Can. J. Math. Vol. 50 (5), 1998 pp. 897-928

FOURIER MULTIPLIERS FOR LOCAL HARDY SPACES
ON CHEBLI-TRIMECHE HY PERGROUPS

WALTER R. BLOOM AND ZENGFU XU

ABSTRACT.  In this paper we consider Fourier multipliers on local Hardy spaces
hP (0 < p < 1) for Chébli-Trimeche hypergroups. The molecular characterization is
investigated which allows us to prove aversion of Hormander’s multiplier theorem.

The theory of Fourier multipliersiswell developed on euclidean spaces, with various
results having been established to give sufficient conditions for a multiplier operator to
be bounded on the Lebesgue spacesLP (p > 1) or Hardy spacesHP (0 < p < 1). Among
these are Hormander’s multiplier theorem and its variants. Over the past twenty years
considerable effort has been made to extend the classical Fourier multiplier theory to
groups and hypergroups (see [W], [FS], [Al], [FX] on Lie groups, [CS], [ST], [K], [An]
on noncompact symmetric spacesand [S] on Besseal-Kingman hypergroups). In the con-
sideration of this problem a dichotomy is emerging, based on the growth of the volume
of balls centered at the identity as their radii become large (polynomial or exponential
growth). While in the case of polynomia growth the condition on a multiplier is simi-
lar to that on euclidean spaces (see [Al], [FX], [FS] and [W]), some holomorphy of the
multiplier is necessary for the operator to be bounded on LP (p > 1) when the volumes
of balls grow exponentialy. In the latter situation, the LP Fourier multiplier hasto be an
analytic function having a holomorphic extension to a prescribed tube, the size of which
depends on p (see [CS], [An] and [BX3]). This is a consequence of the “holomorphic
extension” property of Fourier transforms of LP-functions (1 < p < 2). It turns out
that the holomorphic extension property of the Fourier multiplier corresponds roughly
to exponential decay of the kernel.

Most of the work up till now on Fourier multipliers on Lie groups and symmetric
spaces has only been concerned with LP-boundednessfor p > 1, and the HP-multiplier
resultsin [FS] were only proved on stratified Lie groupswhich are of polynomial growth.
A version of Hormander’s multiplier theorem was established in [S] for LP-functions
(p > 1) on Bessel-Kingman hypergroups, a particular class of Chébli-Trimeche hy-
pergroups with polynomial growth. For general Chébli-Trimeche hypergroups the LP-
Fourier multipliers were investigated in [BX3].

A natural question that arises is whether we can extend the LP (p > 1) Fourier multi-
plier theorem of Hormander to thecase0 < p < 1for those hypergroups, Liegroupsand
symmetric spacesthat are of exponential growth. Thereisindeed anatural candidate for
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such a generalization, using the local Hardy spaceshP (see Section 3 for the definition).
In [K] there are some results on Fourier multipliers for the local Hardy space h' on non-
compact symmetric spacesof rank 1 (whichisof exponential growth), but the conditions
on the multipliers are not as sharp and natural as in the classical Hormander multiplier
theorem. Moreover, the approach in [K] does not work for general hP whenp < 1. In
fact the moleculesdefinedin [K] are not appropriate to handle hP — hP boundednessof a
Fourier multiplier operator when p < 1. Thisis because the generalized trandlation of a
polynomial of degree > 1 need not be a polynomial. We have modified the definition of
molecule to cater for this new phenomenon (see Definition 2.4 and Remark 2.5). To the
best of our knowledge, nobody has examined systematically the local Hardy spaces hP
and Fourier multipliers for hP on Chébli-Trimeche hypergroups and noncompact sym-
metric spaces (other than in [BX2]).

In this paper we establish a version of Hormander’'s multiplier theorem for the local
Hardy spaceshP (0 < p < 1) on Chébli-Trimeche hypergroupswith exponential growth.
Because of the exponential volume growth and the generalized convolution on the hyper-
group, the standard constructions do not apply. Many basic facts relying on the structure
of aeuclidean space are largely unavailable; the Fourier transform on hypergroupsis far
lesswell understood than on euclidean spaces, and furthermore there is no “ convenient”
dilation structure on hypergroups. Our method is a combination of the techniques for
euclidean spaces and for noncompact symmetric spaces, and indeed the approach used
here can be easily applied to noncompact symmetric spaces.

The paper is organized as follows. The basic Fourier analysis on hypergroups and
some useful estimates for characters are given in Section 1. In Section 2 we give an
appropriate definition of (local) moleculesand investigate the molecular characterization
of local Hardy spaces hP for 0 < p < 1. Finaly in Section 3 we use this molecular
characterization to obtain a version of Hormander’s multiplier theorem.

1. Preliminarieson Chébli-Trimechehypergroups. We begin by recalling some
basic facts of Fourier analysis on Chébli-Trimeche hypergroups; for a general reference
see [BH].

Throughout the paper we denote by (R+, *(A)) the Chébli-Trimeche hypergroup as-
sociated with afunction Athat is continuous on R, twice continuously differentiable on
R%* =10, oo[, and satisfies the following conditions:

(1.1) A(OQ) =0andA(X) > 0forx>0;

(1.2) Aisincreasing and unbounded;

(1.3) %’(Xf)l = 221 + B(x) on a neighbourhood of 0 where o > —2 and B is an odd
C>-function on R;

(1.4 %’(%1 is a decreasing C*-function on R%, and hence p = %Iimx_,%O %;—? >0
exists.

In addition we assumethat for each k € No, (%’((f)l)(k) is bounded for large x € R..
The hypergroup (R+, *(A)) is noncompact and commutative with neutral element O

and the identity mapping as the involution. Haar measure on (R+, *(A)) is given by
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m = A)\gr, Where Ag, is Lebesgue measure on R.. The growth of the hypergroup is
determined by the number p in (1.4). If p > Othen (1.4) impliesthat A(x) > A(1)e?*D
for x > 1 and so the hypergroup is of exponential growth. Otherwise we say that the
hypergroup is of subexponential growth. In this paper we restrict ourselves to Chébli-
Trimeche hypergroups of exponential growth.

Let L = La bethedifferential operator defined for x > 0 by

A'(X)

(1.5) L9 = 109 — 3 5

f'(x)
for eachfunctionf twice differentiable on R;. The multiplicative functionson (R+, *(A))
coincide with all the solutions ¢, (A € C) of the differential equation

(1.6) Loa() = (VP +p9)ea(), #1(0) =1, ¥5(0) =0,

and the dual space R’ can be identified with the parameter set R, U [0, p].

For 0 < p < oo the Lebesgue space LP(R+, Adx) is defined as usual, and we denote
by ||f||p,a the LP-norm of f € LP(R+, AdX). For f € LY(R+, AdX) the Fourier transform of
f isgiven by

1.7) fo) = /R F00A (AR dx.

THEOREM 1.8 (LEVITAN-PLANCHEREL ; see [BH, THEOREM 2.2.13]). Thereexistsa
unique nonnegative measure o on R} with support [p?, oo such that the Fourier trans-
form induces an isometric isomor phism from L?(R+, Adx) onto L?(R}, o), and for any
f € LY(R+, Adx) N L?(R+, Adx)

Jo f0oPA dx= [ FOPo(dy).

Theinverseisgiven by A
f09 = [, T 0old).

To determine the Plancherel measure o we must place a further (growth) restriction
on A. A function f is said to satisfy condition (H) if for somea > 0, f can be expressed

as
2 1

a —_ =
f() = ——= +()
for al large x where
/ X' @|¢(x)| dx < oo
Jxo

for somexo > 0 and((X) isbounded for x > Xo; herey(a) = a+3ifa> 1 andv(a) = 1
otherwise. For x > 0 we put

A,(X))2+ %(A'(x))’_ 2

. 1
609 = Z(A(x) A
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THEOREM 1.9 (see [BX1, PROPOSITION 3.17] or [T2]). Supposethat G satisfies
condition (H) together with one of the following conditions:
0 a>3
(i) a#lal;
(i) a=a <1and [°t27¢t)po()A®)? dt # —2a/Ma or
5 "2 (() o ()A®) 2 dt = OwhereMp = limy_o» X 22" 1AX) and ((x) = G(x)+
71—
—.
Then the);:’I ancherel measure o is absolutely continuous with respect to Lebesgue mea-
sureand has density |c(\)| =2 where c()\) satisfiesthe following: There exist positive con-

stants C;, Cy, K such that for any A € CwithIm()\) <0

CAP*? < eV L < CAP2, |A| <K, a>0
CilA|™2 < |cV)|™F < CyA[™*2,  |A] > K.

