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POINT COUNTING IN FAMILIES OF HYPERELLIPTIC CURVES
IN CHARACTERISTIC 2

HENDRIK HUBRECHTS

Abstract

Let ĒΓ be a family of hyperelliptic curves over F
alg cl
2 with

general Weierstrass equation given over a very small field F.
We describe in this paper an algorithm for computing the zeta
function of Ēγ̄ , with γ̄ in a degree n extension field of F, which
has as time complexity Õ(n3+ε) bit operations and memory re-
quirements O(n2) bits. With a slightly different algorithm we
can get time O(n2.667) and memory O(n2.5), and the compu-
tation for n curves of the family can be done in time Õ(n3.376).
All of these algorithms are polynomial-time in the genus.

1. Introduction and results

The problem of counting the number of rational points on curves over finite fields
has received much attention during the last decade. The main reason for this in
fact renewed interest is the proposal of several applications such as cryptographic
protocols which use such curves. For most of these applications it is very important
to know the cardinality of the curve; in [4] and [3] an overview of some of these ap-
plications can be found. Working with finite fields of characteristic 2 is particularly
interesting due to the fact that computers can work very efficiently with them.

In the course of the recent research a lot of algorithms have been proposed, most
of them focused on elliptic curves. We will give an overview of some of these results,
in particular of those most related to the work that we present in this paper, namely
hyperelliptic curves in characteristic 2. When discussing these algorithms, and also
in the rest of the paper, we will give all running times and memory requirements
using either number of bit operations or bit space. The notation Õ is defined in [9,
Definition 25.8] and is essentially a O-notation that ignores logarithmic factors. We
assume that the curves below are defined over the finite field Fq where q = pn for
some prime number p.

A first general algorithm for elliptic curves was �-adic in nature, and due to
Schoof. Here � is a prime different from p. Improvements of Elkies and Atkin re-
sulted in the well-known sea algorithm [8], that works in time Õ((log q)4) and has
Õ((log q)2) as space complexity. For higher genus these �-adic methods turned out
not to be very useful, and only the genus 2 case has been developed in practice [10].

For small characteristic, p-adic methods seem to be much more efficient, and as
a consequence many algorithms, especially for higher genus, are of this kind. A first
algorithm was given by Satoh for elliptic curves [19], and after some development
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point counting in families of hyperelliptic curves

by several authors this culminated in an algorithm with running time Õ(n2) by
Harley (unpublished; all details can however be found in [22, Section 3.10]). We
will come back to some ideas of this algorithm in Section 5.1. Another approach
uses the arithmetic geometric mean (agm) and was proposed by Mestre. It worked
originally in time Õ(n3), but Lercier and Lubicz improved this to Õ(n2) for fields
where a Gaussian normal basis is available. The agm algorithm works not only for
elliptic curves, but the dependency on the genus is exponential.

The first algorithm for general hyperelliptic curves that works polynomially in
the genus g was given by Kedlaya in [14], its time complexity is Õ(g4n3) and
it uses O(g3n3) space. Kedlaya uses a ‘rigid analytic lift’ to characteristic zero
of the curve, and needs an explicit equation of the curve in order to construct a
Frobenius map on the resulting Monsky–Washnitzer cohomology. Due to the more
complicated structure of curves in characteristic 2, Kedlaya’s algorithm did not
cover this situation, and it was subsequently handled in Denef and Vercauteren’s
paper [6].

A totally different approach to point counting was proposed by Lauder [16] and
Tsuzuki [21], first developed to tackle higher dimensional varieties. It consists of
embedding the variety in a family in such a way that some fiber of the family
gives rise to an ‘easy case’, and the other fibers can then be treated in an efficient
way. This turns out to reduce highly the dependency on the dimension. However,
Denef and Lauder realised that this might also be useful for hyperelliptic curves in
odd characteristic, and this suggestion from [17] was worked out by the author in
a previous paper [13]. It essentially consists of combining Kedlaya’s method with
a one-dimensional deformation. The main result is an algorithm that computes
the zeta function of curves within certain families in time Õ(g6.376n3) and space
Õ(g5n2), although also time Õ(g6.376n2.667) turned out to be possible. In the present
paper we extend these results to the characteristic 2 case by reconciling Denef and
Vercauteren’s work with such a deformation.

In [11] Gerkmann also considered a deformation approach for elliptic curves in
odd characteristic and at the end of the paper he handles the family of elliptic
curves with equation Y 2 + XY = X3 + γX for γ ∈ F

alg cl
2 . The particular form

of this equation makes this relatively easy, but for higher genus the equations are
much more involved. As a consequence the theory is technically rather different
from the odd characteristic case, although the ‘big picture’ has a similar esprit.

We will now present the results proved in this paper. Let Fq be a finite field with
q = 2a elements, γ̄ ∈ Fqn for some integer n, and g � 1 an integer. Suppose that
f̄ , h̄ ∈ Fq[X,Γ] are in the form described in Section 2.1, which implies in particular
that we get a hyperelliptic curve of genus g over Fqn given by the equation

Ēγ̄ : Y 2 + h̄(X, γ̄)Y = f̄(X, γ̄).

Define κ := max{degΓ f,degΓ h
2}. As is mentioned in [6], in this matter we have an

‘average case’ and a ‘worst case’. This means that almost all curves belong to the
first case, and some unlucky ones do not. The main result is the following theorem,
proved in Section 5.

Theorem 1. We can compute deterministically the zeta function of (the projective
completion of) Ēγ̄ using Õ(g6.376a3κ2n2+g3.376a3n3) bit operations and Õ(g4a3κn2)
bits of memory ‘on average’. For the ‘worst case’ situation one factor g has to be
added to the terms with n2 in them.
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We note that the algorithm allows us also to compute the matrix of the 2nd power
Frobenius in time quasi-quadratic in n, whereas Kedlaya’s algorithm requires cubic
time for this. It is only during the computation of the matrix of the qnth power
Frobenius that the estimate Õ(g3.376a3n3) of Theorem 1 appears. This step can be
done faster by using advanced polynomial composition techniques, at the cost of
an increase in memory usage. The result is the following.

Theorem 2. There exists a deterministic algorithm that computes the zeta function
of Ēγ̄ in Õ(g6.376a3κ2n2 + g3.376a3n2.667) bit operations ‘on average’. It requires
Õ(g4a3κn2 + g3a2n2.5) bits of memory. In the ‘worst case’ again one factor g has
to be added to both first terms.

It is worth noting that with ω the exponent for matrix multiplication, cur-
rently known to satisfy ω < 2.376 (see [5]), the above time complexity is in fact
Õ(g4+ωa3κ2n2 + g1+ωa3nmin(2.667,(3+ω)/2)).

Theorem 2 together with the following theorem is proved in Section 6. In this
theorem we did not pay attention to the dependency on parameters different from n.

Theorem 3. Given n parameters γ̄1, . . . , γ̄n ∈ Fqn , it is possible to find the zeta
functions of all Ēγ̄i with Õ(n3.376) as time and O(n3) as space requirements.

The bottom line of this algorithm is that in order to find a curve with some
special size by trying a lot of curves, we can count on Õ(n2.376) as the time needed
for one curve. Again we have in fact Õ(n1+ω) as time complexity in Theorem 3. In
Section 6 we explain also shortly an Õ(n2) algorithm for a special situation where
a Gaussian normal basis is present. We have to note however that the use of this
last result is very limited.

Theorems 1 and 2 can be compared with the algorithms mentioned earlier: Denef
and Vercauteren require ‘on average’ Õ(g4n3) bit operations and O(g3n3) bits of
memory, and the algorithm of Lercier and Lubicz has time complexity Õ(2gn2).

This paper is organised as follows. In Section 2 we provide the theory behind
the algorithm; in it is explained the required special form of f̄ and h̄, to which
we referred earlier. The algorithm uses a ‘matrix differential equation’ with 2-adic
matrices as coefficients, and in Section 3 we have gathered some necessary results
about these kinds of objects. More precisely, some trick is explained that allows
us to compute the matrix of the connection and a particularly useful form of the
differential equation, the convergence properties of Frobenius are investigated and
an important result about error propagation is established. The next section gives
the algorithm and proves its correctness, and Section 5 estimates the complexity,
thereby proving Theorem 1. Finally the last section explains the improvements
noted above, in particular Theorems 2 and 3.

