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Abstract

Recently the class of a]most-<V-continuous functions between topological spaces has been defined. This
paper continues the study of such functions, especially from the point of view of changing the topology
on the codomain.

1991 Mathematics subject classification (Amer. Math. Soc): 54A10,54C05, 54C10.

1. Introduction

In a recent paper, Malghan and Hanchinamani [16] have considered the class of almost-
N -continuous functions between topological spaces. A subset B of a topological space
(X, r) is called N-closed (relative to r) if for any cover ty of B by r- open sets there
is a finite subcollection Y of W such that B c U {*int(rcl V) : V e Y). The concept
of N-closed subsets was first considered by Carnahan [1]. The space (X, r) is nearly
compact if and only if X is A'-closed relative to r. A function / : X ->• Y is called
almost- N -continuous if for each point x e X and each regular open set V containing
f(x) and having N-closed complement there is an open set U containing x such that
f(U) c V. The basic properties of such mappings are studied in [16].

One purpose of this paper is to emphasize the fact that if the codomain of an
almost-N-continuous function / is retopologized in an obvious way then / is simply a
continuous function or an almost-c-continuous function [6,9,19]. This puts the notion
of almost-N-continuity in a more natural setting, and indicates that the distinction
made in [16] between the classes of continuous mappings and almost-Af-continuous
mappings must be interpreted very strictly.
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[2] On almost-iV-continuous functions 119

In Section 2 we define and study the almost coN-closed topology p(x) of a to-
pological space (Y, x). We relate p(x) to the coAf-closed topology n{x) of (Y, x)
considered by MrSevic and Reilly [17], to n(xs) the coN-closed topology of xs, where
Tj is the semi-regularization of x, to the cocompact topology c(x) of (Y, r) con-
sidered by Gauld [5], to c(xs) the cocompact topology of xs, and to the topology
e{x) considered by Gauld [6]. Recall that a set B in (Y, x) is called regular open if
B = Tint(rclfi), and that the family of all regular open sets in (Y, x), which is denoted
by RO(Y, r), forms a base for a smaller topology xs on Y, called the semiregulariz-
ation of x. The space (Y, x) is said to be semiregular if xs = x. A detailed study of
the relationship between x and xs is made in Jankovic [10] and MrSevic, Reilly and
Vamanamurthy [18]. Section 3 discusses some properties of almost-N-continuous
functions. Section 4 is a short collection of results dealing with strongly closed graphs
and Section 5 is concerned with the behaviour of almost-Af-continuous functions in
product spaces.

2. Almost coN -closed topologies

Let (Y, T) be a topological space and consider the collection p'[x) of subsets of
Y denned by p'(x) = {U e RO(Y, x) : Y - U is N-closed relative to T}. Since
the intersection of two regular open sets is regular open and the union of two N-
closed sets is N-closed, p'(x) is a base for a topology p{x) on Y, called the almost
coN-closed topology. The basic relationship between the topology p(x) and the
concept of almost-N-continuity is given by the following result. The topology on X
is unchanged, so it is not specified. The proof is immediate from the definitions.

LEMMA 1. The function f : X —*• (Y, x) is almost-N-continuous if and only if
f : X —> (Y, p(x)) is continuous.

Thus almost-Af-continuity is a 0-continuous property in the sense of [7]. Hence all
general remarks for 0-continuity properties can be applied to almost-Af-continuous
functions. So, for example, [16, Theorem 2.4 and 2.5] are direct corollaries of [7,
Lemma 1 and §6].

Lemma 1 can be used to give elegant proofs of results about almost-./V-continuous
functions (see Propositions 3 and 4 for example), and this approach can be taken to
give alternative proofs of [16,2.1 and 2.2], for example.