In the sequel we assume that A satisfies the conditionsin Theorem 1.9. This together
with (1.1)«(1.4) with p > 0 implies the following result (see [BX1, Lemmas 2.5 and
3.8]):

LEMMA 1.10. Wehave

AX) ~ x** (x— 0N
AX) ~ €7 (X — +00).

Let e, be the unit point mass at x € R;. For any X, y € R, the probability measure
ex * €y is m-absolutely continuous with

(1.11) supp(ex * ey) C [x — Y|, x+y].

The generalized translation T4f of afunction f by x € R, is defined by
(1.12) Td(y) = /R (e x ey(d.

The convolution of two functionsf and g is defined by

(L.13) f2909 = [ Td)IWAG) dy.

Let usintroduce Schwartz functions and distributions on the hypergroup (see [BX4]).
For 0 < p < 2 the generalized Schwartz space Sy(R-, *(A)) consists of the restrictions
to R, of all functionsin Sy(R) where

Sp(R) := {g € C*(R) : gisevenand uf (9) < 00, k, | € No}
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and )
1R,(9) == sup(1+x)'o(x) 7 |gM (x)].

XeR+

ForO<p<2set
Fs:={zeC:|Im@)| <ép}

where 6 = % —1and p > 0asin (1.4). Let S(Fs) denote the extended Schwartz
space defined by al functions h that are even and holomorphic in the interior of F;,
and such that h together with all its derivatives extend continuously to Fs and satisfy
supy.r, [N9(N)] < oo for any k,I € No. Also we denote by S,,(R+) the space of the
restrictions to R, of the functionsin S,(R) where

Se»(R) = {g € C*(R) : gisevenand z/(kfl)(g) < oo}

with
Q) = sup(1+ t'eg®()].

Noticethat Sg = S(Fo) istheusual Schwartz space on R, and will be denoted by S(R.).
In the sequel we use F to denote the Fourier transform on the hypergroup, Fo the classical
Fourier transform and A the Abel transform (see [T] for the definition).

THEOREM 1.14 (see [BX4]). Leté = % — 1with 0 < p < 2. Then the Fourier
transformF on (R, #(A)) is an isomorphismfrom Sy(Rs+, +(A)) to S(Fs), the classical
Fourier Fo anisomorphismfromS, ,(R+) to S(F;), and the Abel transformA anisomor-
phismfrom Sp(R+, *(A)) to S, (R+) satisfying Ff = Fo(Af).

A p-distribution on R. is a continuous linear functional on Sy(R+, x(A)); the totality
of p-distributions on R+ is denoted by S)( R+, #(A)). For f € Sj(R., *(A)) we definethe
Fourier transform of f by

f(¢) :=1(F¢), o€ S(Fy).

By Theorem 1.14, f iswell defined as a distribution in S’(Fs) and F is continuous on
Sp(R+, %(A)). For f € S(R+,*(A)) and ¢ € Sy(R+, *(A)) the convolution of f and ¢ is
ap-distribution defined by

@) =16 1), ¢ € Sp(Re,x(A).
We now give some useful estimates for characters and their derivatives.

LEMMA 1.15 (see [C], [AT]). (i) For each A € C, ¢, is an even C*-function and
A — ¢, (X) is holomorphic.
(i) For each A € C, ¢, hasanintegral representation (i.e. the Laplace representa-
tion) §
er(X) = /_ (), xeR.
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where vy is a probability measure on R supported in [—X, X].

LEMMA 1.16. LetA = ¢ +in € C. Then

(i) 2| < €™po(x),
(i) € < po(x) < C(1+x)e™""

PrROOF. The lemma follows from the Laplace representation of ¢, in Lemma1.15
and the following estimate givenin [AT]:

loa ()] < Cal+X)e™, XA €R:. .

LEMMA 1.17. Let X = &¢+in € Candk € Ng. Then

Ca(1 + |A|)kelnlx, Ax<1,x<1,
lpM )| < { CaxAX)~2eli, A < 1,x> 1,
CaAM) 2 [c(V)| (1 + [ AKX, |A|x > 1.

We also have the following alter native estimate:

1P90)] < CAAG)2(A)E 2 c)|(L + MR, Ax <1, x> 1.

PROOF. The lemma can be proved similarly to [BX2, Lemma 2.4] using
Lemma1.16. ]

In the sequel we use [/3] to denote the largest integer not exceeding (.

LEMMA 1.18. Let X =& +in € Candk € No.
() For all x € R+
Caxellil=nx Inl <p
< L 1
|(P>\(X)| > <CAe(|’7|‘f’)X, |77| > .

(i) Forall x> 1
LW < Ca(l + AN FIxeltl=0% || < p,
SR R R DY) e T

PROOF. Part (i) followsreadily from Lemma 1.16 and the L aplace representation of
py inLemma 1.15. Appealing to (1.5) and (1.6) we have

242
A0 = =2~ [ A0
andfork=2,3,...
k—2 _ / @) )
w&k)(x) _ _ Z% /k J 2) (%) (pg\k—l—J)(X) 02+ p2)<pgk—2)(x)'
j=
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Therefore (ii) follows by induction using (i) and Lemma 1.10 together with our assump-

tion on the derivatives of AK/((;‘()E- .

For an m-measurable subset E we denote by |E| its Haar measure and g its char-
acteristic function. For X, € R4 and r > 0, B(Xp,r) denotes the open interval
] max{0,xo — r},xo + r[. Also in the sequel Ny will denote the set of al nonnegative
integers. Finally we shall use C to denote a positive constant whose value may vary from
line to line. Dependence of such constants upon parameters of interest will be indicated
through the use of subscripts.

2. Themolecular characterization of local Hardy spaces. In this section wein-
troduce an appropriate definition of (local) molecules and explore the molecular con-
struction of the local Hardy spaceshP (see [TW] for the general theory of molecules on
euclidean spaces).

We beginwith the definition of thelocal Hardy spacehP and detail its characterization
by atomic decomposition (see [BX2]). For f € Si(Rh*(A)) the local heat maximal
function is defined by

Hof (%) := Ogtlgllf * hy(X)|

where by is the heat kernel.

DEFINITION 2.1. Let 0 < p < oo. Thelocal Hardy space h® = hP(R., #(A)) is
defined by

hP = {f € S{(Rs+,*(A)) : H3f € LP(R+, Adx)}.

Moreover we introduce the quasi-norm |[f||ne := ||Hf||pa defining the topology on
hP.

We recall that for 1 < p < oo, hP coincideswith LP(R., Adx). The elementary build-
ing blocks of hP are the (local) (p, g, s)-atoms. Assume throughout that the exponents p
and q are admissibleinthesensethat 0 < p < 1,1 < g < oo and p < g, and put
s=[a+ 2)(% —1)].