2. Analytic theory

In this section we will develop an analytic theory which combines the results from
[6] with a deformation. Before we start let us define some notation used throughout
the rest of the paper. Let a be a strictly positive integer and denote by Fq the finite
field with q := 2a elements. Let Q2 be the completion of Q according to the 2-adic
valuation and Qq the unique degree a unramified extension of Q2. Denote by C2 the

209https://doi.org/10.1112/S1461157000001376 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001376


point counting in families of hyperelliptic curves

completion of an algebraic closure of Q2. The notation ord or ord2 is used for the
valuation on C2, normalised to ord2(2) = 1. The ring of integers of Qq is written
as Zq and the lift of the 2nd power Frobenius automorphism on Fq is given by
σ : Qq → Qq. We extend σ by letting it act as squaring on each appearing variable.
If k is a field, then we mean by kalg cl an algebraic closure of k. The derivative of
a function α = α(X,Γ) with respect to X will be denoted by α′, and on the other
hand ∂α/∂Γ is written as α̇.

2.1. Introducing the deformation

Suppose we are given an equation Y 2 + h̃(X) ·Y = f̃(X) over Fq which defines a
hyperelliptic curve of genus g. As pointed out in [6] it is always possible to find in
an efficient way an isomorphic curve over Fq given by Y 2 + h̄(X) ·Y = f̄(X) subject
to the following conditions. The degree of the monic polynomial f̄ is 2g + 1 and h̄
is nonzero of degree at most g. If we factor h̄ in its monic irreducible factors over
Fq, h̄(X) = c̄

∏t
i=1 h̄

ri
i (X) with all h̄i irreducible and pairwise distinct, ri �= 0 and

c̄ ∈ F×
q , we define then H̄(X) :=

∏t
i=1 h̄i(X), the product of the irreducible factors

of h̄. We require now that f̄ = H̄ · Q̄f̄ where H̄ and Q̄f̄ are relatively prime. Define
D̃ := max ri so that h̄ is a divisor of H̄D̃, and let Q̄h̄ be such that h̄ · Q̄h̄ = H̄D̃.

We will now introduce the deformation parameter Γ. Choose t ∈ Z�0, let d1, . . . , dt,
r1, . . . , rt be positive nonzero integers such that d1r1 + · · · + dtrt � g, choose
c(Γ) ∈ Zq[Γ] and let D̃ := max ri. We refer to the end of this subsection for the
special case where t = 0. Choose polynomials h1, . . . , ht, Qf in Zq[X,Γ], monic in
X, with degX hi = di for all i, and degX Qf = 2g + 1−∑

i di. Define H :=
∏

i hi,
h := c

∏
i h

ri
i , f := HQf and Qh := cHD̃/h. Let r(Γ) be equal to c(Γ) multiplied

with a certain resultant:

r(Γ) := c(Γ) · ResX

(
H(X,Γ), Qf (X,Γ) · ∂H(X,Γ)

∂X

)
= c · ResX(H,QfH

′).

Then we require r(Γ) to be a polynomial for which r(0) does not reduce to zero
modulo 2, or equivalently Γ = 0 gives a hyperelliptic curve modulo 2 in Weierstrass
form as follows from Lemma 4 below. The polynomial r(Γ) determines for which
parameters the result is a hyperelliptic curve of genus g; therefore we define the
following subset of the set Teich(Falg cl

2 ) of Teichmüller lifts in C2 of F
alg cl
2 (for ease

of notation we say that 0 ∈ C2 is also a Teichmüller lift):

S :=
{
γ ∈ Teich(Falg cl

2 )
∣∣∣ r(γ) �≡ 0 mod 2

}
.

The requirement r(0) �≡ 0 mod 2 implies that S is an infinite set that contains 0.
We denote by ‘̄ ’ the projection modulo 2 for all these polynomials; hence h̄i(X,Γ)

is from now on the projection of hi(X,Γ) and so on.

Lemma 4. For γ̄ ∈ F
alg cl
2 the projected equation Y 2 + h̄(X, γ̄) ·Y = f̄(X, γ̄) defines

a hyperelliptic curve Ēγ̄ of genus g if and only if Teich(γ̄) ∈ S.

Proof. It is enough to show for a Teichmüller lift γ that Ēγ̄ has no affine singularities
if and only if γ ∈ S. When c̄(γ̄) = 0, it is clear that the curve has an affine
singularity, so we suppose c̄(γ̄) �= 0. Computing the system of partial derivatives
yields immediately that the existence of an affine singularity (x̄, ȳ) implies that
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H̄(x̄) = h̄(x̄) = f̄(x̄) = ȳ = 0 and f̄ ′(x̄) = 0, and vice versa: these equalities give
an affine singularity. As f̄ ′ = Q̄′

f H̄ + Q̄f H̄
′ we conclude that Ēγ̄ has no affine

singularities if and only if the system H̄ = Q̄f H̄
′ = 0 has no solutions, which in

turn is equivalent to ResX(H̄, Q̄f H̄
′) �= 0.

The condition on the resultant guarantees that H̄(X, γ̄) and Q̄f (X, γ̄) are rel-
atively prime for every γ ∈ S and that H̄(X, γ̄) has no double roots. Due to the
careful construction of H and h as products of the same factors, we find that h|cHD̃

and h̄|c̄H̄D̃; hence the equation Y 2 + h̄(X, γ̄)Y = f̄(X, γ̄) has the special form as
explained in the first paragraph of this section (possibly with a bigger t, if some
h̄i(X, γ̄) is not irreducible over Fq(γ̄)).

The constructions above fail when t = 0, in which case c̄(γ̄) �= 0 is equivalent to
Ēγ̄ being hyperelliptic. In this situation we put r(Γ) := c(Γ). If deg(r(Γ)) = 0, no
resultant is needed, and for example S defined below will simply be Qq[Γ]†. We will
not always mention the simplifications needed for this special case. The convention
D̃ := 1 is then best suited for the estimates further on.

As final definitions, let ρ := degΓ r(Γ), s := degX(H) and κ := max{degΓ f,
degΓ h

2} as defined before, and η := degΓH. We suppose that κ � 1 and it is easy
to see that ρ � 3gκ.

2.2. The overconvergent structures

We define as in [13] the necessary overconvergent structures. For r =
∑ρ

i=0 riΓ
i

let ρ′ be the largest index for which ord(rρ′) = 0, and define r̃ =
∑ρ′

i=0 riΓ
i. Hence

r̃ ≡ r mod 2 and if the leading term of r is a unit in Zq we simply have r̃ = r. The
ring S will be the equivalent of the field Qq in Denef and Vercauteren’s approach.

S := Qq

[
Γ,

1
r̃(Γ)

]†
=

{∑
k∈Z

bk(Γ)
r̃(Γ)k

∣∣∣∣∣ (∀k) bk(Γ) ∈ Qq[Γ],

deg bk(Γ) < ρ′and lim inf
k

ord(bk)
|k| > 0

}
.

The last inequality in this definition is equivalent to the existence of real constants
δ > 0 and ε such that for all k we have ord(bk) � δ · |k|+ ε. As proved in Lemma
6 of [13], the fact that ord(r̃ρ′) = 0 implies that an expression

∞∑
i=0

aiΓi +
∞∑

j=1

bj(Γ)
r̃(Γ)j

where deg bj(Γ) < ρ′, lim infi ord(ai)/|i| > 0 and lim infj ord(bj)/|j| > 0, represents
also a general element of S. If r̃ is a constant then of course S = Qq[Γ]† and the
parts with denominators disappear everywhere. The equality

1
r

=
1
r̃

∞∑
i=0

(
r̃ − r
r̃

)i

combined with the fact that r̃− r ≡ 0 mod 2 shows that 1/r ∈ S. It is worth noting
that S does not change if defined using r̃ instead of r, and S can be interpreted as
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consisting of the analytic functions defined over Qq and convergent in a disk strictly
bigger than the unit disk with small disks of radius less than 1 removed around the
Teichmüller lifts not in S. The following important lemma is proved as Lemma 10
in [13] and gives us control over the substitution of some γ ∈ S in an element s ∈ S.
It is easy to see that s(γ) always converges.

Lemma 5. Let s(Γ) =
∑

k∈Z
bk(Γ)/r̃(Γ)k ∈ S. Suppose we have for infinitely many

γ ∈ S that ord(s(γ)) � α for some real number α, then also for every k ∈ Z we get
ord(bk) � α.

In accordance with this lemma we will define the valuation ord2(s(Γ)) of an ele-
ment of S as the infimum (and hence minimum) of the valuations of the polynomials
bk(Γ).