Since p{x) C x, the identity function i : (Y, x) -*• (Y, p(x)) is continuous and
also i"1 : (Y, p(r)) -*• (Y, x) is almost-/V-continuous. MrSevic and Reilly [17]
have considered coN -closed topologies and their relationship to the N -continuous
functions introduced by Malghan and Hanchinamani [15]. For a topological space
(Y, x), the coN-closed topology of r on Y is denoted by n{x) and has as a base
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the collection n'(r) = {U e r : Y — U is Af-closed relative to r}. Gauld [5] has
considered cocompact topologies and their relationship to the c-continuous functions
introduced by Gentry and Hoyle [8]. For a topological space (Y,t) the cocompact
topology of r on Y is denoted by C(T) and defined by c(r) = {0} U [U e r : Y — U
is T-compact}. The function / : X —> Y is c-continuous if whenever U C Y is an
open set with compact complement, f~l(U) is open in X. Theorem 1 of Gauld [5]
corresponds to our Lemma 1 above.

It is obvious from the definitions that every A?-continuous function is almost-A7-
continuous. The converse does not hold in general (see Example 1).

For a topological space (Y, r), the topology e(r) considered by Gauld [6], has
as base the collection e'(z) = {U e RO(Y, r) : Y — U is T-compact}, and the
function / : X —*• Y is almost-c-continuous if whenever U C Y is a regular open set
with compact complement, /" ' (£/) is open in X. For every topological space (Y, r)
each compact set is A7-closed, so from the previous definitions we have that every
almost-Af-continuous function is almost-c-continuous.

For any topological space we have in general that e{x) c p(r) C n(r) c r.
We observe that e'(rs) = {U e RO(Y, rs) : Y - U is r,-compact} = {U €

RO(Y, x) : Y — U is A7-closed relative to r}, since a subset A of (Y, r) is A7-closed
relative to T if and only if A is compact in (Y, rs) [20, Theorem 3.1], and [18, Remark
preceding Lemma 5] the family of all regular open subsets of (Y, rs) coincides with
the collection of all regular open subsets of (Y, r). Hence e'(rs) = p(x) and thus
e(rs) = p(r). So we have

LEMMA 2. The function f : X —> (Y, r) is almost-N -continuous if and only if the
function f : X -> (Y, rs) is almost-c-continuous.

Obviously from Lemma 2, if the space (Y, r) is semiregular, then the two notions
of generalised continuity are equivalent.

From the above definitions we also have the following implications. The function
/ : X ->• (Y, T) is A7-continuous implies / : X -> (Y, r) is c-continuous which
implies / : X -»• (Y, r) is abnost-A7-continuous. The following examples show that
these implications are not reversible in general.

The diagram below indicates obvious inclusion relations between these topologies.

t
- «(T)

t
- P(x)

«— C(T)

t
<— e(x)

We shall see that in general there are no other relations, and will consider conditions
under which the inclusions are reversible.

https://doi.org/10.1017/S1446788700038507 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038507


[4] On almost-A?-continuous functions 121

EXAMPLE 1. [9] Let X = IR have the usual topology and let Y = [0, oo) c R
whose topology r has the sets [0,1], {1}, (r, oo), with r > 1, as its basic open sets.

The open subsets of Y containing /(0) are [1, oo), {1}, [0,1] and Y. Among them
only the sets Y and [l,oo) have TV-closed complements. Since [l,oo) € n(x),
/ " ' ( [ I . oo)) = [0, oo) which is not open in X. Thus, by Theorem 1 of [15], / is
not N-continuous. The only regular open subsets of Y with N-closed complement
are Y and [1, oo). The complements of these two sets are also compact in xs. So
[l,oo) e c(tj) and / - 1 ( [ l ,oo)) = [0, oo) which is not open in X. Therefore
f : X -*• (Y,rs) is not c-continuous. But, since int(cl[l, oo)) = Y, we have
/(X) c int(cl[l, oo)), and thus / is almost-N-continuous at x = 0.

EXAMPLE 2. Let X = IR whose topology r has all the points in IR isolated except
0, and the only neighbourhood of 0 is IR. Let Y = IR have the cofinite topology
&. Then <%s is the indiscrete topology on 7. If / : (X, T) - • (Y, &) is a
bijection, then for every closed, compact set K in %s, f~l(K) is closed in T, and so
/ : (X, T) ->• (Y, Ws) is c-continuous. Let C be an /i(^-closed set. Then C is finite
and Ws-compact, but f~x(C) is not closed because of the neighbourhood of 0. Thus
/ : (X, r) ->• (Y, W) is not N-continuous.