DerFINITION 2.2. A (local) (p, g, 5)-atom is afunction a € L9(R+, Adx) such that for
some Xy € Ry andr > 0, supp(a) C B(xo, r) and

1_1
allqa < m(B(xo, 1))

together with the following (local) moment condition: if r can be chosen not exceeding
1then

. /0 * a(X)XA(X) dx = 0

for al integersk satisfying0 <k <s.
Thefollowing result characterizes hP in terms of atoms.
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THEOREM 2.3 (see [BX2]). LetO < p < 1. Thenf € hP if and only if f can be
represented as a linear combination of (p, g, s)-atomsfor any 1 < q < oo, q > p:

f:Z)\ia;
i

wherethe g are (local) (p, g, s)-atomsand ¥ |Ai|P < oo. Moreover there exist two pos-
itive constants C; and C, depending only on p and A such that

S P < Il < (S P}

Atoms are very convenient for studying the behaviour of certain operators, like radial
maximal operators, on hP (see[BX2]). For example, the continuity of an operator T can
often be proved by estimating Ta when a is an atom. However when we consider the
hP — hP boundedness of an operator T it is possible that for a general local atom a, Ta
may not be an atom itself but has to be decomposed into atoms; indeed in general Ta
will not have compact support. Asin the case of euclidean spaceswe can find a class of
functionsmore general than atomswhich still generatehP. Thesefunctionswill naturally
decomposeinto atoms, and will be called (local) molecules.

We now introduce the (local) molecules corresponding to the atoms defined above.

DEFINITION 2.4.  For admissible componentsp, g and sand e > max{ 5>, % -1}
seta=1-— % +eandb=1-— % +e. A (local) (p, g, s, €)-molecule centred at Xy € R+

is afunction M € LI(R., Adx) with M(x)|B(xo, |x — xOI)}b € LY(R,, Adx) satisfying the
conditions 1-ajb
—ajb

) IMII30MG9|BG, [x — xo)| [ := Nq(M) < 00, and

(i) Let o bethe positive number defined by |B(Xo,o)|%’% = [[M||ga. If o < 1then
for any Rwithe <R < 1,

g MO =0/ A 6] < O () RIBGO R

forl =0,1,...,swhere§ = min{a,s+2— }.

REMARK 2.5. The moment condition enjoyed by atypical molecule on a euclidean
space is now replaced by (ii) (which is an immediate consequence of the moment con-
dition in the case of euclidean spaces). In contrast to the case for euclidean spaces, the
generalized translation of a polynomial on (R+, *(A)) is not necessarily a polynomial.
Hence for alocal atom a, Ta may not satisfy the moment condition. However (ii) can
be satisfied by Ta for the most important convolution operators T if a is alocal atom
supported in B(xg, r) withr < 1.

For xo € R+ and o > 0 we define the following subsets of R.:

Eo:={Xx€R::|x—x| <o} and
Ex:= {XER:: 2 < |x—x| < 2%}, k=1,2,...
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and put
Ji, ={keNp:2%¢ <1} and Jp,:={keNg:2% >1}.

In the particular case 0 < Xp < 1 we associate with Xg two intervals as follows. First
choose the unique integer ko such that 21 < xg < 2%¢, and then define

_ [[0x0—2%"1], ko>2,
T 0%+ 4, ko =1,
Fio == Ix0 + 29 %0, %0+ 2], ko > 1.

Fio

For this kg we then use Ey,_; := Fy,—1 and Ey, := Fy, in place of the F,_; and Fy,
defined above. We refer to these intervals Ey with left endpoint 0 as of type |, and the
remaining subsets Ey as of typell.

LEMMA 2.6. Letp, g and s be admissible exponents. Then for each k € J;,, there
exist functions y¥ (I = 0,1,...,s) on R, such that supp(¢) C E, | = 0,1,...,s,

1 ) _
Ek'/Ek W)X — xoyAX) dx =&, 1,j=0,1,...,s

and
Cap(2%0) "L EJAX) L, if Exisoftypel andp < 1,
Cap(2¢a), otherwise

X <

whereé;; = 1if | = j and O otherwise.

Proor. We follow the idea in the proof of [K, Lemma 4.6] and only consider the
type | case (the proof for type Il intervalsis easier and runs similarly). Then Ey has the
following form:

[0, 4], if o =0andk = 0,
E — [0, %0 + 0], ifO<x <1k <Oandk=0,
71 10,%+ 4], if0<x <1k =1landk=0,

[0,% —2972%0], ifO<x <1k >2andk=ky— 1.

ForO<p<1lputd=[20+2]if p=1andd = sotherwise. Denote by Pi(d; X)
(i=0,1,...,d) the polynomials of degree < d on thereal line determined uniquely by
the conditions

1 .
— (A" ] _ s P
Ek/EkP'(d’X)X dx=8;, i,j=0,1,...,d.
Let R bethe right endpoint of the interval E, and definefor | = 0,1,...,dandk € Jy,

ERAR) e 0 S ()6 'RP(d ), p<1

U =
! RS e, (9P, ), p=1

Using Lemma 1.10 we can verify that ¢ satisfy the desired conditions. ]
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LEMMA 2.7. Letxyo € Ryando > 0. Then
|B(%, 0)| < Ca2 ¥|B(X0,20)], k€ No

and

B(XO’ 2k+10)1 ke 'Jl,m
B(XO! 2ko.), k E \]210,
|Ex| ~ |B(X0,2%0)|, k€ No.

Ex C

ProOF.  Appealingto (1.2) and Lemma 1.10 we obtain for any R > 0

Re+2, X <R R<1,
(2.8) [B(o,R)| ~ § RA(0), ¥ >R R<1,
etotR - R> 1.
The lemma then follows from (2.8) and the definition of E,. ]

The following result shows that molecules are generalization of atoms.

LEMmMA 2.9. Every (p,q,s)-atom ais a (p,q,s,¢)-molecule for all ¢ > 0, and
Ng(@) < 1.

PrROOF. Condition (i) in Definition 2.4 can be verified in the same way as for eu-
clidean spaces. To prove that a satisfies condition (ii) in Definition 2.4 we can assume
supp(a) C B(xo, r) wherer < 1. Such an atom satisfies the moment condition

./OOO aXAX)dx=0, 1=0,1,...,s

and then the result follows using (2.8). ]

We now prove the main result of this section: every molecule has an atomic decom-
position. From this the molecular characterization of hP will be evident.

THEOREM 2.10. Let M bea (local) (p, q, S, €)-molecule centred at xg. Then M € hP
and
IMlhe < CapNg(M)

with Ca p independent of M.

PrROOF. Consider the setsEy (k = 0,1,2,...) where o > Oisdefined asin 2.4(ii),
and abbreviate xg, by xk. Put My = M. For each integer k € J;, define

S

(2.12) Pe(X) := > Mg ()x(¥)

j=0
where
_ 1 /OO Mi(X) (X — Xo)¥ A(X) dx
My EfJo X '
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Then

(2.12) M= Mc= > (Mc—P)+ > Mc+ Y Py
k=0 kedi, kedz,, kedi,

The proof will consist of three parts:

1) To show that each My — Py (k € Ji1,,) isamultiple of alocal (p, 1, s)-atom if Ey
isof typel andp < 1 and aloca (p, g, s)-atom otherwise, and that the coefficients sum
appropriately.

2) To show that each My (k € J,,,) isamultiple of alocal (p, g, s)-atom and that the
coefficients sum appropriately.

3) Toshow that "<, Pk canbewritten asasumof local (p, 1, s)-atomsand (p, oo, S)-
atomsif p < 1and asum of local (1, 0o, s)-atoms if p = 1, and that the coefficients sum
appropriately.

The theorem will then follow from Theorem 2.3.

Without loss of generality we may assumethat Nq(M) = 1. For eachk € No applying
Lemma 1.10 we obtain from Definition 2.4(ii)

[Midlaa < CaplBlo, 210)| [ M(9[B(xo, [x — )|

S CA,p( | B(XO, U)l

a
_ 1_1
B(X 2HU)|) B0, 2 )7

wherea=1— % + e isasin Definition 2.4. Hence by Lemma 2.7

(2.13) IMillga < Cap(24)~2B(xo, 20)|3 75
and similarly
(2.14) IMill14 < Cap(2)2B(xo, 20)|*5.

Let us start with Part 1. Clearly supp(M — P) C B(xo, 2¢¢) and, by Lemma 2.6 and
(2.11), M — Py hastheright cancellation properties:

(/Ooo(Mk(X) — P(®)) (X — X0) A(X) dx = [Ey|my — |Ey] gmd&” 0

By Lemma2.6 and (2.11) we havefor k € J;,

Cap(20)TAX) 2 fg, [Mk(U)|A(U) du,  if Exisof typel andp < 1,

P < { Capl B Je, [Mi(U)[A(U) du, otherwise.

