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ABSTRACT

A modified Bingham numerical model is developed
and tested for the simulation of the motion of snow
avalanches. This two-dimensional, incompressible
model takes the form of a two-viscosity system in
which a large viscosity is employed in the lTow stress
regions of the flow and a smaller viscosity is used
in the high stress regions. The model involves three
parameters: the two viscosities, and the value of the
stress for the transition between the two flow regimes.
A simple no-slip boundary condition is used at the
interface between the flowing snow and the stationary
snow surface. Model parameters are evaluated by simu-
lating the motion of the leading edge of the flowing
snow, velocity versus depth information, and debris
distribution of small snow test experiments.

INTRODUCTION

A two-dimensional linear viscous model has been
used to simulate the mechanics of flowing snow (Dent
and Lang 1980). It was found that for small test
slides of less than 20 m s~1 the model, with several
modifications, provided reasonable simulation. One
modification to the Tinear viscous model that was
found necessary was the inclusion of a friction
boundary layer between the flowing snow and the
stationary snow surface. This friction condition
introduced a second parameter into the model. By
adjusting the friction coefficient and the viscosity
coefficient, the model was able to simulate the snow
tests.

A major failure of the linear viscous model for
flowing snow was its response to low stresses. In
the modeling, it was necessary to halt the computa-
tions at the point where the leading edge of the flow
fell below an arbitrarily small velocity. The contin-
uation of the calculations beyond that point would
have eventually allowed the fluid to deform until the
depth of the material was reduced to zero and the
horizontal dimension had become infinite. This motion
exemplifies one obvious difference between flowing
snow and a linear viscous fluid. Snow is seen to come
to rest with a finite depth where the stress is non-
zero. This indicates a threshold stress state in snow
that must be overcome in order for deformation to
take place. This property is due in part to the
cohesion of the individual snow particles, but is
mnainly a result of the granular nature of the
material.

The simplest continuum mechanical wodel to
exhibit this locking property is called a Bingham
material. The constitutive equation for a Bingham

42

https://doi.org/10.3189/50260305500005218 Published online by Cambridge University Press

material is made up of two parts. First, if the
stress intensity is below a threshold value ty,no
deformation takes place. Second, if the stress inten-
sity is above this value, deformation takes place,
and is proportional to the amount that the stress
level exceeds t5. In two dimensions, for positive
shear stresses t, the constitutive relation can be
expressed by
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where u and v are the components of the velocity in
the x and y directions and u is a constant parameter
similar to the viscosity coefficient for a linear
viscous fluid. This is a simplified version of the
general Bingham equation that can be found in Malvern
(1969), for example. In that form the equations must
be expressed in a manner that is frame-invariant.
This requires the yield stress 1y to be expressed as
a function of the stress invariants. The detailed
development of this and subsequent equations in a
general two-dimensional form can be found in Dent
(unpublished). Well-known materials of the Bingham
type include paints, greases, concrete, and tooth-
paste.

In addition to modeling the locking property of
flowing snow, a Bingham model contains the necessary
stress-deformation components to model the boundary
layer that was treated as a friction force in the
linear viscous model. In part, this is due to the
additional parameter ty involved in the Bingham
equations. But also the very nature of the Bingham
model, being physically more accurate, allows a more
realistic representation of the motion, and, as will
be seen by the results, provides a very good fit to
the data.

8IVISCOUS MODEL

The implementation of the Bingham model proved
to be a difficult task. Of primary importance to this
model is the location of the yield surface that
separates the two flow regimes. On one side of this
surface, the material is locked and behaves as a
rigid body. On the other side, the constitutive
equation, when substituted into Cauchy's equations,
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provides the Mavier-Stokes equations. In both cases,
existing methods allow the governing equations to be
integrated. Unfortunately, the calculation of the
location where t = 15 is not a simple procedure,
since the constitutive equation does not define the
stress when it is less than 1y. For this reason, an
alternate formulation to perform essentially the same
task was considered.