LEMMA 3. If the space (Y, p(r)) is Hausdorff, then (Y, r) is nearly compact and
p(r) = TS.

PROOF. Let x and y be a pair of distinct points of Y. There are /?(r)-open sets
U and V such that x e U, y € V and U n V = 0. Hence Y = U U (Y - U) =
(Y — V) U (y — £/), so y is N-closed as the union of two Af-closed sets. Thus (Y, r) is
nearly compact and hence by Theorem 4.1 of [1], (Y, rs) is compact. Since p(r) c rs

and (Y, p(r)) is Hausdorff, {Y, xs) is Hausdorff. Hence (Y, r,) is minimal Hausdorff.
So, we obtain p(x) = rs.

Note that in Lemma 3 we can obtain (Y, z) is nearly compact if the space (Y, p(r))
is either KC .or hyperconnected (instead of being Hausdorff). But then we do not
obtain the equality between the topologies p(x) and r̂ .

COROLLARY 1. If the space (Y, p(r)) is Hausdorff, then c(rs) = rs.

PROOF. Since (Y, pit)) is Hausdorff, by Lemma 3 (Y, r) is nearly compact and so
(Y, xs) is compact. Hence [5, Corollary 3] C(TS) = xs.
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We recall that a function / : X -> (Y, x) is called almost-continuous if / : X —>
(Y, xs) is continuous [18, Definition 5 and Proposition 12], [24].

COROLLARY 2. If the space (Y, p(x)) is Hausdorff, then the function f : X -+
(7, r) is almost-N-continuous if and only if f is almost-continuous, if and only if
f : X -» (Y, xs) is c-continuous.

LEMMA 4. If the space (Y, x) is Hausdorff, then p(x) C n(xs) = c(xs).

PROOF. We know from [18, Lemma 5] that (rs)s = r,, and from [17, Lemma 3]
that n(xs) = c(xs). So, we have p(z) c n(xs) = c(xs).

COROLLARY 3. / / the space (Y, x) is Hausdorff, then f : X -* (Y, xs) being
N-continuous (respectively c-continuous) implies that f : X —> (Y, r) is almost-N-
continuous.

LEMMA 5. If the space (Y, p{x)) is Hausdorff, then p(r) C c(rs) = n(x).

PROOF. Let the space (Y, p(r)) be Hausdorff. Since p(r) c n{x) c x, the space
(Y, x) is Hausdorff and therefore, by Lemma 4 and [17, Lemma 3], we have that
p(r) c «(r,) = c(xs) = n(x).

THEOREM 1. For any topological space (Y, x), the space (Y, p(x)) is nearly com-
pact.

PROOF. Let {£/, : i e /} be any /?(r)-open cover of Y. Let y e Y. Then, there
exist an j 0 € / and a V e p'(x) such that y € V c Uio, since p'(x) is a base for
the topology p(x). But the set Y — V is N-closed relative to r and so there exists a
finite subset K of I such that Y - V c \J{xint(xc\Uik) : k € K}. Hence we have
Y = V U (Y - V) = Uio U (U{Tint(rclf/,t) : k e K}). Since Uh € p(x), Y is
N-closed and hence the space (Y, p(r)) is nearly compact.

THEOREM 2. If the space (Y,x) is nearly compact Hausdorff, then the space
(Y, p(x)) is Hausdorff and p{x) = xs.

PROOF. Let vi and y2 be a pair of distinct points in Y. Since (Y, x) is Hausdorff,
there exist disjoint r-open sets V\ and V2 containing ^i and y2 respectively. Therefore,
we have (rint(rclVi)) n (rint(rclK2)) = 0 and y, € Tint(rclV,), i = 1,2. Since
(Y, x) is nearly compact, the set Y — (Tint(rclV;)) is N-closed in Y and so rint(rclV;)
(i = 1,2) belongs to p(x). Therefore the space (Y, p(x)) is Hausdorff. Since (Y, x)
is nearly compact Hausdorff, (Y, xs) is compact Hausdorff and so (Y, xs) is minimal
Hausdorff. Hence r, c p(x) and thus p{x) = xs.
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So, from Theorem 1 and Lemma 3 we have

COROLLARY 4. The space (Y,x) is nearly compact Hausdorff if and only if the
space (Y, p(x)) is Hausdorff and p(x) = xs.