Now we can define what will be the analogue of the dagger ring A†. The last
condition may look quite terrifying, but is a technical condition that implies that
the sum

∑
k sik is convergent and again an element of S. The notation s(

′) used
below means that the conditions hold for s and s′ separately.

T :=
Qq

[
Γ, 1

r̃(Γ) , X, Y,
1

H(X,Γ)

]†
(Y 2 + hY − f)

=

{∑
k∈Z

∑s−1
i=0 sikX

i +
∑s−1

i=0 s
′
ikX

iY

H(X,Γ)k

∣∣∣∣∣
(∀i, k) s(′)ik ∈ S, (∀i) ∃ C ∈ Qq, δ > 0 such that with s(

′)
ik =

∑
j∈Z

s
(′)
ikj(Γ)
r̃j

where

(∀ k, j) deg s(
′)

ikj(Γ) < ρ̃, we have (∀ k, j) ord(C · s(′)ikj) � δ · (|k|+ |j|)
}
.

In the case where H is a constant we have T = {∑k�0(skX
k + s′kX

kY ) | same
conditions as above}, which means that in this case no denominators with respect
to X occur in an element of T . We will write a general element of T as∑

k∈Z

Uk(X,Γ) + Y · Vk(X,Γ)
Hk

,

where Uk, Vk ∈ S[X], degX Uk and degX Vk are both at most s − 1 and the ex-
pression satisfies the above conditions, in particular lim infk(ord(Uk)/|k|) > 0 and
lim infk(ord(Vk)/|k|) > 0. It is not hard to see that T is an S-algebra.

Let γ ∈ S with γ̄ ∈ Fq′ such that Fq ⊂ Fq′ and q′ is minimal. Then we can
substitute γ for Γ in the above construction of T resulting in the vector space
T (γ) := T ⊗ Qq′/(Γ − γ) over Qq′ . In fact we only need the image of T under the
natural map T → T ⊗Qq′/(Γ− γ), but the equality Qq(γ) = Qq′ implies that this
map is surjective. We have just as in the odd characteristic case that T (γ) = A†⊗Qq′

with A† as defined in Section 3.2 of [6] for the curve Y 2 + h(X, γ)Y − f(X, γ) = 0.
We define the derivative with respect to X on T by interpreting Y in terms of

X. Using the equation in its original form and the equality (2Y + h)2 = 4f + h2

this yields

Y ′ =
f ′ − h′Y
2Y + h

· 2Y + h

2Y + h
=
f ′h− 2fh′ + (2f ′ + hh′)Y

4f + h2
.
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We have that Y ′ ∈ T and can hence define the differential

d := T → TdX : t 	→ ∂t

∂X
dX.

Let ı be the S-linear hyperelliptic involution X 	→ X and Y 	→ −Y − h(X,Γ) on
T , then we have the following central proposition.

Proposition 6. The module HMW := TdX/dT splits into two eigenspaces under
ı, namely H+

MW for eigenvalue +1 and H−
MW for −1. Both are free S-modules with

basis respectively {(Xi/H)dX}s−1
i=0 and B := {bi}2g−1

i=0 with bi := XiY dX.

If H is a constant, the first basis is empty, or equivalently H+
MW is trivial.

Proof. Let (U +V Y )H−k be a general term of an element of T . Writing U +V Y =
Ũ+Ṽ (Y +h/2) and computing ı(Y ′) = −Y ′−h′ we can readily check that ı◦d = d◦ı,
which gives the isomorphism HMW

∼= H+
MW ⊕ H−

MW . Here Ũ gives the first part
and Ṽ (Y + h/2) the second part. The linear independence of the elements of the
bases can be proved with Lemma 5. Indeed, suppose we have a linear relation∑

i siβi = 0 for basis elements βi and si ∈ S where sj �= 0. The lemma then implies
the existence of some γ ∈ S such that sj(γ) �= 0, which gives a nontrivial relation∑

i si(γ)βi(γ) = 0 in the case without deformation, in contradiction with Section
3.2 of [6].

In the remainder of this proof we will use ‘=’ for equality in T and ‘≡’ for equality
in HMW . In order to reduce a general element∑

i∈Z

Ui(X,Γ)dX/Hi +
∑
j∈Z

Vj(X,Γ)Y dX/Hj

of T , we consider as in Section 3.2 of [6] four cases. First, the part with i � 0 is an
exact form, as integrating does not change the overconvergence property. Second, for
i > 0 we have the following formula from [6], where r1(Γ) := ResX(H,H ′), a divisor
of r(Γ). WriteXkr1(Γ) = A(X,Γ)H+B(X,Γ)H ′ with A(X,Γ), B(X,Γ) ∈ Zq[X,Γ],
then by computing the differential d(B/Hi−1) we find for i � 2

Xk

Hi
dX ≡ 1

r1

(
A

Hi−1
+

B′

(i− 1)Hi−1

)
dX. (1)

Repeating this we end with i = 1 — which cannot be reduced further, ergo the first
basis of the proposition — and an expression without denominators H which is an
exact form. Next, for the part with j � 0 we can use the following congruence for
k � 0 (

Xk(2f ′ + hh′) +
k

3
Xk−1(4f + h2)

)
Y dX ≡ 0, (2)

which has degree 2g+ k in X and leading coefficient 2(2g+1)+4k/3 �= 0. We note
that this congruence will be the only one needed for the algorithm.
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Finally we consider the case j > 0. Let h = HQH , then by writing Xkr(Γ) =
AH +BQfH

′ we have

Xk

Hj
Y dX (3)

≡ 1
r

(
A

Hj−1
+
B(jH ′Q2

H − 6Q′
f − 3QHh

′)−B′(4Qf +QHh)
(6− 4j)Hj−1

)
Y dX +

IdX

rH
.

Here the last term IdX/(rH) is an S-linear combination of the basis elements
XidX/H.

Although the above formulae allow us to reduce elements of T , they do not
guarantee a priori that the reduced elements and the exact differentials appearing
are overconvergent. We will prove this for the case j � 0, the other cases are similar
— the basic idea being that the valuations decrease by only logarithmic behaviour
and degΓ and ‘degr’ increase at most linearly. Let τ be an element of T of the
following form:

τ =
∞∑

j=0

sj(Γ)XjY dX.

If we write sj(Γ) =
∑

i sij(Γ)r̃(Γ)i, we may suppose — if necessary after multiplying
τ with some constant — that ord(sij) � δ(j+ |i|) for some δ > 0. Applying formula
(2) once to some XjY dX in order to decrease the degree in X adds at most κ to the
degree in Γ. So, if we express XjY dX as an S-linear combination of the elements
of the basis B plus an exact differential,

XjY dX =
∑
b∈B

fbj(Γ)b+ dψ,

we find polynomials fbj(Γ) with degΓ fbj � κj. Lemma 2 of [6] implies that
ord(fbj(γ)) � − (3 + log2(j + g + 1)) for every γ ∈ S, and combining this with
Lemma 5 we find the same inequality for ord(fbj). It is clear that as the valuations
of the coefficients of the original expression grow linearly, we can ignore this loga-
rithmic surplus of the reductions and hence suppose that the fbj are integral. If we
write

τ =
∞∑

j=0

sj(Γ)XjY dX ≡
∑
b∈B

( ∞∑
j=0

sjfbj

)
b,

then we must show that
∑

j sjfbj ∈ S. We prove that with sjfbj =
∑

t αtj(Γ)r̃(Γ)t

an inequality ord(αtj) � ε(|t| + j) holds for some ε > 0 and all t and j except
precisely one case, namely t = 1 and j = 0. Expanding fbj ‘in r̃’ gives fbj =∑Cj

�=0 ϕ�j r̃
�, where C = 
κ/ρ′� and the polynomials ϕ�j(Γ) are integral. When we

multiply sj with fbj , a general term of the product is∑
i+�=t

sijϕ�j r̃
t.

The degree of sijϕ�j is at most 2ρ′ − 2, hence with Euclidean division written as
s = [s/r̃] · r̃ + (s mod r̃) we have

αtj =
∑

i+�=t

(sijϕ�j mod r̃)r̃t +
∑

i+�=t−1

[sijϕ�j

r̃

]
r̃t.
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The fact that r̃ is integral and has a unit in Zq as leading coefficient implies that
[s/r̃] and (s mod r̃) have valuation not lower than ord(s), so

ord(αtj) � δ

(
j +

Cj

min
�=0

(|t− �|, |t− 1− �|)
)
. (4)

For t � 2Cj+2 we have that the minimum in (4) is at least |t|/2, hence ord(αtj) �
δ(j + |t|/2). For t � 0 we see immediately that ord(αtj) � δ(j + |t|), so suppose
0 < t < 2Cj + 2. Excluding the case (t = 1, j = 0) we have then (2C + 2)j � |t|,
so that

ord(αtj) � δj = δ

(
1

2C + 3
j +

2C + 2
2C + 3

j

)
� δ

2C + 3
(j + |t|).