This new approach allowed small deformations to
take place according to a linear viscous flow law in
the Tocked portion of the flow. The viscosity used in
this region is taken so high that the resulting
deformation can be neglected relative to deformations
outside the region. The small deformations and Tinear
viscous flow law allow calculation of stress values
from the constitutive equation. Location of the yield
surface, ™ = 145, is then easy to find. Outside the
region of sma]? deformations, as in the pure Binghan
model, the flow is still linear-viscous, but with a
different viscosity. This two-viscosity system was
dubbed the biviscous modified Bingham madel. Figure 1
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Fig.l. One-dimensional form of the Bingham and
biviscous constitutive laws.

shows a one-dimensional characterization of this flow
law along with the corresponding pure 3ingham rela-
tionship. The parameter v, analoaous to the kine-
matic viscosity, has been introduced in this figure
and is equal to u/p, where p is the mass density

of the material. The wathematical representation of
the hiviscous model is

y au av
T = — ik — for
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and
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where u' and p are the viscosities in the two flow
regions. The term to/u' in the second equation is a
small correction to account for the fact that the
velocity gradient is not zero at the point where the
stress intensity bhecomes equal to 14 (see Fig.1).
Again these equations are a simplification of the
general two-dimensional constitutive equation (Dent
unpublished). In the general form, the yield surface
represented by Ty must be found according to a
frame-invariant yield condition. The simplest method,
and the method used in this model, is the equivalent
of the Treska yield criterion found in solid mechanics
(Malvern 1969).
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The general two-dimensional biviscous constitutive
equation was implemented by using the framework of a
numerical code to solve the two-dimensional incompress-
ible Navier-Stokes equations (Amsden and Harlow 1970).
The flow was assumed to be incompressible, which
szmp1ifies both the analysis and the resulting equa-
tions. This assumption is dubious at best, but 1ittle
data are available to check it. The resulting code
utilizes a marker and cell method which finite differ-
ences the governing equations. Stresses are calculated
at the cell nodes using the constitutive equation and
and the kinematic flow field. These stresses are then
used in a finite-difference approximation to the
momentum balance equation to determine the advanced
time flow field. The exact implementation of this
procedure is again detailed in the thesis by Dent
(unpublished).

BIVISCOUS MODELING RESULTS

The biviscous model was used to simulate the tests
on flowing snow described in Dent and Lang (1980, 1982),
These tests decelerated 2.2 m3 of snow from 18 m s-!
to rest, on a level runout of packed snow. Data on
the position of the leading edge of the snow, velo-
city versus depth, and final distribution of debris
were collected. Also, qualitative information on the
mechanics of the flowing snow was gathered.

Since the flow entered the runout area from an
essentially friction-free polyethylene surface, it
was allowed that the initial configuration would be
a mass of material moving at constant speed on a
horizontal friction-free surface. The initial veloc-
ity of this material was taken to be 17 m s-!, which
was derived from the initial slope of the curve
relating position to time. The spatial dimensions of
this material were determined from film footage taken
of the test and are illustrated in Fiqure 2.
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Fig.2. Input flow confiquration for computer
simulation of snow flow.

The numerical modeling commenced with the flow of
the material off the frictionless surface onto a
surface employing a no-slip boundary condition. The
computational grid consisted of an area 23 m Tong and
50 cim high. The horizontal dimension was divided into
140 cells, each 0.20 m Tong, and the vertical dimen-
sion divided into 10 cells each 0.05 m high. This
proved to be about the minimum grid size that was
economically feasible. A smaller cell size was tried
for an abbreviated run and the results showed little
overall variance from results of a similar test on
the 0,20 x 0.05 m grid. A larger-celled grid was,
however, deemed inappropriate since the boundary
layer at the bottom of the flow was of the order of
5 cm. Cells with vertical dimensions larger than 5 cm
would be unable to resolve this layer. The horizontal
dimension was then chosen to provide reasonable
resolution in that direction and to maintain an
aspect ratio between the cell dimensions of no more
than 5 to 1.

The three-program modeling parameters, 14, v = u/p,
and v' = u'/p, were then adjusted so that the computed
flow conformed to the observed motion of the test. It
was found that the parameters 1y and v were princip-
ally responsible for the motion of the leading edge
and the distance of total runout. However, many
different combinations of 1, and v produced the same
runout. Flow velocities were not large enough to
provide definite distinctions between combinations
of these parameters. Fiqure 3 shows several one-
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Fig.3. Constitutive relations that modeled
the motion of the leading edge of snow.

dimensional equivalent constitutive relations involv-
ing combinations of 145 and v that gave good results
for leading-edge motion.