COROLLARY 5. If a function f : X ->• (Y, x) is almost- N-continuous, the space
(Y, x) is semi-regular and (Y, p(x)) is Hausdorff, then f is continuous.

PROOF. Let (Y, p(x)) be Hausdorff. Then, by Lemma 3, (Y, r) is nearly compact
and p(x) = xs. Since (Y, r) is semi-regular, p{x) = x and thus the function / : X ->
(Y, x) is continuous.

PROPOSITION 1. If the space (Y, x) is

(i) semi-regular, then p(x) = e(x),
(ii) nearly compact Hausdorff, then p(x) = xs,
(iii) locally nearly compact Hausdorff, then p(x) = c(xs).

PROOF, (i) From the definitions and Lemma 2 we have that p(x) = e(xs). Since
(Y, x) is semi-regular, p(x) = e(x).

(ii) See Theorem 2.
(iii) Let (Y, x) be locally nearly compact Hausdorff. Then, by [18, Theorem 6],

(Y, xs) is locally compact Hausdorff and thus [6, Proposition 12] c(xs) = e(xs) = p(x).

Proposition 1 enables us to obtain conditions on the codomain of a function under
which almost- Af -continuity can be related to existing variations of continuity.

COROLLARY 6. Let f : X -> (Y, x) be a function.

(i) IfY is semi-regular, then f is almost-N-continuous if and only if f is almost-
c-continuous.

(ii) IfY is nearly compact Hausdorff, then f is almost-N -continuous if and only
if f is almost-continuous.

(iii) If Y is locally nearly compact Hausdorff, then f is almost-N -continuous if
and only if f : X -*• (Y,xs) is c-continuous.

PROPOSITION 2. If the space (Y,x) is nearly compact, then

p(x) C c(xs) = TSC «(T) .

PROOF. By [17, Proposition l(ii)], we have that p(x) c c(xs) = xs c n(x).

COROLLARY 7. If the space (Y, x) is nearly compact, then f : X -*• (Y, xs) is c-
continuous (almost-continuous) implies that f : X —> (Y, x) is almost-N -continuous.
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3. Properties of almost-/V-continuous functions

PROPOSITION 3. / / / : X - • (Y, xf) is a quotient map and g : (Y, xf) - • (Z, %)
is an almost-N -continuous function, then g o f is an almost-N-continuous function.

PROOF. Let xy be the quotient topology on Y. Then / : X —>• (Y, Xf) is continuous.
Since g : Y —*• (Z, fy) is almost-Af-continuous, g : Y —• (Z, p(W)) is continuous
and so g o / : X —> (Z, pity)) is continuous. Thus g o f : X -> (Z, '20 is
almost-Af-continuous.

Recall that a set A in (X, x) is called locally dense if A c int(clA) [2].

PROPOSITION 4. Z/1/ : X -> (Y, x) is an almost-N-continuousfunction and A c X
w SMC/I tfwtf /(A) w locally dense in Y with N-closed complement, then f/A : A ->

is almost-N-continuous.

PROOF. Let /(A) be locally dense in Y and U be a regular open set in f(A)
with /V-closed complement in f{A). Then by [18, Lemma 4] and [10, Lemma 2],
U = /(A)Dint(clt/). SinceF-/(A)isN-closedinT,y-/(A)iscompactinTi[20]
and so /(A) - U is compact in (r/f(A))s. By [18, Lemma 4], (r//(A)), = r,//(A)
and thus /(A) — U is compact in r,, that is, Af-closed in x. Then Y — int(cl(/) is
N-closed in r. But, by [16, Theorem 2.2], f~\Y - int(clf/)) is closed in X, and
since f~l(X - int(cli/)) = X - f-\]nt(clU)), f-\int(c\U)) is open in X. But
{f/AY\U) = A n / - 1 (int(cltf)) and thus (//A)"1 ((/) is an open set in A.