Combining these inequalities with Lemmata 8 and 9 of [13] implies that
∑

j sjfbj−
α1,0r̃ ∈ S; hence

∑
j sjfbj ∈ S.

For proving that ψ, coming from the exact differential dψ, can also be chosen in
T , we need similar estimates using the full form of congruence (2). Indeed, we have(
Xk(2f ′ + hh′) +

k

3
Xk−1(4f + h2)

)
Y dX

=
1
2
d

(
Xk

3
(4f + h2)(2Y + h)

)
−d

∫ [
Xk

2
h(2f ′ + hh′) +

k

6
Xk−1h(4f + h2)

]
dX,

as can be verified by using the equality (2Y + h)2 = 4f + h2.

2.3. The differential equation

In this section we will construct the following commutative diagram and derive
an important differential equation from it.

H−
MW

∇−−−−→ H−
MW dΓ�F2

�F2

H−
MW

∇−−−−→ H−
MW dΓ

(5)

Let us start with the definition of the connection:

∇ : HMW → HMW dΓ : t 	→ ∂t

∂Γ
dΓ, with ∇(XdX) := XdXdΓ,

∇(Y dX) = Ẏ dXdΓ :=
ḟh− 2fḣ+ (2ḟ + hḣ)Y

4f + h2
dXdΓ.

Similar computations as in the case of the differential d show that ∂/∂Γ and ∇ are
well defined on, respectively, T and H±

MW .
The map F2 : T → T represents a lift of the Frobenius automorphism x 	→ x2

in characteristic 2 and is defined as σ on Qq, X 	→ X2, Γ 	→ Γ2 and Y maps to the
unique solution F2(Y ) in T of F2(Y )2 + hσF2(Y )− fσ = 0 that is congruent to Y 2

modulo 2. Proposition 11 will imply that with this definition F2(Y ) actually lies in
T . We extend F2 with dX 	→ d(X2) = 2XdX and similarly dΓ 	→ 2ΓdΓ. In order
to prove that F2 is also well defined on the quotient module HMW it suffices to
verify that F2 commutes with the differential operator d, which is easily done. For
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the diagram above we need that H−
MW is an invariant subspace under the action of

F2, and this follows from the following lemma.

Lemma 7. The sum ı(F2(Y dX))+F2(Y dX) is exact; hence for each b ∈ B we have
ı(F2(b)) = −F2(b).

Proof. Our proof is rather technical, we will use some sequenceWk from the Newton
iteration as in [6], for which the approximation F2(Y ) ≡ Wk mod 2k holds. Note
that this implies that F2(Y dX) ≡ 2XWkdX mod 2k. We define j on T by j(t) :=
ı(t) + t, so j(α+ βY ) = 2α− hβ. We will show inductively for k � 1 that

j(Wk) = ı(Wk) +Wk ≡ −hσ mod 2k, (6)

which implies that ı(F2(Y ))+F2(Y ) = −hσ. We note that this equality is not really
unexpected as ı(F2(Y )) satisfies the same quadratic equation as F2(Y ) and −hσ is
the sum of the two ‘roots’ of this equation.

As W1 = f − hY , we find the induction basis j(W1) = 2f + h2 ≡ −hσ mod 2.
Suppose that (6) holds for Wk, so j(Wk) = −hσ + 2kδ for some integral δ ∈ T .
Define now W̃k := Wk + 2kY δ/h, then W̃k ≡Wk mod 2k and j(W̃k) = −hσ. In [6]
the sequel value Wk+1 is computed from Wk, but as W̃k ≡Wk mod 2k we may take
as well W̃k for this:

h2Wk+1 ≡ −W̃ 2
k + (h2 − hσ)W̃k + fσ mod 2k+1. (7)

In the following α and β depend on k, but we suppress this to save notation. Write
W̃k = α+ βY , then we have

j(W̃k) = 2α− hβ = −hσ, (8)

W̃ 2
k = α2 + 2αβY + β2Y 2 = α2 + β2f + (2αβ − β2h)Y, (9)

j(W̃ 2
k ) = 2(α2 + β2f)− h(2αβ − β2h), (10)

W̃ 2
k ≡ fσ − hσW̃k ≡ fσ − αhσ − (hσβ)Y mod 2k. (11)

Combining (9) and (11) and multiplying by 2 we find that

2(α2 + β2f) ≡ 2(fσ − αhσ) mod 2k+1, (12)

and hence formulae (10), (12) and (8) give

j(W̃ 2
k ) ≡ 2(fσ − αhσ)− hβ(2α− hβ) ≡ 2(fσ − αhσ) + hβhσ mod 2k+1.

Using formula (8) once more implies that

j(W̃ 2
k ) ≡ 2fσ − hσ(2α− hβ) ≡ 2fσ + (hσ)2 mod 2k+1.

Now we can compute j(Wk+1) from (7):

j(Wk+1) ≡ 1
h2

(
−j(W̃ 2

k ) + (h2 − hσ)j(W̃k) + 2fσ
)

mod 2k+1

≡ 1
h2

(−2fσ − (hσ)2 − h2hσ + (hσ)2 + 2fσ
) ≡ −hσ mod 2k+1,

which proves (6).

It is possible to prove this lemma on a more conceptual level in the following
way: lifting endomorphisms from the coordinate ring of the curve in characteristic 2
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to the Monsky–Washnitzer cohomology is functorial, and as Frobenius commutes
with the involution below, it will also commute in the characteristic zero case.

The fact that diagram (5) is commutative follows for example from the fact that
Frobenius and ∇ commute on power series. We can derive from this diagram the
central differential equation. Let F (Γ) be the matrix of the operator F2 on H−

MW ,
given by F2(bi) =

∑
k Fikbk, and analogously let G(Γ) be the matrix of ∇. Using

the relation ∇ ◦ F2 = F2 ◦ ∇ on basis elements the following equation is easily
obtained:

Ḟ (Γ) + F (Γ)G(Γ) = 2ΓGσ(Γ2)F (Γ). (13)

We will come back later to the problem of solving this equation in a decent way.
Suppose now that we use the same lift to some Qqn (including Γ ← γ, namely

h(X) = h(X, γ) and f(X) = f(X, γ)) in the algorithm of Denef and Vercauteren
as we did here. It is then clear that if F (0) equals their Frobenius in Γ = 0, the
same will hold for F (γ) for every γ ∈ S because F (Γ) is uniquely determined by
(13) and F (0).

3. Behaviour of matrices

In this section we will keep the notation introduced throughout Section 2. The
theory in the foregoing section shows that the matrix of Frobenius F (γ) for some
γ ∈ S, a specialisation of the solution of (13), can be computed by working over
a small field (for finding F (0)) and solving the differential equation. Suppose that
γ̄ ∈ Fqn ; then we will explain in Section 4 that we have to compute F (Γ) modulo
2N and ΓNΓ for well-chosen N and NΓ, both O(n). There is an obvious way to find
F (Γ): calculate first an approximation of the matrix G(Γ) of the connection ∇, and
use then a recursive computation in order to recover F (Γ) from equation (13). We
will now indicate why this is not a good idea, and in Section 3.1 we explain an
alternative approach that does give interesting results.

The first row of the matrix G(Γ) is determined by the reduction of ∇b0, which
equals

∇(Y dX) =
ḟh− 2fḣ
4f + h2

dXdΓ +
2ḟ + hḣ

4f + h2
Y dXdΓ =: (α(X,Γ) + β(X,Γ)Y )dXdΓ.