Consequently for k € J1,

(2. 15) ||Pk||1,A < CA,pHMk”l,Ay if By isof typel and p<1
and
(2.16) IPkllga < Capl|Mi||qa, if Exisof typell orp = 1.
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Therefore appealing to (2.13)—(2.16) we obtain for each k € J; ,
1Pk — Mil|1a < Cap(2)2|B(xo, 20)|* 5, if Ecisof typel andp < 1

and
1Pk — MiJlqa < Cap(2)3|B(X0, 20)| 377, if Exisoftypell orp=1

andhenceal := (\M)~(My—Py) isalocal (p, 1, 9)-atomif Eyisof typel andp < 1, and
alocal (p, g, 9)-atom otherwise. Here A = Cap(2°) 2 satisfies Sey,, [\ [P < Cap.

For Part 2 we observethat for eachk € J,,,, My issupportedin B(xo, 2¢0) and 20 > 1.
From (2.13) weseethat & := (\?)~ My isalocal (p, g, 9)-atom, and \? = Cpp(24) 2
satisfies Yyey,, [P < Cap.

Finally weturn to Part 3. Let K € Ng be the integer such that 2Ko < 1 < 2%*15 and
put ¢i = [Ex|~"¢{'xk- Then by (2.11)

s K .
> P =30 > maEdf(x)
ked1» =0k=0
K s
= > > Nfgf(x)
k=01=0

where N = ¥, ny|Ej| and

PO =P, k=0,1,...,K-1,
U, k=K

By the definition of E, we seethat fork € J;, andl = 0,1,...,s

#wz{

k
NF= 2 [ Mi0)(x — o) A dx
j=0"Ei

(2.17) T 20-20) MOA(X — %0)' A(X) dix
= { + g, MOY(X — xo)A(X)dx, ifO<x <1 k=ko—1,
JB6,2¢0) MO (X — Xo)' A(X) dX, otherwise.

Applying Definition 2.4(i) and Lemmas 1.10 and 2.7 we obtain forj > 1

1

! L IM09joAM dx}q

/EJ IM()| [x — %o'AX) dx < (20)'|E| [ E
< Cap(20) |Ej|*3|B(%, 2j0)|_bHM(X)‘B(x0, Ix— X0|)‘bHM
< Cap(2 ) [B(xo, 20)|*§[B(xo, 0) 2

< Cap(@)%(20)'|B(x0, 20)| "5

and )
e, MO 1 — 30l AG) dx < o [Eo]*~ & Mg

< Capo'|B(x0, 0)| 5.
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Thusfor each integer j € Ng

1

(2.18) L MO x — Xo['A0Q dx < Cap(2) (2 0) [B(xo, 20)[* 5.

Now by (2.17) and (2.18) we apply Definition 2.4(ii) with R = 2o for each k € J;, to
obtain

INK| < Cap(2)%(20)!|B(x0, 20)|* 5

where3 = min{a, s+2—1}. By Lemmas 2.6 and 2.7 weobservesupp(¢) C B(xo, 2*%0)
fork=0,1,...,Kand

/0 ” AKX — X AX) dx = 0

forj=0,1,...,sandk =0,1,...,K—1. Noticethat Ex and Ey.; cannot simultaneously
be of typel. Therefore using Lemmas 1.10, 2.6 and 2.7 we havefork = 0,1, ...,K

S
>INl < Cag(2) B0, 20
if p < 1andeither Ey or Ey+1 isof typel, and
S 1
> INFoI (| < Cap(29) " B(xo, 20)| 7

otherwise. Consequently al® := (\&)~1 55 NkgKisalocal (p, 1, s)-atom if p < 1 and
either Ey or Ex. isof typel, andalocal (p, 00, 5)-atom otherwise. Here A% := Cap(24) 7
satisfies Ykey,, AP P < Capsinced = min{a, s+2— ‘%} > 0. Thetheorem istherefore
proved. ]

We are now in a position to give the following molecular characterization of hP.

COROLLARY 2.19. Letf € S{(RJ,,*(A)). Thenf € hP if and only if it hasa molec-
ular decomposition:

f=2"M
j
wherethe M; are (local) (p, g, s, €)-molecules such that

Z Nq(Mj)p < 00.
J

Moreover if the above decomposition holds then

[Fllne ~ 3= No(M;)®.
]
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3. Fourier multipliers for hP.  We now turn to the Fourier multipliers for hP on
(R+, *(A)). After giving estimates for the Fourier transform of functionsin hP weintro-
duce the Fourier multipliers for local Hardy spaces and give a necessary condition for
a bounded function on the dual space R} to be a Fourier multiplier for hP. We then es-
tablish a version of Hormander’s multiplier theorem for hP using atomic and molecular
theory.

LemmA 3.1. If aisalocal (p,q,s)-atom then the Fourier transform of a is holo-
morphicin theinterior of F, continuous on F; and satisfies

a(\)| < Cap(@+ A, A eF;

wheres = [(2cr + 2)(% —1)].
PROOF. Supposethat aissupportedin B(xo,r) for somexg € Ry andr > 0.1fr > 1
thenweapply (1.7), Lemma1.18(i), Definition 2.2 and (2.8) to obtainfor A = ¢+in € F;
[A] < [ 120 (I AG) dx
< [|al|1a < [B(xo,N|*"7 < Cap
if |n] <p,and
a0 < ”a”l’Ae(\’IFﬂ)(Xo"'r)
S |B(x0, r)|1_%e(|’/|7ﬂ)(xo+r) S CA,p

if n > p.
Now assumer < 1. Using (1.7) and the cancellation property of a and the Taylor
expansion of ¢, about xq of order swe have

1
(s+1)!

where &4 € B(Xo, ). First consider xo < 2. Then by Lemmas 1.17 and 1.10 and (2.8) we
obtain for X € F

(3.2 a0 = | 8090 — % o £ (6)AR) dx

a\)| < Carstt 20 AR dx
[a(\)| < Cap ./B(W)| X)IAK)

< CA'prS+1|B(Xo, r)|l—% < CA,prS"l*”*E
if [\ <1, and

/17

2] < Capr e ) ([ Tl AR dx

max{x—r,0}
Xo+r 1 1
—a—3 ppy)- 3 gl
+./w| la()|A|"* 2 A(X) 2 € A(x)dx)

< CA,prS+1(1 + |)\|)5+1|B(Xo, r)|l—% < CA,p(l + |)\|)s+lrs+1+n_a

if [\ > 1.

https://doi.org/10.4153/CJM-1998-047-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-047-9

FOURIER MULTIPLIERS FOR LOCAL HARDY SPACES 911

If xo > 2 thenfor x € B(Xp,r) we havex > xo — r > 1. Thus appealing to (3.2),
Lemmas 1.18(ii) and 1.10 and (2.8) we obtain for A € Fs and |A| <2

|a(\)| < Capr®?|al|y a6 Dote*)
< CAxprSﬂlB(XO, r)|17%620(%71)(X0+r) < CA’prs+27%,
and to Lemma 1.17 in place of Lemma 1.18(ii) we obtain for A € F; and || > 2
a(\)| < Capr ™A 2 ||a|y ael =00
< Capr ™LA |B(xo, 1)1 326000 < Cp ro* 25 AP,
Thereforefor A € F;
Cap r>1,

(3.3) B)| < { CapL+[ADSIEHTE, 1 <1, %<2,
Capr™ 2 F(L+[A)L, r<1,%>2
The result now follows from Lemma 1.12(i), (1.7) and (3.3). ]

From the definition and Theorem 1.14 we see that the Fourier transform of atempered
distribution is adistribution in S’(F1). The following result shows that if f € hP then f
is actually analytic on F.

THEOREM 3.4. Letf € hP, 0 < p < 1. Then the Fourier transformf is an even
function holomorphic in theinterior of F5 and continuous on F; satisfying

FO)| < Callflne(@ + AN, X e Fy.