THEOREM 3. If the function f : X —> (Y,r) is almost-N-continuous and the
subset A ofX is compact in X, then / (A) is a compact set in the space (Y, p(r)).

PROOF. Since / : X -*• (Y,x) is almost-N-continuous, / : X -> (Y, p(x)) is
continuous and so /(A) is compact in the space (Y, p{x)).

COROLLARY 8. If the function f : X ->• (Y, x) is almost-N-continuous and the
subset A ofX is N-closed in X, then /(A) is N-closed in (Y, p(x)).

We recall that a function / : (X, ^ ) —> (Y, x) is called almost-open if / :
(X, <%fs) -+ (Y, x) is open [24], [18, Definition 6].

THEOREM 4. If f : X -* (Y, x) is an almost-continuous, almost-open bijection
and (Y, x) is Hausdorff, then / " ' is almost-N-continuous.
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PROOF. Let C be a regular closed, N -closed subset of X. Then by [1, Theorem
2.9], / (C) is TV-closed in (Y, x) and so / (C) is compact in (Y, xs). Since (Y, r) is
Hausdorff, (Y, xs) is Hausdorff and / (C) is closed in (Y, xs). Hence / (C) is closed
in (Y, T). But / (C) = (f~l)~l{C) and thus [16, Theorem 2.2], / " ' is almost-,/V-
continuous.

A space (X, x) is called S-compact [23], if every countable cover consisting of
Tj-open sets admits a finite subcover. It is known [23, Theorem 2], that a space (X, T)
is (5-compact if and only if (X, rs) is countably compact. So we can give the following:

THEOREM 5. If f is an almost- N-continuous function from a first countable space
X to a locally nearly compact, S-compact, Hausdorff space Y, then f is almost-
continuous.

PROOF. Let / : X —• (Y, x) be an almost-N-continuous function, let X be a first
countable space and let Y be a locally nearly compact, 5-compact, Hausdorff space.
Then by Lemma 2, f : X -*• (Y, zs) is almost-c-continuous and [18, Theorem 6],
(Y,xs) is locally compact, countably compact, Hausdorff and hence, by Theorem 10
of Hwang [9], / : X ->• (Y, rs) is continuous, and so / : X -> (Y, r) is almost-
continuous.

It is known from Kuratowski [11, page 103] that the set of all points of X at which
the function / : X - • (Y, r) is not continuous is the set £>(/) = \J{cl(f-l(V)) -
^ ( / " ' ( V ) ) : V € By}, where By is a base for the topology x. By our Lemma 1, this
result can be extended to almost-N-continuous functions, as follows:

THEOREM 6. The set of all points ofX at which f : X -*• (Y, r) is not almost-N-
continuous is the set DahN(f) = \J{cl(f~l(V)) - int(/-'(V)) : V € p'(x)}.

A space (X, r) is said to be almost-regular [22] if for each point x e X and
each regular open set V containing x, there exists a regular open set U such that
x € U C elf/ C V.

A space (X, T) is defined to be saturated [12] if any intersection of open sets is
open.

The next result improves Theorem 7 of Gentry and Hoyle [8].

THEOREM 7. Let X be a saturated space and let Y be a locally nearly compact,
almost regular space. If f : X —*• (Y, x) is almost-N-continuous, then f is almost-
continuous.