We know that ∇(Y dX) ∈ H−
MW dΓ, and the reduction formulae (1) and (3) show

then that α(X,Γ)dXdΓ will be cancelled by the appearing IdX/(rH) in (3). So we
are only interested in β(X,Γ)Y , and we compute

β(X,Γ) =
1
h2
· 2ḟ + hḣ

1− (−4f/h2)
=

2ḟ + hḣ

h2

∞∑
i=0

(−4f
h2

)i

. (14)

This is an infinite power series in 1/h and hence in 1/H, which converges so slowly
that it has O(n) terms if we work modulo 2N . In order to express ∇b0 in the basis
B = {bi}, we hence have to use O(n) times formula (3), and as a consequence
the approximated G0,0, the coefficient of b0 in ∇b0, would be a power series of
length O(n) in 1/r̃. Solving (13) in an inductive manner using formula (26) requires
a representation of G(Γ) as power series around zero, and such a representation
needs also O(n) terms if we work modulo 2N . We conclude that computing F (Γ) =∑

k FkΓk requires for each Fk a sum of O(n) matrices with accuracy (and hence
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size) O(n) yielding a total complexity of about O(n3) bit operations. Even worse
is that in the expansion of (14) we have to express f i as a ‘polynomial in H’, say
f i =

∑
j fijH

j with degX fij < degX H. In general this will give degΓ fij = O(iκ),
and hence representing ∇(Y dX) in a form suitable for using formula (3) could
already require bit space of size cubic in n.

Besides a way to avoid the above problems, we will give in this section also an
important estimate for F (Γ). It is worth noting that in the odd characteristic case
in [13] a similar problem arose, but there it was sufficient to multiply G with the
resultant r(Γ). In the current situation, the solution is more complicated.

3.1. Rewriting the matrix of the connection

Define v := 4f + h2 and u := v′/2 = 2f ′ + hh′. We construct a new basis for
H−

MW as di := vbi; the fact that this is a basis follows from Proposition 9 below.
The idea is that — as v arises as denominator in ∇bi — the basis {di} gives in some
sense a nicer matrix for the connection. Consider the following matrices, where the
right hand sides are obtained by reduction using formulae (2) and (3). By (bi) we
mean a column vector of length 2g with b0 on top.

(di) = B · (bi) , (15)
∇ (bi) = G · (bi) dΓ,
∇ (di) = D · (bi) dΓ. (16)

Here (15) and (16) define the matrices B and D. As follows from the preceding
section, the entries of G are elements of S and it is not hard to see that the entries
of B and D are polynomials in Γ over Qq. Using these relations and the equality
∇ ◦ d = d ◦ ∇ we find

D · (bi) dΓ = ∇ (di) = Ḃ · (bi) dΓ +B · ∇ (bi) = Ḃ · (bi) dΓ +B ·G · (bi) dΓ
or in conclusion D = Ḃ +B ·G.

3.2. Adaptation of the differential equation

If we combine the formulaD = Ḃ+BG with the differential equation, we can find
an equivalent equation where only polynomials of bounded degree — see Lemma
8 — appear. We can however even go further, namely as follows from Proposition
11 we need in fact r(Γ)MF (Γ) for some positive integer M . Let R(Γ) := det(B(Γ))
and

K(Γ) := r(Γ)MR(Γ)F (Γ)B(Γ)−1, (17)

then we can find a ‘small’ differential equation and a boundary conditionK(0) = K0

for K(Γ). In Note 12 we will argue why we need the factor R(Γ) in (17).
We recall that σ acts as squaring on Γ and X. The notation Bσ(Γ2) and the

shorthand Bσ will both stand for the matrix obtained from B(Γ) by the action of
σ on the coefficients and on Γ, and similar for the other matrices. We start with
Ḟ + FG = 2ΓGσF , hence multiplying with Bσ on the left will remove Gσ:

BσḞ +BσFG = 2Γ(D − Ḃ)σF.

Next we substitute F = r−MR−1KB, which after multiplication with rM+1R2
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leads to

(rRBσ)K̇B + (rRBσ)KD + (−(MṙR+ rṘ)Bσ + 2ΓrR(Ḃ −D)σ)KB = 0. (18)

An important property of this equation is that all coefficients consist of polynomials
of low degree. As Proposition 9 will show, B(0) is invertible, which will allow us
to compute an approximate solution in Qq[[Γ]] modulo a certain power of 2 and Γ
for K in (18) using induction. Write K =

∑
iKiΓi, where K0 is known, then we

can find all Kk+1 one by one from Kk,Kk−1, . . . by looking at the coefficient of Γk.
Finally rMRF is recovered as KB and rMF is immediately deduced from it.

3.3. Behaviour of B and D

In this section we prove a few important results about the structure of the
matrices B andD. The first lemma provides bounds on the degree and the valuation
of these matrices.

Lemma 8. For every i, j we have degΓBij � (2g + 2)κ and ord2(Bij) � −(3 +
�log2(5g+1)�), and also degΓDij � (2g+1)κ−1 and ord2(Dij) � −(3+�log2(5g)�).
Proof. First we consider B. We have for every i the equivalence

(4f + h2)XiY dX ≡
2g−1∑
j=0

BijX
jY dX.

The reduction formula (2) has to be applied at most 2g + 1 times and each time
degΓ increases at most by κ. Bounding the denominator naively would give the
following product of valuation exactly 2g + 1:

P :=
2g∏

m=0

(
2(2g + 1) +

4m
3

)
. (19)

However, the use of Lemma 2 of [6] gives the better logarithmic bound mentioned
above. The results for D can be proved with similar estimates.

The following proposition implies that B(Γ) is invertible as matrix over S. In-
deed, Lemma 19 of [13] shows that if ord2(s(γ)) = 0 for some s ∈ S and all γ ∈ S,
then 1/s ∈ S. If we apply this to s(Γ) = det(B(Γ)) we find that 1/s(Γ) multiplied
with the adjoint matrix of B(Γ) is indeed defined over S and equal to B(Γ)−1.

Proposition 9. For every γ ∈ S we have ord2(R(γ)) = ord2(det(B(γ))) = 0.

Proof. We will prove in a first step that, with P defined in (19):

det(B) · P = ResX(u, v), (20)

and afterwards some property of the resultant will show that for every γ ∈ S this
last resultant has the same valuation 2g + 1 as P , which gives the proposition.

Define αj := Xju + (j/3)Xj−1v for j � 0, then formula (2) reads αjY dX ≡ 0.
It is easy to verify that the leading term of αj equals (2(2g+ 1) + 4j/3)Xj+2g. Let
m be a polynomial in the variables X,µ0, . . . , µ2g, λ0, . . . , λ2g−1 with coefficients in
Qq[Γ], and suppose m is homogenous of degree 1 in the set of variables {µi, λi} and
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has degree at most 4g in X. We can associate with m a (4g + 1)× (4g + 1) matrix
M over Qq[Γ] in the following way. The entry Mij equals the coefficient in m of
µ2g+1−iX

4g+1−j for i � 2g + 1, and for 2g + 2 � i the entry Mij is given by the
coefficient of λ4g+1−iX

4g+1−j . Schematically this becomes the following (interpret
µiX

j as ‘the coefficient of µiX
j in m’ etc.).

M =



µ2gX
4g µ2gX

4g−1 · · · µ2gX
0

...
...

...
µ0X

4g µ0X
4g−1 · · · µ0X

0

λ2g−1X
4g λ2g−1X

4g−1 · · · λ2g−1X
0

...
...

...
λ0X

4g λ0X
4g−1 · · · λ0X

0


We start with the matrix M associated to the polynomial

m := λ0X
0v+λ1X

1v+. . .+λ2g−1X
2g−1v+µ0α0+µ1α1+. . .+µ2g−1α2g−1+µ2gα2g.

By means of the transformation λj ← λj−((j+1)/3)µj+1, which corresponds to an
elementary row operation, it is easy to see that the determinant of M is precisely
the resultant ResX(u, v).

The reduction process applied to the basis elements dj = vbj gives rise to for-
mulae of the form

XjvY dX = Bj(X)Y dX +
j+1∑
i=0

βijαiY dX,

for j = 0, . . . , 2g − 1, βij ∈ Qq[Γ] and degX Bj(X) � 2g − 1. The coefficients of
Bj are exactly the entries of the jth row of the matrix B. If we substitute these
expressions in our polynomial m, we find

m =λ0B0 + . . .+ λ2g−1B2g−1 +

µ0 +
2g−1∑
j=0

λjβ0j

α0 +

µ1 +
2g−1∑
j=0

λjβ1j

α1

+

µ2 +
2g−1∑
j=1

λjβ2j

α2 + . . .+

µ2g +
2g−1∑

j=2g−1

λjβ2g,j

α2g.