PROCOF. By Theorem 2.3 we have a decomposition
f= Z A,—a,—
]
where the g arelocal (p, g, s)-atoms and

221417 < Capl[Fllne-
i

Since the series convergesin S’(R+, *(A)) and the Fourier transform is continuous on
§'(R.,*(A)) we have

f = Z )\J?ﬂ
j
Thus Lemma 3.1 and the fact that

1/p
SIS (SINP) < Cagllf o
J J
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give the theorem. ]

For abounded function mon (R, #(A)) consider the operator T, defined by
(3.5) (Tnf)"(A) = MOOF (V).

By Theorem 3.4, T, is a well-defined continuous operator from h? (0 < p < 1) to
S’(R+,*(A)) and by Theorem 1.8, T, is bounded on L?(R.,Adx) whenever m is a
bounded function. A bounded function m is said to be a Fourier multiplier for hP if
the operator T, takes hP continuously into hP.

The following theorem shows that some holomorphy of the function mis necessary
for T to be bounded on hP. This new phenomenon, different from the euclidean case,
arises from the exponential growth of the hypergroups.

LEMMA 3.6. Let 0 < p < 1. Then every Fourier multiplier mfor hP extendsto an
even function holomor phic in the interior of the strip Fs and continuous on Fs.

ProOF. Choosef (x) = hy(X) wherehi(x) isthe heat kernel (see[AT]). Now applying
the semigroup property of the heat kernel:

htl * htz = htl‘ﬂz

and Definition 2.1 we seethat f € hP for 0 < p < 1. Observethat f()) = e ¥ is
holomorphic and does not vanish. If misaFourier multiplier for hP then T,f € hP and,

by (3.5), m()\) = %& Thelemma now follows readily from Theorem 3.4. ]

We now establish a version of the Hormander-Mihlin multiplier theorem for hP
Fourier multipliers on (R+, *(A)), but first we begin with some definitions. The notation
K isreserved for the kernel obtained as the Fourier transform of min the distributional
sense. Then Tf = f x K. Choose an even C*-function ¢ on R such that ¥(x) = 1
for |x| < 3 andy(x) = Ofor [x| > 1, and fix once and for all akernel decomposition
K = K9+ K> where K® = Ky and K* = K(1 — 1).

DEFINITION 3.7.  For apositive integer N we say that a bounded function m satisfies
a Hormander condition of order N (and denote this by m € M (2, N)) if m extends to
an even analytic function inside F5 and the derivatives m®" extend continuously to the
whole of F; and satisfy

sup(1+ A MY\ < o0, i=0,1,...,N.
AGF(;

Forme M (2,N) set | Ml o) 1= MaXo<i<n SUP,cF, (1 + [A)) MO (V).

Let ¢ be an even nonnegative C*-function supported in {x € R : 1 < |x < 2}
and satisfying 35°_ ¢(2‘Jx) = 1forx # 0. Put ¢;(xX) = ¢(27'x) forj = 1,2,...
and po(X) = 1 — 32 ¢(27'X). For m € M (2,N) we fix once and for al a dyadic
decomposition m(A) = 322, me(A) where me(A) = m(A)¢y(A). Thusthe corresponding
decomposition for the kernel KisK(x) = 322 o Ki(x) where Kk(\) = me()). Throughout
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the remainder of the paper we shall always assume that misin fact rapidly decreasing
(i.e. m € S(Fy), the usual Schwartz space) though none of our estimates will depend
upon the actual rate of decrease. It sufficesto flatten m or, equivalently, to regularize K
in the standard way. Thus by Theorem 1.14, K € Sp(R+, #(A)).

The proof of the following lemmais similar to that of [An, Propostion 5].

LEMMA 3.8.  Supposethatm € M (2, N) withN = [2“—;2 —a—1]+land0O<p< 1L
Then K> € LY(R+, Adx) and

IK®[l1a < CallMlpm 2n)-

LEMMA 3.9. For any0 < R < 1we have

R
|, VIKCD)IAG) dy < Callmlm R

and 1
Y HKOAG) dy < Callmllyg (R

PrOOF. We only give the proof of the first inequality (the second can be handled
similarly). Let ko be the positive integer such that 1 < 2R < 2. Using the dyadic
decomposition of mwe observe

R R
) YKOIAG) dy < 3 [T KYW)IyAY) dy
k=0
ko R 00 2—k
=2y KA+ 3 [ IKIOAY oy

S /R KR IyA(y) dy
Kekg+l 72 "
‘=o01+02+03

where K¢ = K. Now applying Theorems 1.8 and 1.9 and properties of the classical
Fourier transform we have
}1/2

ko ( roo
o1 < CaR™ ) { [ IKR)IPAW) dy
k=070

ko (oo 1/2
< GRS { [T Mm@ + 0 dA /
k=0'70

< CuR? f{./owm(x)ﬁdx

1/2
}

K] ok
< CaR2 Ml 2 I;JZZ < Calmlim R
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and
gz S [ [ 1/2
72 SCa@ ) 3 { [T KA dy)

ko2 00 o+ 1/2
<Ca@ ™ 2 {7 ImF@+ A

o0 00 1/2
< Ca(2H? meA)|? dA
A@" 3 { [ ImOVE o
< CallmimenR

To estimate o3 we introduce smooth cut-off functions asin [An]. Let «° be an even
C>-function on R such that w°(x) = 1 for [x < 7 and w°(X) = O for [x| > 3, and
set w)(x) = w?(2X) for eachj € No. Then w¥(x) = 1for [x < 27972 W0(x) = 0
for [x| > 277! and |d)6 J(x)| < G2i,i = 0,1,2,.... Denote by | the inverse clas-
sical Fourier transform of m. For a dyadic decomposmon of mlet I(u) = >, 1k(u)
be the corresponding decomposition where Fol(A) = m(27¥)). Put I0 (1—yw Ny
and let K = A~ 1(I°) and mj = Fo(I}). Then I, — I is an even C°°—funct|on sup-
ported in [ 2711 2~ J 11, and hence using the property of the Abel transform (see [T,
Theoreme6.4])weszeethatKk—KO Al — J)|salsosupported|n[ 271-1 271,
Consequently

(3.10) K = KJ(¥), x>277%

We now apply (3.10), Theorems 1.8 and 1.9 and the properties of the classical Fourier
transform to obtain

o0

03<Ca >
k=ko+1]j

S OIOLY

o0

<Ca >
k=ko+1]j

Ayl 2 kanagdy)

>

ko

Z

“ko—1
00 k .

—cu > > @ [ KA}
k
>
o

k=ko+1]j 1

o0

<Ca >
k=ko+1]j

@y 7 mgoras vt

1
Put QJQ =1— wjo. Then nﬁ] = FO(QJQIk) and hence
- a2 | [Z 0 at+l |2 1/2
5<Ch 3 Y @2 [ IFa@oea+ i fa]
k=ko+1j=ko—

Arguing asin [An, Lemma 15] we havefor 81 < 2

L 3 leg_
(2)(2 il 'kHHgl)z) < CR2 R Iml o
j=
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where Hg isthe usual Sobolev space. Therefore by substituting 51 = oc+% and3; = a+2
we obtain

o
—k
o3 < CallMllm 2 k% 12 < Callmm emR
=Ko+

and this completes the proof of the lemma. ]

Let 1 bethefunction definingK®, andfor R > 0and|l € No put Qr,(X) = Yr(X)(X—Xo)
where yr(X) = Y(*5°).
LEMMA 3.11. Forany0 < R<1landk,| € Ng we have
. k
() |ZTyQri(| < CaiR™, [x— x| <R Y E Ry,
- k
(i) 83 YQrIM| < CakR™ %, [x—%| <R 0<y<1and
(i) | &TyQrIM] < Cak Ry % [x—x| <RR<Yy<1
Here T, is the generalized translation defined by (1.12).
PrOOF. By the definition of Qg we seethat
|Qg(')|(X)| < CAYkJRl_k, k € No.