PROOF. Let x e X and let O be a regular open subset of Y containing f(x). Since
Y is almost regular, there exists a regular open set U such that /(JC) e U c clU c
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O = int(clO). Let y € Y — clU. Since Y is almost regular clU is regular closed,
and so there exists an open set Vy containing y such that Vy n elf/ = 0. Also, Y
is locally nearly compact and so there exists an open set Cy containing y such that
c\Cy is N-closed relative to r and c\Cy Oil = 0. Since c\Cy = cl(int(clC>,)), the set
Y—clCj, is regular open, contains f(x) and its complement is N-closed. Hence, by the
almost-Af-continuity of the function / , there exists an open set Ny containing x such
that f(Ny) c Y - clCy = int(cl(y - clCy)). Suppose N = f~){Ny : y e Y - elf/}.
Since the space X is saturated, N is open and x e N. Thus f(x) € f(N) c elf/ c O.
Therefore, / is almost-continuous.

Lemma 2 enables us to improve Theorem 3A(d) of Singh and Prasad [25] as the
following result shows.

THEOREM 8. Let X be a saturated space and let Y be a locally nearly compact
Hausdorff space. If f : X -*• (Y,T) is almost-N-continuous, then f is almost-
continuous.

PROOF. Let (Y, r) be a locally nearly compact Hausdorff space. Then by [18,
Theorem 6], (Y, xs) is locally compact Hausdorff. Since from Lemma 2, / : X —y
(y, rs) is almost-c-continuous, then by [25, Theorem 3.l(d)], f : X -> (Y, rs) is
continuous and hence / : X -*• (Y, r) is almost-continuous.

4. Strongly-closed graphs

Let / : X -*• Y be a function. The subset {(x, f(x)) : x e X} of the product space
X x F i s called the graph of / and usually denoted by G( / ) .

DEFINITION 1 [14]. The graph G( / ) is said to be strongly-closed, if for each
(x, y) £ G(f), there exist open sets U c. X and V c Y containing x and y,
respectively, such that [U x cl(V)] n G(f) = 0.

The following lemma is a useful characterization of functions with strongly-closed
graphs.

LEMMA 6 [14]. The graph G(f) is strongly-closed if and only if for each (x,y) £
G(f), there exist open sets U C X and V C Y containing x and y respectively, such
thatf(U)r\cl(V) = 0.

Of course, a function with a strongly closed graph has a closed graph. We recall
that if a function f : X -*• Y has a closed graph, then the inverse image of every
compact set is closed [4, Theorem 3.6]. Now, we have a variation of [15, Theorem
15].
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PROPOSITION 5. If the function f : X -> (Y, xs) has closed graph, then f : X ->
(Y, x) is N -continuous.

PROOF. Let G( / ) be closed and let K be an n(r)-closed subset of Y. Then K is
closed, N -closed relative to x. So K is closed in r and compact in xs. Hence by [4,
Theorem 3.6], f~\K) is closed in X and thus [15, Theorem 1] / : X -> (Y, x) is
N-continuous.

THEOREM 9. / / the function f : X —>• (Y, x) has strongly closed graph, then
f : X —• (Y, T) is almost-N-continuous.

PROOF. Let G(/) be strongly-closed and let K be a regular closed, Af-closed subset
of Y. Suppose x £ f~l(K). For each y e K, (x, y) £ G(f), and so, by Lemma
6, there exist open sets Uy(x) c X and V(y) c Y such that x G Uy(x), y e V(y)
and f(Uy(x)) C clV(y) = 0. But the collection {V(j) : v e X"} is an open cover
of K and, since K is N -closed, there exists a finite subset Ko of /iT such that K C
L){int(clVO0) : y e Ko} C LRdVOO : y e Ĵ oJ. Let £/ = ni^yC^) : y e AT0}.
Then f/ is an open set in X containing x and U n f~l(K) = 0. This shows that
Z"1 (K) is a closed set of X and so, from [16, Theorem 2.2] / is almost-Af-continuous.

The converse of the above theorem does not hold as we can see from the following
example.

EXAMPLE 3. Suppose that / : (X, "W) -*• (Y, x) are the function and the spaces
of Example 2. We proved in Example 2 that / is almost-N -continuous at x = 0. One
can easily see that the graph G( / ) is not strongly closed.