With the substitution µi ← µi +
∑2g−1

j=max(i−1,0) λjβij again the determinant of the
associated matrix does not change, and the result of this substitution is

m1 := λ0B0 + . . .+ λ2g−1B2g−1 + µ0α0 + . . .+ µ2gα2g,

with M1 as associated matrix, hence det(M) = det(M1). Now the matrix M1 has
the following form:

M1 =
(
δ �

0 B̃

)
,

where δ is the upper left (2g+ 1)× (2g+ 1) submatrix of M1, and the structure of
the polynomials αj implies that it is in uppertriangular form with determinant P .
The (2g)× (2g) submatrix B̃ equals the matrix B with the row and column order
reversed. This concludes the proof of the equality det(B) ·P = ResX(u, v). We now
prove a short lemma needed further on.
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Lemma 10. Let R be a ring and α, β, γ ∈ R[X] with deg β = deg(β + αγ), then
ResX(α, β) = ResX(α, β + αγ).

This lemma remains true without the condition on the degree, given that α is
monic. Otherwise the resultants agree up to an appropriate power of the leading
coefficient of α, but we will not use this more general result.

Proof. The matrix defining the second resultant can be achieved from the matrix
defining the first resultant by adding to the rows according to β suitable multiples of
the rows of α. These elementary row operations do not change the determinant.

We continue with the proof of Proposition 9 and show that ResX(u, v) has valu-
ation 2g+ 1 for every γ ∈ S. So from now on we work with a concrete γ ∈ S, hence
f = f(X, γ) etc. If H = 1 the result can be verified directly, so we suppose that
degH � 1. Using v = 4f + h2 = H · (4Qf + h2/H) and the multiplicative property
of the resultant, we can write

ResX(v, u) = ResX(H, 2f ′ + hh′) · ResX(4Qf + h2/H, 2f ′ + hh′).

By the lemma and the fact that H and QfH
′ are relatively prime over the residue

field Fq(γ̄) we have that the first factor has valuation degH. Define h̃ := h/H, then
we have — as can be checked by writing h̃ as a product of linear factors over Qalg cl

q

— that h̃ is a divisor of Hh̃′ with integral quotient α ∈ Zalg cl
q [X]. The lemma

implies that

ResX(4Qf + h̃h, 2f ′ + hh′) = ResX(4Qf + h̃h, 2f ′ + hh′ − (H ′ + α)(4Qf + h̃h))

= ResX(4Qf + h̃h, 2Q′
fH − 2QfH

′ − 4Qfα).

Note that the coefficient of X2g of the second polynomial in these equalities is
always congruent to 2 modulo 4, and hence nonzero.

The last resultant above equals 2deg Qf times

ResX(4Qf + h̃h,Q′
fH −QfH

′ − 2Qfα),

and it is immediate that the leading coefficient of Q′
fH − QfH

′ − 2Qfα mod 2
equals 1. By looking at the Sylvester determinant and noting that, although the
degree of the first polynomial can decrease, no problem modulo 2 arises, we see that

ResX(4Qf + h̃h,Q′
fH −QfH

′ − 2Qfα) ≡ ResX(h̃h,Q′
fH −QfH

′) mod 2.

Again using the lemma we find ResX(h̃h,−QfH
′) modulo 2, which is nonzero by

construction. As conclusion we see that ResX(v, u) = ResX(u, v) has valuation
exactly degQf + degH = 2g + 1.

A consequence of this proposition is an estimate on B−1. Indeed, suppose 2εB is
integral, then the fact that the inverse of a matrix equals its adjoint matrix divided
by the determinant gives that the valuation of B−1 is at least −(2g− 1)ε. Together
with Lemma 8 we can conclude that, defining β′ := (2g − 1)(3 + �log2(5g + 1)�) =
O(g log g), we have ord2(B−1) � −β′. Formula (20) in the proof above also implies
that degΓR(Γ) = degΓ(det(B(Γ))) � 4gκ.
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3.4. On the convergence rate of F (Γ)

A crucial point in all p-adic algorithms is that it suffices to work modulo a certain
power of p. As we have to work in our deformation algorithm also modulo a power
of Γ, it is important to know which power is needed, depending on the required
precision in p. The following proposition gives such a result. Recall the definition
of κ and D̃ in Section 2.1.

Proposition 11. Let N ∈ N and f(Γ) be an entry of F (Γ), reduced modulo 2N .
Then there exist explicit constants χ1 = O(N(D̃+log g)) and χ2 = O(gκND̃) such
that the expression rχ1f(Γ) mod 2N is a polynomial of degree less than χ2. Also we
have an explicit constant ϕ = O(log g) such that ord2(F (Γ)) � −ϕ.

Proof. Recall from Section 3.2 in [6] the approximation Wk to F2(Y ), also used
in the proof of Lemma 7 above. By defining αk(X,Γ), βk(X,Γ) such that Wk =
αk +βkY ; ∆α,k := (αk−αk−1)/2k−1 and similarly ∆β,k we can compute c2H2D̃Wk

from the following formula of [6]:

c2H2D̃Wk ≡ Q2
h ·

{−W 2
k−1 + (h2 − hσ)Wk−1 + fσ

}
mod 2k.

This gives as result, where i, j � 1 in all sums:

c2H2D̃Wk ≡ −Q2
h

∑
i<j,i+j�k

2i+j−1 (∆α,i∆α,j + (f − hY )∆β,i∆β,j)

−Y Q2
h

∑
i+j�k

2i+j−1∆α,i∆β,j −Q2
h

∑
2i�k+1

22(i−1)
(
∆2

α,i + (f − hY )∆2
β,i

)
+(h2 − hσ)Q2

h

∑
i�k−1

2i−1 (∆α,i + ∆β,iY ) +Q2
hf

σ mod 2k. (21)

We know that Wk = αk +Y βk ∈ T and can hence express αk and βk as overconver-
gent power series in X and H−1 with coefficients in S. We will not go into details
in the easy case where degX H = 0, but if degX H � 1 we can write αk and βk

also as power series in H and H−1. It is not hard to show inductively that in this
form for k � 2 the coefficients of c4k−6Wk are polynomials in (X and) in Γ. We
will prove that for k � 2 the coefficients in c4k−6Wk as in (21) have degΓ at most
Ak −B, with A := 2ω, B := 3ω, and (recall that η = degΓH and hQh = cHD̃)

ω := 2κ+ degΓQ
2
h + [(degX(f2Q2

h))/degX H]η + 3η + 2κ.

Here ω − 3η − 2κ � 2A − B is a bound for the degree in Γ in c2W2, as can be
verified by a direct computation. To prove the bound Ak−B we use induction and
consider each term in the formula for Wk above. For instance, for c4k−6Q2

h∆α,i∆α,j

with j > i � 2 we find as a bound (note that degΓ c � κ and A � 4κ)

Ai−B +Aj −B + degΓQ
2
h + (degX Q2

h/degX H + 2)η + [4(k − (i+ j)) + 4]κ
� A(i+ j) +A(k − (i+ j))−B + degΓQ

2
h + (degX Q2

h/degX H + 2)η + 4κ−B
� Ak −B.

The term with η comes from expanding polynomials in X as series in H. As ω
is also a bound for W1 and i, j � k − 1 we have our estimate for all i, j. For the
other terms a similar computation works. For example, for c4k−6Q2

hf∆2
β,i we have,
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as 2i � k + 1,

2Ai− 2B + degΓQ
2
h + κ+ [degX(fQ2

h)/degX H + 3]η + [4k − 8− (4(2i)− 12)]κ
� Ak −B.

In a second step we have to reduce c4k−6Wk in the cohomology. As F2(Y ) ∈ H−
MW

we can confine ourselves to the part with Y in it. First we take some g(Γ)XtY dX,
and reducing this by using formula (2) adds less than tκ to the degree in Γ. Lemma
1 of [6] shows that XtY dX has possible nonzero coefficient modulo 2M only if
t � (aM+b)s with as = 2(2g+1−2 degX h) and bs = 7 degX h−3(2g+1). Take M
such that M−(3+log2((aM+b)s+g+1)) � N , then clearly M = O(N+log g) and
Lemma 2 of [6] gives that it is enough to compute WM for finding F2(Y ) mod 2N

in H−
MW , at least for the part without denominators H. Thus the worst possible

degΓ comes from the term c4M−6V HaM+b, which gives a degree in Γ of at most
AM − B. During the reduction an extra degree in Γ of (aM + b)sκ can occur,
and taking everything together we find that the contribution of the part without
denominator H — after multiplication with r4M−6, a multiple of c4M−6 — is at
most AM −B + (aM + b)sκ+ (4M − 6)ρ.