Thus the lemma can be proved in the same way asin [BX2, Lemma 3.15] using Theo-
rem 1.9 and Lemmas 1.10 and 1.17.

LEMMA 3.12.  Supposethat m € M (2, N) withN = g— 5]+land0<p<1,and
aisalocal (p,q,s)-atom supported in B(Xp, r) withr < 1. If Thaisalocal (p,q,s,€)-

moleculethenfor anyc <R <1
) -1(0)°
e T80 = X0) AG 0] < Ca R|BOO R H( )
for| =0,1,...,s, whereo isthe positive number defined by |B(xo,a)|%*%
and 3 = min{1— £ +¢,5+2— £} asin Definition 2.4.

= || Tmallqa

PrOOF. Wefirst observe that an application of the Hormander’s multiplier theorem
for LR+, Adx) (g > 1) gives
(3.13) [Tmallqa < Cagllallga.
By Definition 2.2 we see that (3.13) implies that
(3 14) |B(X01 r)| S CA,q|B(X0: U)l
If R < 2r then we apply the Cauchy-Schwarz inequality, (3.14) and (2.8) to obtain

s TE090¢ = X6) A 8] < CaR[ Tl g1 B0, R
= CaR [B(xo, N)|'"~#[B(x0, 0)[ 5

1B, R)|)%
|B(x0, 0)|

< CanR B00,RI(2)

1
q

= CaR/|B(xo, R)Il‘%(
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We now assumethat R > 2r and write
‘ /B o) Tma(X)(X — Xo)' A(X) dx = ‘ /B - T bRO(X — Xo) AX) dx
# [y ToAG(L— 1r00) (¢ — X0) A ¢
=19 +1@.

LetEg:= {X € R: : ¥ < |x—Xo| < R}. AsTraisa(p,q,s,e)-molecule by assumption
we argue similarly asin showing (2.18) to obtain

19| < CapR [B(xo, R)| | B(Xo, o)~ 5.

Henceby (2.8)
_1/0\B
19] < CapR[BO0,RI*#(5) -

It remains to estimate IS) for R > 2r. Using the property of the generalized translation
Ty and the decomposition of the kernel K we observe

18 = [ TrOIUROI(x — 20)'AK)
= [TKW| [ a0 TyQriIAX) dx| Aly) dy
f <o}, ]
= [TK)| [~ &) Ty Qi ()AX) dx| Ay) dy
JO JO
+ [T K20 [ 29T, Qri(IAK) | AW) dy
= [Tk [ 20T, Qui)AK) ] AGy) dy
0 0
+ LK) [ 29T, Qri09AX) dx| Ay) dy
+ TR [T a0 TyQri(AX) dx|AGy) dy
o)), ]

. 11 12 13
= 10D 4102 4133

where Qg = Yr(X)(X — Xo)' isasin Lemma3.11. Note that r(X) = 1 for [x — x| < 1.
Hence using properties of the generalized translation we have

ToQrI(X) = Qri(¥) = (X— %), [x—Xo| <T, R>2r.

Now using the cancellation properties and the Taylor expansion of F(x,y) = T,yQr;(X)
we obtain

J) 0T, Qri0A b= [ ald[TyQui(9 — Qri(IAM) dx
y 1 1 s ot
- f b a=ve[ L, , a0k -
s+1

(s+1)! .

0
x ( WTUQRJ(@) G- A9 O]
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Thus applying Lemma 3.11(ii) and Definition 2.2 we havefor0 <y <1
7 0T, Qri00AK ) < Capr™ IR 2B, NI ?
and henceby Lemma 3.9, (2.8) and (3.14)
W[ < 110/
I8Y] < CaiR|BOo. R () -

Similarly using the Taylor expansion of T,Qg; about Xp and Lemma 3.11(i), (iii) we
obtainforR<y <1

) T, Qu00AR) ) < Capr* Ry Bl ?
andforanyy € R.
7 00T, QrIIAN dx| < Capr= 1R {Bx0, N3,
Therefore applying Lemmas 3.8 and 3.9, (2.8) and (3.14) we obtain
A _1 g 3 .
I&D] < CaR|B(xo, R 7 (ﬁ) . i=23
and this completes the proof of the lemma. ]

We also need the following estimates concerning m and its corresponding kernel K.

LEMMA 3.15. Supposethat m e M (2, N) with N = [2°'p+2 —a—1]+1, a>0and
O<p<lThenforO<t<1land|x—y|>2

ITu(K * h))] < CaM (2, N)[x — Y| ™MAR) "2 AGy) 27>
whereé = % — 1, hy isthe heat kernel and K is the kernel corresponding to m.

ProoF. We follow [An] and choose w € C*(R) such that w(x) = 0for x < % and
w(x) = 1for x > 1. For any fixed x,y € Ry with |[x — y| > 2 write

Wix—y| (W) = w(lx —y[ + W) w(|x —y| — u).

Then wy,_y| isan even C*-function on R satisfying wy,_y (u) = 1 for Ju] < [x —y| —1
and wyy_y(U) = Ofor |u] > [x —y| — 3. Writing | := A(K * h) and f := Fol we see
that ﬁ‘()\) = m()\)e’t(’\2+”2). Put I\x7y| = |(1 — w‘x,y|), K\Xfy\ = Aill‘xiyl and m|X7y| =
F0I|X,y|. Now | — I, is supported in [0, [x — y| — %]. Hence by [T, Théoreme 6.4] we
have supp(K * hy — Kx_y) C [0, [x —y| — 3] whichimplies that

1
Kot hy(u) = Ky (U), u>|[x—y|— >

Thus by (1.12), T«(K * hi)(y) = TxKjx_yj+(¥), and by [BH, Theorem 2.2.36] and [BX1,
(2.17) and (2.18)]

(3.16) WK+ m0) = [~ My (er0er@)le| 2 .
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We claim now that for any L withO < L <N — % and|x—y| >2

00 1/2
(3.17) {7 1muey)@+ VRN < Callmlyg oy x — yI N,

In fact by interpolation we can restrict ourselvesto the casewhen| € No. In view of the
properties of the classical Fourier transform and the analyticity of mwe have

{/ooo|m\x— )@+ N2 d/\}l/z
< CAZ{/W “I(Q y|(U)|2du}
< CAZZI |+1{/ ||(J)(u)|2 du}

i=0j=

i 00 . 1/2
< Calx — y| Ne b ZZ{/O |uNe5f’“I“)(u)|2du} /

i=0j=0 '

oL i oo N o . 2 1/2
< Calx—y] Ng—onlx y\zz{/o ’d)\—N((/\+|5p)Jn\()\+|5p))’ dA}
i—0j=0""
NV S 1100 45t rND o+ s o) Py L2
< Calx—y| Ne yz(:){/o ‘(A+I5p) m (>\+'5P))‘ dA}
£l
< Calx—y| N | mjjy, @N)*

The lemma now follows from (3.16) and (3.17) using Theorem 1.8, Lemmas 1.17 and
1.10 and a straightforward calculation. ]

Let w be the function as in the proof of Lemma 3.15. For any integer j > 1 we define
an even C*-function w; by

wi(U) = w(2u+j — 1))w(2(—u+j — 1)),
and denote by | the Abel transform of K. Then by Theorem 1.14, m = F(K) = Fo(l). Put

i = (1 —w)l, m = Fo(lj) and K; = A~1(l;). Sincel — I; is supported in [—j + %,] — %],

by the properties of the Abel transform in [T, Théoréme 6.4] we seethat K — K is also
supportedin [—j + 4,1 - —] and hence

(3.18) KK = Ki(x), ifx>]— Z.
LEMMA 3.19. Supposethat m € M (2,N) with N = [2“—;2 —9%1+1a>0and
0<p<1ThenforanyLwith0<L<N-3

00 1/2 L . .
{/o |rn(>\)(1+>\)'-|2d>\} < Callmlly g NI, j=23,....