The velocity profile measured in the window test
provided another criterion to be satisfied by the
numerical simulation. It was found that the computer-
generated velocity profile was also principally a
function of the two parameters Ty and v. As 14 was
increased, and v decreased, to maintain the same
leading-edge characteristics, the velocity profile
became sharper, with larger gradients near the
surface and smaller gradients ahove. Conversely,
combinations of small T4 and larqe v produced
gradients more closely resembling the parabolic
shape expected for pure viscous fluids. Matching the
shape of the velocity gradient provided the necessary
information to define the two parameters ty and v
uniquely. These two values were found to be: for tq,
expressed in units of stress per unit density,

2.20 m? s72; and for v, the kinematic viscosity,
0.002 m? s~1, It was also noted that these values
provided the best comparisons of leading edge versus
time with the experimental snow test. This comparison
is illustrated in Figure 4. Figure 5 shows examples
of the velocity gradient calculated by the computer
model, corresponding to the location of the data
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X X 3| = =
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Fig.4. Position of the leading edge versus time:
comparison between experiment and computer model.
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Fig.5. Velocity profile comparison between snow
test and computer model. Calculations for various
combinations of model parameters.

acquired in the snow tests. Also shown is the profile
found from the snow tests, which is plotted on a
velocity scale twice that of the other plots because
the velocities measured from behind the window were
about half those measured for the motion at the
center of the flow. It is believed that this is due
primarily to the boundary drag exerted on the edqe of
the flowing snow. The velocities of the flow measured
from the window were about 7.0 m s7!, at the leading
edge. Meanwhile, at the center of the flow, the lead-
ing edge was found to be moving at nearly 16 m s71,

The magnitude of the third parameter v' was
found to have very little effect on the motion of
the leading edge. The velocity profile, however, was
affected by this parameter, though small adjustments
of ty and v could be made to compensate. It was also
found that v' had a pronounced effect, with 1, and
v, on the final distribution of debris. As v' incre-

n
A |
: Tc 2,2 2
Fol =220/ v - oo2atse vt - 0.0 n/s
2 . =
s - 7 ) ; : Wit
S%h. oo 4.00 8.00 12.00 16.00 20.00 24.00 28,00
T= 2,004 POSITION (M)
=
i
o

28.

0.50

=
P i
To| swow TEST 2-2-23-80

8
a8 —
S50 .00 §.00 12,00 16,00 20,00 24.00  26.00

POSITION (M
T= 0.000

Fig.6. Final depth profile of debris; comparison
between experiment and computer model.
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Fig.7. Time sequence particle plot of computer
simulation of snow test.

ased, deformation in the upper regions of the flow
decreased. This resulted in less total deformation of
the initial flow configuration. A value of v' equal

to 0.10 m s71, combined with the previously speci-
fied values of 1y and v, provided the best comparison
of final depth profiles of the debris. This result is
is plotted in Figure 6, as well as the results of a
simulation with v = 0.20 m® s™!. Figure 7 shows a
full time series of particle plots for this simulation.
In these plots, the friction-free surface extends from
the left boundary to the 8.00 m mark. From there on-
ward the surface is no-slip. The vertical dimension
(1abeled depth) is plotted on a scale exaggerated by

a factor of 4 over the horizontal scale.

As can be seen from examining Figures 4, 5 and 6,

the modelin resu1ts w1th To/p = 2.2 W s72,

= 0,002 - and v' = 0710 gl mode]
closely those of the snow experiment. Moreover
these parameters form a unique set in which variation
in one parameter will degrade the modeling results,
whatever adjustments may be made in the other two
coefficients. Additional validity to the values of
these parameters is obtained from other experiments.
The work of Maeno and Mishimura (1979) and of Maeno
and others (1980) on snow suspended by air to form a
fluidized bed, produced measurements of kinematic
viscosity of the order of 0,001 m s=! for incom-
pletely fluidized snow. Bucher and Roche (1946), in
measuring the frictional resistance of hard wet snow
for speeds between 0.2 and 2.4 m s-}, found that the
Tinear fit to their data yielded a constant of
proportionality of 475 (M-S)/m. If it is assumed
that there was a 2 mm layer of granulated snow of
density 300 kg m~3 between the sliding surfaces and
that the velocity gradient was linear in this region,
then the viscosity in this layer would be about
0.003 m? s~l. Similar tests by Dent and Lang (1982),
using hard sintered snow over the velocity gradient
range 50 to 300 m s72 yielded a viscosity coefficient
of 0.004 m* s7! and a t,/p value of 1.8 m 572
These values are for a very narrow range of slow
speeds and probably differ at higher speeds, but do
serve as order of iagnitude values.

A last observation is that the tangential
boundary condition used in the modeling at the bottom
boundary was the no-slip condition. The quality of
the modeling results lends credence to the hypothesis
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that this boundary condition is appropriate for
flowing snow.

In carrying out the computer modeling the time-
step between calculation cycles was chosen such that
the maximum distance traveled by any part of the
fluid was less than 0.1 of a cell dimension. llsing
the cell dimensions previously described and this
time-step criterion, no numerical instabilities were
encountered for the range of parameters involved in
this modeling. To generate the results exhibited in
Figure 7, each modeling run required about 1 000
calculation cycles, taking, for the 1 400 cell compu-
tational system, about 30 min of CPU time on the
system used.