For the part of F2(Y ) which has H as denominator we consider terms of the
form (V/H�)Y dX for � > 0. During the reduction from 1/H� to 1/H�−1 the degree
in X increases by at most s + 2g, the degree in Γ by at most (2g + 2)κ, and a
denominator r(Γ) appears. In the end we also have to reduce as in the previous
paragraph, starting from degX at most �(s + 2g). Let ã := 4D̃ and b̃ := −6D̃, so
that Lemma 1 of [6] implies that modulo 2M̃ we only need � � ãM̃ + b̃. Then with
M̃ such that M̃−(3+log2(M̃+1)) � N we have that M̃ = O(N) and from Lemma
3 of [6] it follows that WM̃ suffices for this part. Hence the worst case here is the
denominator H ãM̃+b̃, where degΓ is at most AM̃−B. All together this gives for the
numerator a degree in Γ of at most AM̃−B+(2g+2)κ(ãM̃+ b̃)+(ãM̃+ b̃)(s+2g)κ,
and a denominator rãM̃+b̃+4M̃−6.

It is now easy to find the bounds from the proposition: the denominator is r to
the power max(ãM̃ + b̃+ 4M̃ − 6; 4M − 6) with ã, b̃ = O(D̃) and M̃ = O(N); and
as bound χ2 for the degree of the numerator we find

max
{
AM̃ −B + (2g + 2)κ(ãM̃ + b̃) + (ãM̃ + b̃)(s+ 2g)κ,

AM −B + (aM + b)sκ+ (4M − 6)ρ
}

+ 1.

Using A,B, ρ = O(gκ), s = O(g) and as and bs as before the proposition follows.
We note that we should in fact look at F2(XiY ) for i = 0, . . . , 2g − 1, but the

possible increased degΓ caused by this is absorbed in the rough estimates during
the proof.

In order to determine ϕ we need to combine Lemmata 1, 2 and 3 of [6]. Choosing
a modulus 2k, Lemma 1 implies that the highest appearing degree of X in the Y -
part of F2(Y ) is less than (4g+ 2)k+ g. Linked with Lemma 2 this part gives then
a valuation bigger than

min
k�0

(k − 3− log2((4g + 2)k + 2g + 1)) . (22)
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On the side with denominators we find as extremum 4D̃k−6D̃, and Lemma 3 then
gives the lower bound

min
k�0

(
k − 3− log2(4D̃k − 6D̃ + 1)

)
. (23)

Now we can take −ϕ as the minimum of (22) and (23), and we see immediately
that ϕ = O(log g).

Note 12. A corollary of Proposition 11 and Lemma 8 is that with M = χ1 we have
that K(Γ) mod 2N as defined in (17) consists of polynomials of degree at most

χ2 + degΓ(R(Γ) ·B(Γ)−1) � χ2 + (2g − 1)(2g + 2)κ,

and ord2(K(Γ)) � −(ϕ+ β′). Note that r(Γ)MF (Γ)B(Γ)−1 mod 2N does not need
to have finite length, which is the reason why we multiply B(Γ)−1 with R(Γ). When
implementing these results one finds that F (Γ)−1, B(Γ)−1 and the matrix of the big
Frobenius actually have also very good 2-adic valuation1, good enough to suggest
a bound of O(log g) for them as well. In [7] a proof is given for the qth power
Frobenius, but we do not know how to prove it for F (Γ)−1 and B(Γ)−1.

3.5. Error propagation in the inductive computation
When solving the equation

(rRBσ)K̇B+(rRBσ)KD+(−(MṙR+rṘ)Bσ+2ΓrR(Ḃ−D)σ)KB = 0, K(0) = K0

(24)
in an inductive manner using equation (26), we could estimate the loss in accuracy in
a naive way. However, already K̇ =

∑
i iKiΓi−1 implies division by k for computing

Kk, and hence at least ord2((NΓ − 1)!) would be lost as accuracy, assuming that
we work modulo ΓNΓ . It turns out to be possible to do better, as we will show in
Theorem 13. Some form of this theorem has been found independently from the
author by Gerkmann in [12].

For every matrix A(Γ) defined over Qq[[Γ]] we write A(Γ) =
∑

iAiΓi; hence
A(0) = A0. Let −ϕ be the lower bound for the valuation ord2(F (Γ)) found in
Proposition 11, and −ϕ0 a lower bound for ord2(F (Γ)−1). By Lemma 19 in [13] —
the proof of which is also correct for p = 2 — we can take ϕ0 = ϕ(2g−1)+g. Denote
by K the solution for K of (24) obtained by working modulo 2N and starting with
K0 = K0 = r(0)MR(0)F0B

−1
0 . The exact solution will be denoted by K, hence

K = rMRFB−1. Finally we write A0 := r(0)MR(0)F0 = K0B0.

Theorem 13. With K̃ := 2−N (K −K) =
∑

i K̃iΓi we have

ord2(K̃i) � −(10gϕ+ 5g + 1) · 
log2(i+ 1)� − α,
where α := (12g − 1)(3 + �log2(5g + 1)�) + (8g + 1)ϕ+ 4g.

Proof. We will prove this theorem in a number of steps. Let us first define and recall
some terms. For ease of notation we write E := −(MṙR+ rṘ)Bσ +2ΓrR(Ḃ−D)σ;
equation (24) then reads

(rRBσ)K̇B + (rRBσ)KD + EKB = 0.

1This is also true for F (Γ)−1 and the big Frobenius in odd characteristic.
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We know the following bounds: from Lemma 8 follows that

ord2(B) = ord2(Bσ) � −β := −(3 + �log2(5g + 1)�), (25)

and with β′ such that ord2(B−1) = ord2((Bσ)−1) � −β′ as defined after the proof
of Proposition 9 we have β + β′ = 2gβ. In the same way we have ϕ + ϕ0 =
2gϕ+ g. Note that ord2(K) � −ϕ−β′, ord2(K−1) � −ϕ0−β, ord2(A0) � −ϕ and
ord2(A−1

0 ) � −ϕ0.

Definition 14. Let Ai be for every i � 0 a (2g× 2g)-matrix over C2 and x, y ∈ R.
We say that the power series

∑
iAiΓi converges (x, y)-logarithmically if for all i

ord2(Ai) � −x · 
log2(i+ 1)� − y.
To shorten notation we will also write (x, y)-log instead of (x, y)-logarithmically.

Lemma 15. If
∑

iAiΓi and
∑

iBiΓi converge, respectively, (x, y)-logarithmically
and (x′, y′)-logarithmically, then their product converges (x+ x′, y + y′)-log.

Proof. The coefficient of Γk in the product is
∑
AiBj , summed over i + j = k.

Hence its valuation is at least

−x
log2(i+ 1)� − x′
log2(j + 1)� − (y + y′) � −(x+ x′)
log2(k + 1)� − (y + y′),

which gives the lemma.

Lemma 16. Let C be the (exact) solution of ĊB+CD = 0 subject to C(0) = B−1
0 ,

then C converges (ϕ+ ϕ0, β
′)-logarithmically, and for C−1 we find (ϕ+ ϕ0, β)-log

convergence.

Proof. The matrix C̃ := CB gives in fact the solutions as Taylor expansions around
zero of the equation ∇ = 0 or ˙̃C + C̃G = 0, with boundary condition C̃(0) = 1.
From diagram (5) we can deduce the equality

C̃σ(Γ2)F (Γ) = F (0)C̃(Γ)

as at the end of Section 3 of [13]. Now exactly the same proof as for Proposition 20
in [13] gives that C̃ converges (ϕ+ϕ0, 0)-logarithmically. As B−1 can be considered
to have (0, β′)-log convergence, Lemma 15 gives the result. The estimate for C−1 =
BC̃−1 can be proved in a similar fashion.

We now give in Lemmata 17 and 18 an estimate on the error propagation for two
‘partial solutions’ of the equation. Note that we do not need these in the algorithm,
only in this proof. A lemma with the flavour of the following one was first given by
Lauder as Theorem 5.1 in [18], but we give a proof similar to our proof of Lemma
21 in [13]. Let C be the solution computed inductively using formula (26) modulo
2N from the equation ĊB + CD = 0 with C(0) = B−1

0 .

Lemma 17. 2−N (C − C) converges (2ϕ+ 2ϕ0 + 1, β + 2β′)-logarithmically.

Proof. It is easy to see (a formal argument will be given in the proof of Lemma
19) that C satisfies ĊB + CD = 2NE1 with E1 some matrix of power series in Γ
with 2-adic integral coefficients. Let L be such that 2NLC = C − C. Then we can
compute

2NE1 = ĊB + CD − ĊB − CD = 2N (L̇CB + LĊB + LCD) = 2N L̇CB
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and as a consequence L̇ = E1B−1C−1. If we integrate L̇ we find as integration
constant L0 = 0, and hence

2−N (C − C) = LC =
(∫
E1B−1C−1dΓ

)
C.