ProOOF. The proof of the lemmais similar to that of (3.17). L]
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For m € M (2,N) fix a dyadic decomposition m = >3°, my and the corresponding
decompositionsK = >° K and | = 2 Ik where F(Ky) = Fo(lk) = mx. Choose an
even C>-function «° such that

1
0 Lo M= 4’
1
0, > =
X =3
For any positiveintegerj andr > 0putly = (1—&)lk, Ky = A~1(lg) and my := Fo(lg)
where &j(X) := w°(%). Observethat I — I is supported in {u : |u] < 2r}. Using the
properties of the Abel transform in [T] we have

(3.20) Ki(¥) = Kyg(¥), if x> 272,
LEMMA 3.21.  Supposethat me M (2, N) with N = [2“—;2 —a—1]+1,a>0and

0< p<1Givenj € Npandr > Osuchthat 2r < 1 we have for any nonnegative
numbersL; and L, withL, < N

L gy)? < { Cam@n) 28, 2%r <1,
{/ [mg(A)(L+A)7| d)‘} {CA m(2r)~Le2kti-La*d) - otherwise.

where Cam = CallMm )

PrOOF. We only consider the case when L; < L, and 2*Kr > 1 (the proof of the
other casesis similar), and by interpolation we can restrict ourselvesto integersL; and
L,. Applying properties of the classical Fourier transform and the classical Plancherel
theorem we obtain

(7m0 an) < CA;{/;o 9w’
< CA:ZIO{ /2]213 ||(l)( )|2du} 1/2

Ly 00 ) 1/2
@) 2
+CA§){-/2Hr 19 ([? du
=11 +1s.

Using the definition of |,; and mg and properties of the classical Fourier transform we
have

Ly i ) 1/2
LG @ L WP du)

i=0n=0

< Ca(@r) Z Z {/2, : II‘”’(u)u"—”LZqu} v
= @ 535 [ g o) )

i=0n=0

. Li o0 . . 1/2
L L—i o (N=i) 1|2
< Ca(21) ;}{/0 MDA
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Now recall that

m(A) = m(\)$(27¥) fork = 1,2,... and mp(A) = m(A)(1— i B(27N)).
k=1

Hence
Im{= ()] < G2
and
l1 < Callmlm (2,N)(2jr)fLZZk(LFLZ*%).
Similarly
l2 < CA”mHM(2,N)(2jr)_LZZK(Ll_'—ﬁ%),
and this completes the proof of the lemma. .

We now give aversion of Hormander’s multiplier theorem for local Hardy spaces.

THEOREM 3.22.  Supposethatm € M(2N) with N = [22 —a — 1] +1,a > 0
and 0 < p < 1. Then misa Fourier multiplier for hP.

PrROCOF. By Definition 2.1 and Theorem 2.3 we are reduced to showing that for any
(locdl) (p, o0, 5)-atom a

(3.23) ITmallne < Cap

where the constant Ca  is independent of a.
Supposethat aissupportedin B(xp, r) withxg € Ry andr > 0. If r > 1 then wewrite
. XoHr+2
IH5 (Tl = [ IH3(Tm) 0 PAK) cx
+ [, IHETma) 0 PAG) dx
=1y +10.

Note that both H} and Ty, are L?-bounded (see [BX2]) and any (p, 0o, S)-atom must be a
(p,q,9)-atomfor al g > p, 1 < q < oo. Applying Holder’s inequality, Lemma1.10 and
(2.8) then gives
I1 < Capl|Hy(Trma)| |5 o270 *20—
< Cagllal et 20D

< Cap|B(xo, )| 21200 #AA=2) < C, .

To estimate |, we first observe

Twax he = ax oK) = [~ a)Tulhe = K)YAG) dy.
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Fory € B(Xp, ) and x > Xp +r + 2we havex —y > 2. Henceby Lemmas 3.15 and 1.10
wehaveforx > xg+r+2and0<t<1
[Tmx h0O| < CapA()2e ™ [ faly)](x — ) NeAW)! dy
< CapAR) (X — X0 — 1) N[ a0
< CapAR) 5 (x — Xo — 1) Nel1mprtor)
= CapA) #(x—x0 — 1),

Consequently by the definition of Hj

l2 < Cap /><0+r+2(x — X — 1) dx < Cap

and (3.23) followsfor r > 1.

We now assumer < 1. Asbeforelet ¢ be an even C*-function such that ¥)(X) = 1if
x| < 3 andy(X) = 0if [x| > 1, and ¢ an even nonnegative C*-function supported in
{xeR: 1< |x <2} andsatisfyingT°__ ¢(277X) = 1if x # 0. Write

j=—o00

Tra0) == 3 Twa(6; (0709 + Twa0) (1 — D)
j=—00

— (Tma)l(x) + (Tma)Z(X)

where ¢j(x) = ¢(%52) and Dx) = W(*Z2). We first prove that (Tma). has an atomic
decomposition and then that (Tna)1 isa(p, 2, s, €)-molecule.

Foreachj = 2,3,...1etQ = {x € R: : ] < |[x—Xo| <]+1}. Notethat (Tma)2(x) = O
if [x—Xo| < 2.Hence

(Tm@)2(x) = i(Tma)z(X)XQj () = iojz Bi(x).
= =

Using (3.18), (1.11) and (1.12) together with the cancellation property of an atom we
observefor x € Q

Twak) = [~ ay)TXKAY) dy
= [ a)TK (DAW) dy
= [ a0~ 0® [ (L= U s duA®) oy
= [a—u [ am) — %0)Fiyust)Am) dydu

if s>0,and -
Twa0) = [~ a)Fiyus0AG) dy

if s= 0, where
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_ [ (TK)® (%0 + u(y — %0)) — (TxK))O(x0), s> 0,
Flnust) = { T () S TK; (%), ) | s=0.

By [BH, Theorem 2.2.36] and [BX1, (2.17) and (2.18)]

(L)Y = [T MmO (ePMIe)2dr, ke No.

Thus { ()( ) o }
= _ [ m)[eF (X0 +uly —x0)) — #(X0)|, s>0,
Fiyxout) [m(x)m(y) 2200, s=0.

We only consider s > O (the case s = 0 can be handled similarly). Applying Theo-
rems 1.8 and 1.9 gives

IFjyusll2a
={/ \nw)( 9 10+ uly — 1)) — £900)) [ (@)}

<G T[T 0o+ uty— ) — 006) ot}

uly—xo|2k<1 ™"

+Ca /‘n}ko\) (5)(xo+u(y XO))—%)(Xo))‘o(d/\)}%

uly— xo\2k>l
=2t

wherefii(A) = mA)ék(A), po(A) = 1—572; 6(27'A) and ¢k(A) = ¢(27¥X). Forxo < 1
choosey > Osuchthaty < min(N— 252 +a+1,N—s—a—1,5— 222+ 20 +3), and
inadditiony < N—s—a—2if N—s— a—2 > 0. Then we use Lagrange's mean-value
theorem, Theorem 1.9 and Lemmas 1.17 and 3.19 to obtain

(NI

SasCay=yol 3 | [T MO o

uly—xo|2k<1

< Catly — 3ol { [ Moo (L + N Ple)| 2 o}

NI

+Cay—yol {7 ImO)a@ + APl 7 dA)

0<uly—xo|2¢<1

< Gauty — ol [ M}

Nl

+Cauly—yol 35 2SN [Fmy + )N dA )

O<uly—xo|2k<1
Cai~Ne [l o pyUly — Xol, N—s—a—-2>0,
CajNe1|[ml| en Uy — XN N—s—a—2<0,
CAijeﬂSpj”m”M(2,N)(U|y_X0|)17N'v N-s—a—-2=0
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and

<6 X [l s v

uly—xo|2k>1 "

<Ca Z 2k(s+a+17N+«,,){ /90 |n'}()\)¢k()\)(1 + )\)N7%77|2 da
O<uly—xo|2¢>1 J0

}1/2

< Caj e Imly enUly — ) A

Thusfor xg < 1 we have by the definition of an atom and (2.8)

1 00
I[bjll24 < ./0 (1- U)%l[‘/o ay)(y — %0)°[|Fjyusll22A(Y) dY] du
< Cai e My o)