CONCLUSIONS

For snow flow in the speed range <20 m s71 the
biviscous model has provided satisfactory results.
The overfall motion of the snow as depicted in the
motion of the leading edge and the final distribution
of the depth of the debris were well simulated. In
addition, details noted in the snow tests were repro-
duced by the computer model. Quantitatively, the
velocity as a function of depth was accurately
modeled. Qua11tat1ve1y, the formation of the boundary
1ayer can be seen in the time-seauence particle plots
in Figure 7. The particles near the front of the flow
at the bottom are retarded as the upper part of the
flow proceeds over them. These particles are seen to
be left in a lTayer along the bottom boundary, just
as the dye placed originally in the front of the flow
in the snow tests was seen to be distributed as a
layer over the entire runout area (Dent and Lang 1982),
Examination of the motion of the marker particles in
the upper portions of the flow shows that little
deformation is taking place in this region. This
motion is confirmed by observations (Dent and Lang
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Fig.8. Velocity of the leading edge versus time
(computer).
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1982). Another aspect of the flow seen in both the
snow tests and the computer modeling is the surging
motion of the leading edge. Although it is not shown
clearly in the particle plots, the front of the
flowing mass was continually breaking over the slower
moving flow near the surface. This motion showed up
most strikingly by monitoring the velocity at the
leading edge. It was found that this velocity was not
a smooth function of time but exhibited large vari-
ations around the average decaying velocity. Figure

8 is a plot generated by the computer at the time of
execution showing the speed of the lTeading edge
versus time. The speed plot shows this surging motion
clearly. This motion was also seen when reducing the
velocity of the leading edge in the tests of snow flow
from 16 mm film. It showed up as anomalous measure-
ments of the velocity of the leading edge at sporadic
times in the flow. It could also be seen viewing the
motion-picture film, as surging or jetting of the
leading edge, much 1ike the motion of water waves
shoaling on a beach after breaking.

At speeds above 20 m s7!, much conjecture still
exists as to the behavior of flowing snow. Mellor
(1968), Perla (1980), and others have speculated
that the flowing snow enters a turbulent flow regime
at high speeds. This transition point must be a
function of speed and type of snow in the avalanche.
So far, there is no documentation on when avalanching
snow enters a turbulent flow regime. The motion of
the leading edge of the avalanche or the powder dust
cloud is frequently cited as evidence of turbulence.
However, for those avalanches with a central core,
the motion of that mass of material does not necess-
arily have to be turbulent. As seen in the experi-
nments on flowing snow (Dent and Lang 1982), the
largest velocity gradients, and hence the greatest
dissipation, is at the base of the flowing snow. It
is also at this location that gravitational forces
produce the largest normal stresses. In order for
this area to become turbulent these normal stresses
must be overcome by granular interaction. This may
happen if the avalanche speed is fast enough, but
this will be the last area to become turbulent. The
conditions necessary for this to happen are unknown.
However, for speeds below 20 m s7!, no evidence of
turbulent motion was observed in the tests on snow
flow (Dent and Lang (1982)). Marker dye placed in the
snow was not seen to diffuse, but remained in local-
ized regions, deforming by what appear to be streak-
lines. As well as turbulence in avalanches, there
must also exist other velocity-squared forces. Air
drag, ploughing, and entrainment are all effects
that at some point need to be considered.

The exact constitutive relation for flowing snow
is extremely complicated. On physical grounds, a
Bingham-type relation seems reasonable at Tow speeds,
with the addition of velocity-squared mechanisms at
higher speeds. The transition point is unknown.
Investigations of flow velocities and density distri-
butions in higher speed avalanches need be made to
clarify this transition and the mechanics involved.
Once these data are collected, flow mechanisms may be
evaluated. The computer model described in this paper
is easily modified to simulate other flow laws. 1t s
a simple matter to qeneralize from a biviscous formu-
lation to a tri-viscous formulation or a flow law
that involves more viscosities. In this way the
velocity-squared forces could also be approximated.

The computer simulation methodology, particu]quy
the multi-viscosity approach, has proved to be suit-
able for solving problems concerned with flowing snow.
The excellent internal consistency shown by the bi-
viscous modeling of the tests on flowing snow inspires
a great deal of confidence in the method. In addition,
the ease with which the model may be generalized to
include wore complex constitutive lTaws indicates a
vary good prospect for its use as additional inform-
ation about the mechanics of the flowing material is
learned.
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