 � 2r,

CA,p

�
rA(x0)

� a
b ( 1

p�
1
2 ) Pj0+2

j≥1 (2�j)(1� a
b )(ñ�(2ã+2)a), x0 Ù 2r

� CA,pjB(x0, r)j a
b ( 1

p�
1
2 ).

Consequently

(3. 28) N2

�
(Tma)1

� � CA,p.

For any 0 Ú R � 1 and l ≥ 0, 1, . . . , s we haveZ
B(x0,R)

(Tma)1(x)(x � x0)lA(x) dx ≥ Z
B(x0,R)

Tma(x)(x � x0)lA(x) dx.

Thus by Lemma 3.12 and Definition 2.4, (Tma)1 is a (p, 2, s, è)-molecule. The estimate
(3.25) now follows from (3.28) and Theorem 2.10, and this completes the proof of the
theorem.
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