. . 1_1
| NHm“M(z,N)|B(X0aJ +1)[27%.
If xo > 1 then weargue similarly to obtain
Cal e[|l (2 Ax0) "2 Uly — o, N-s-3>0,
. i 1 1
21 < 4§ CANe Iy o Al0) 2 (uly — o), N—s— 2 <0,
. ; 1 ~
Caj e M| o AM0) 2 (Uly — Xo)* 7, N-s—3=0

and
. 5o _1 _o—1_~
> < CA N Ml o AG0) 2 (Uly — X0 N2

whereY; > Oischosensothat y1 < min(N— £+ 3,N—s—3,s— 1 +2), andin addition

Y1 <N-s—2ifN—s— 3 > 0. Henceby (2.8)
[bj[2a < CArNeféﬂjHm”M(z,N)A(XO)%*%’
N . 1
STl @y 1Bo,j + 1)[2

_1
P,

Observe that supp(b;) C B(Xo,j + 1). Therefore g := C;1||m||g/|1(2 N)ij,- is a (local)
(p, 2,5)-atom for eachj = 2,3, ... and

ITadzlhe < Capllmi o {3115}
- y P
(3.24) V1o h

= CA,p”mHM(z,N)-

It remains to show that

(3.25) [(Tm@)allre < CapliMlim @)
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and then (3.23) for r < 1 will follow from (3.24) and (3.25). Let jo be the unique non-
negative integer such that 1 < 2ior < 2. Then

00 - jo+2 -
(Mm@)1(¥) = >° Tma(X)(X)¢j(X) = _JZ Tma(X)(X)¢j(x)

j=—00 j=—00
jo+2

= > Bj(x).

j=—00

Fix a dyadic decomposition m = >¢° ,my and the corresponding decomposition K =
Yo Kk as before. By (3.20), (1.11) and (1.12) and using the moment condition of an
atom we observeforj = 2,3,...,jo+2and x € supp(¢;)

B3 = 2096109 > [ AW TuK()AL) dy
k=0
= 094,093 [ )Ty 1)AG) dy
k=0
= D030 [ (L= W [~ &)y — %)y sIAY) dy )

where

(TeKig)® (%0 + Uy — X0)) — (TxKig) ¥ (x0),  $>0,
S

| - —(
Grius) = {TXKKJ- ) — TxKy(x0), s=0.

Note that Gyjyus(h) = W(A)(¢§>(xo Fuly — x0) — ¢g3>(xo)) if s > 0 and
Grjyush) = Mg(\)(@r(y) — @1 (x0)) if s = 0. Hence by Theorems 1.8 and 1.9

3 [106;Gujyusllzn
k=0

S ” Gk,j ,y,u,s||2,A

= ki{ L7 Ime (48 (0 + uly = 30) — 90 'ZU(dA)} %

<G T ([0 (0 uty - ) — 000) )

uly—xo|2¢<1

+Ca 2 { T Ime(8 (0 + uly —0)) — 0 0) ‘za(dk)} %

uly—xo|2k>1""

=1+ .

Assumethat xg < 2r. Then by Lagrange's mean-value theorem, Theorem 1.9 and Lem-
mas1.17 and 3.21withL; = s+a + 3 and L, = N we have
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L<Cauy—xl ¥ [T ImgMeFP©Ple 2}

uly—xo[2¢<1
1
o 1
<Cady—yol 3> {7 Img@+ NP A}
uly—xp2<1 0
<Cauly—x| Y (@niz
uly—x|<1
2r<1
+CAU|y—Xo| Z (2jr)—N2k(s+a+2—N)
uly—xo| <1
kHr>1

< Cauly — xo|(2r)=S7272
ifN—s—a—2>0,and
Ji <uly—x|(2r)™ >

uly—x|<1
< Ca(uly — xo NS 1(2r) N

if N—s— a— 2 < 0. For the particular casewhen N — s — o — 2 = 0 we write

2k(s+0(+27 N)

h=Cn > ([ ma(9 00+ ity — 1) — 009)) [otan)}
uly—xo|<
2r<1
+Ca ([ ma(9 (00 uty = x0) = 96)) o)}
fLy;k:i'E;
O 2 {7 ma (9 (00 uy = x0) = 96)) ot}
uly—xo|<
22

=11+ 12+ Jis.

Now using Theorem 1.9 and Lemmas 1.17 and 3.21 (withL; = s+ a + % andL, = N
for 1 and Ly = s+ o + 3 for Jy 3) we obtain

1
dA}Z

Ji1 SCauly—Xo| > ‘m&, (M@ + )\)SJ"H_
u\y xo\<l
2Hr<1

< Cauly — xol(@r)™

and )
ZdA}2

=G ¥ {7 Imgeoa + et
uly—xo|<1
Hir>2

< Car(@r)N.
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For J; , we choose 3 > Osuff|C|entIy small suchthat N — 2“‘+2 +a+1— 3 > 0andapply
Lemma3.2lwithl; = s+a+3 SandL,=N—-jto obtam

Ji2 < Cauly — xo|(2r)™NF S 2
uly—x|<1
1<2ir <2

< Cauly — Xo|(@r)™N*Br =5,
Hence

Cart=8(2r)=N+, N—s—a—-2=0,

Car(2r)—s=2, N—s—a—2>0,
N}
CarN=s212)N N-s—a—-2<0.

Similarly applying Theorem 1.9 and Lemmas 1.17 and 3.21 (withL; = s+ o + % and
L, = N) we have

J <Ca / }mk, M@ +Xy U(d)\)}%

uly— xo\2k>1

S rN S—a— l(zjr)—N.

Therefore by Definition 2.2, (2.8) and Lemma 1.10

(3.26) IBill2a < Cap2 14 |B(xo, 2*1r)| 35
where
S_2rx_';-2+2a+3' fN—s—a—2>0,
p1 = N—Z"‘—p+2+a+1, ifN—-s—a—2<0,

N_Za_p+2+a+1—/j, ifN—s—a—2=0

andj =2,3,...,jo+ 2. If xo > 2r then asimilar argument gives

(3.27) Bll2a < Cap2 #2|B(xo, 2*11)| 75
12, P
where
S—%‘FZ, ifN—s-->o
po = N—%+% ifN—s—3 <0,
N—21+3—p5 ifN-s—2=0

andj=2,3,...,jo+2.
We now prove that (Tha), is a (Iocal) (p, 2,s,¢)-molecule with ¢ satisfying

max{ 2(,,S+2, 11} < e < min{2%, 50 — 1 — 01 First by Definition 2.2 and

the fact that Tm is L2-bounded we observe

I(Tma)ll2a < [Tmallza < [[allza < CaplBlxo, |75,
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Put u = p1if X < 2r and p = p otherwise. By (3.26), (3.27) and (2.8) we have with

a= 1—%+e and b =  +¢ asin Definition 2.4.

| (Tm@)109 B0, — 0| 5.,"

1o 12 _
< Capll ) > bi||2,Ab|B(X0,r)|b a

j=—00
LA 1-§ j+1,[b—a
+CA,p_ZZI|ij2,A |B(X0, 2*11))|
j=
11 1-8
< CaplB(X0, 1|72 | Tmall;

jot2 a . a
+Cap > 2710 |B(xo, 2*1r)| 2:-2)
i=

jot2 A . a
<Cap> 271108 |B(o, 21+1r)|5(%,—%)
i=1
20+2

Capr B -0 o2y A-D-@e23), ;< 2,
Cap(rAe) P98 sl iy b2 x> o
< CaplB(x0,N)[36 2.

Consequently
(3.28) N2((Tma)1) < Cap.
Forany0O<R<1andl =0,1,...,swehave
VR _ VR
Sy (T2 — X0 A e = [ Trmao)(x — x0)' A dx.

Thus by Lemma 3.12 and Definition 2.4, (Tma)1 isa (p, 2, s, €)-molecule. The estimate
(3.25) now follows from (3.28) and Theorem 2.10, and this completes the proof of the
theorem. "
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