Using our Lemma 2 and [18, Theorem 6], we can obtain [16, Theorem 3.2 and
Corollaries 3.3 and 3.5] as corollaries of the corresponding results for almost-c-
continuous functions [19, Theorem 3.4, Corollaries 3.5 and 3.7]. Also, we can
improve the result of Hwang [9, Theorem 8] and Singh and Prasad [25, Theorem
1.5(d)] and provide a partial converse of Proposition 5 at the same time.

THEOREM 10. Let f : X ->• (Y, x) be an almost-N-continuous function and let
Y be a locally nearly compact Hausdorff space. Then f : X —> (Y, xs) has closed
graph.

5. Product Spaces

We recall that a subset S of a space X is said to be quasi- H-closed [21], if for
every cover {Va : a e A} of open sets of X, there exists a finite subfamily Ao of A
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such that 5 c UteKK) : a € Ao}. A function / : X —> Y is called H-continuous
[13] if for each x e X and each open neighbourhood V of f(x) such that Y — V is
quasi-//-closed, there exists an open neighbourhood U of x such that /(£/) C V. Let
{Ya : a € ^ } be any family of topological spaces and Y — Y[{Ya : a e s/} denote
the product space. It is known [19, Theorem 4.1] and [15, Theorem 19] that if Ya is a
locally compact Hausdorff (respectively locally nearly compact Hausdorff) space and
fa:X-> Ya is an almost-c-continuous (respectively N-continuous) function for each
a 6 si, then the function / : X -*• Y, denned by f(x) = {/<,(*)} for each x € X, is
//-continuous (respectively N-continuous).

The following result generalizes the theorems stated above.

THEOREM 11. IfYaisa locally nearly compact Hausdorff space and fa:X^Ya

is an almost-N-continuous function for each a € si, then the function f : X -> Y
defined by f(x) = {fa(x)]for each x € X, is almost-N-continuous.

PROOF. For each b e si we have that Yb is locally nearly compact Hausdorff and
fb : X -> Yb is almost-N-continuous, so by [16, Theorem 3.2] G(fb) is strongly
closed. Hence, by Lemma 20 of [15], G(f) is strongly closed and so, from Theorem
9, / is almost-N-continuous.

COROLLARY 9. If X is Hausdorff, Y is locally nearly compact Hausdorff and
f : X -> Y is almost-N-continuous, then the graph function g : X ->• X x Y, defined
by g(x) = (x, f{x))for each x € X, is almost-N-continuous.

PROOF. The identity function ix : X -> X is continuous and X is Hausdorff. Then
G(ix) is strongly closed [14]. Since / is almost-N-continuous and Y is locally nearly
compact Hausdorff, G(f) is strongly closed [16, Theorem 3.2]. Hence, from [15,
Lemma 20], the graph function g has strongly closed graph and so, from Theorem 9,
g is almost-N-continuous.

Also, it is known [19, Theorem 4.3] that if Ya is a locally compact Hausdorff space
and fa : Xa —> Ya is an almost-c-continuous function for each a e si, then the
function / : f[ Xa -> Fl Ya, defined by /({*„}) = {/„(*„)} for each {xa} e f[ *« . i s

//-continuous.
Our final result generalizes the above theorem.

THEOREM 12. IfYa is a locally nearly compact Hausdorff space and fa : Xa —*• Ya

is an almost-N -continuous function for each a in si, then the function f :Y[Xa —*
Y\ Ya, defined by f({xa}) = [fa(xa)}for each {xa} 6 J~[ Xa, is almost-N-continuous.
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PROOF. Let (x, y) <£ G(f). Then y / f(x) and there exists b e &/ such that
yb zfz fb(x). Since Yb is locally nearly compact Hausdorff and fb is almost-N-
continuous, from Theorem 3.2 of [16], G(fb) is strongly-closed. Thus, by Lemma 6,
there exist open sets Ub C Xb and Vb C Yb containing xb and yb, respectively, such that
fb(Ub) n cl(Vb) = 0. Let U = Ub x Y\aft XaandV = Vbx na # f t Ya. Then U and V
are open sets containing x and y, respectively, such that f(U) n cl(V) = 0. Therefore
G(f) is strongly-closed and so, from Theorem 9, / is almost-A?-continuous.
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