As integrating is not worse than adding 1 to the logarithmic factor, we find the
lemma.

Continuing with our proof of Theorem 13 we also need an estimate on the other
‘partial solution’. Let P and P be, respectively, the solution computed modulo 2N

and the exact solution of (rRBσ)Ṗ + EP = 0 subject to P (0) = I; then a trivial
computation shows that K = PA0C satisfies (24). Now Lemma 16 implies that
P = KC−1A−1

0 converges (ϕ + ϕ0, β + β′ + ϕ + ϕ0)-logarithmically and the same
holds for P−1 = A0CK

−1. This follows from the lower bounds on the valuation of
K, K−1, A0 and A−1

0 and Lemma 15. With a proof similar to that of Lemma 17
and using (rRBσ)Ṗ + EP = 2NE2 we find the following lemma.

Lemma 18. 2−N (P−P ) converges (2ϕ+2ϕ0+1, 2β+3β′+2(ϕ+ϕ0))-logarithmically.

The proof of the theorem can now be completed by estimating K − PA0C and
PA0C−K and summing these terms. For the first term we use the following lemma.

Lemma 19. 2−N (K−PA0C) converges (5ϕ+5ϕ0 +1, 5β+6β′+5ϕ+4ϕ0)-logarith-
mically.

Proof. Denote the additive operator of (24) by ∆, hence (24) equals ∆K = 0. We
will first show how inductively computing a solution K of ∆K = 0 modulo 2N can
be modelled by an equality ∆K = 2NE for some integral matrix E . For each k we
compute Kk from

[r(0)R(0)Bσ
0 kKkB0 + fk(Kk−1,Kk−2, . . .)] Γk−1 = 2N (integral error matrix)Γk−1

(26)
for some linear functions fk. The sum over all these equations gives ∆K = 2NE .

Let L be defined such that 2NPLA0C = K − PA0C, then we compute

2−N (∆K −∆(PA0C)) = ∆(PLA0C) = rRBσPL̇A0CB. (27)

Using the same integral as before and the fact that

∆(PA0C) = 2N (rRBσPA0E1 + E2A0CB),

we find our result. Indeed, for 2−N∆(PA0C) we find (ϕ+ϕ0, 2β+β′ +2ϕ+ϕ0)-log
convergence, and adding the inverse of the factors in the right hand side of (27)
gives the lemma.

To end the proof of Theorem 13 we still have to control the difference 2−N (PA0C−
PA0C). This can easily be done by adding a cross term:

2−N (PA0C − PA0C + PA0C − PA0C) = 2−N (P − P )A0C + 2−NPA0(C − C).

The (3ϕ+ 3ϕ0 + 1, 2β + 4β′ + 3ϕ+ 2ϕ0)-logarithmic convergence of this difference
is now clear, and taking the maximum of this result and the last lemma gives the
theorem. Indeed, we have K = PA0C and

2−N (K −K) = 2−N (K − PA0C) + 2−N (PA0C − PA0C).
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4. The algorithm

In this section we give a concrete presentation of the algorithm. We suppose
that the polynomials c(Γ), H(X,Γ), Qf (X,Γ), h(X,Γ) and f(X,Γ) are given as
explained in Section 2.1, where Qq is computed as in Section 5.1. The input of the
algorithm is hence formed by these polynomials over Zq = Z2a and some parameter
γ̄ ∈ Fqn which satisfies the resultant condition proved in Lemma 4. The output is
the zeta function of the complete model of the hyperelliptic curve given by Y 2 +
h̄(X, γ̄)Y = f̄(X, γ̄), where we have projected the above polynomials modulo 2.
We will suppose below that Fq[γ̄] = Fqn . This is however not crucial, if γ̄ defines
a smaller field then the zeta function over Fqn is easily derived from it. Indeed, if
Z(T ) is the numerator of some zeta function over Fq, then ResX(Z(X), Xk − T ) is
the numerator of the same zeta function over Fqk .
Step 1. Compute the resultant r(Γ) = c(Γ) · ResX(H(X,Γ), Qf (X,Γ) ·H(X,Γ)′).
Let g be the genus and choose M = χ1 and χ2 as in the proof of Proposition 11 with
N defined as below. The value of ϕ can also be found in this proof. The constant
α is defined in Theorem 13, κ := max{degΓ f, degΓ h

2}, and we set

Nf :=
⌈
log2

(
2g
g

)
+ 1 + ang/2

⌉
,

N := Nf + (2g − 1)(3 + �log2(5g + 1)�) + anϕ+ 2ganϕ,
NΓ := χ2 + (2g − 1)(2g + 2)κ+ 1,
N2 := N + α+ (10gϕ+ 5g + 1)
log2(NΓ)�.

In Steps 2, 3 and 4 we will work modulo 2N2 and ΓNΓ , and in Steps 5 and 6
modulo 2N .
Step 2. Compute the matrices B and D by using formula (2), and R = det(B)
using equality (20).
Step 3. Calculate F (0) as explained in [6], but with the higher accuracy 2N2 . Note
that we need the small Frobenius, that is to say the 2nd power Frobenius.
Step 4. Compute K(Γ) in an inductive manner using formula (26) with starting
condition K0 = r(0)MR(0)F (0)B(0)−1.
Step 5. Let ψ̄(z) be the minimal polynomial of γ̄ over Fq and ψ(z) its Teichmüller
modulus lift as explained in Section 5.1 below. Then Qqn = Qq[z]/ψ(z) and z is the
Teichmüller lift of γ̄. Determine

F (z) =
1

r(z)χ1R(z)
·K(z) ·B(z).

Step 6. Compute

F := F (z)σan−1 · F (z)σan−2 · · ·F (z)σ · F (z)

as explained by Kedlaya in [14] and find Z(T ) as the polynomial over Z, congruent
to det(I −FT ) modulo 2Nf , with coefficients between −2Nf−1 and 2Nf−1. Output
now

Z(T )
(1− T )(1− 2anT )

.

Proposition 20. The above algorithm returns the correct result.
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Proof. The Lefschetz fixed point formula on the Monsky–Washnitzer cohomology
gives as explained at the end of Section 3 in [6] that Z(T ) does equal det(I−FT ) if
F would be the exact matrix of the map Fn

2 . The theory from Sections 2 and 3 above
implies that if every step was done with exact precision, we would indeed find the
required matrix F . As we cannot work with this infinite precision, we need to show
that the chosen accuracy is high enough. From the Weil conjectures it follows (see [6,
Section 4.1]) that F mod 2Nf is sufficient to recover the zeta function as explained
in the last part of Step 6. Proposition 11 and Note 12 imply that M and NΓ are
large enough, viz. working modulo ΓNΓ suffices to compute r(Γ)MR(Γ)F (Γ)B(Γ)−1

modulo 2N . The crucial difficulty is to control the loss of precision introduced by
working with non integral elements of Qq. It is clear that computing r, B, R and D
gives no significant loss in precision. For computing K we can bound the introduced
error as in Theorem 13, which gives that the loss in precision is at most N2. In Step
5 precision can only be lost during the multiplication with B(z)−1, which explains
the term β′ = (2g − 1)(3 + �log2(5g + 1)�) in N , −β′ being a lower bound for the
valuation of B(Γ)−1 as proved at the end of Section 3.3.

We should also take notice of possible loss in accuracy in the computation of
F as a product, which requires an extra anϕ of accuracy. But as pointed out in
Note 12, in practice F turns out to have about the same valuation as F (γ), hence
this increment of N can in practice be chosen lower. Another problem appears in
the computation of the characteristic polynomial of F . One naive way of doing this
would be to compute the trace of F i for i = 1, . . . , 2g and to use Newton’s formula

det(I −FT ) = exp

(
−

∞∑
k=1

Tr(Fk)
T k

k

)
,

which would require an extra precision of 2g+2g log2(2g) from the exponential and
the denominators k, and extra precision 2ganϕ for the trace of F2g, where we have
to note that the Weil conjectures imply that Tr(Fk) is 2-adic integral for all k. A
better way however is explained in [2, Section 7.3, Step IX]. Here we first make
F integral by multiplying it with some power of 2, and then use a slightly altered
version of reduction to the Hessenberg form of a matrix, suitable for working in
Zqn . The loss in precision is then 2ganϕ. We can conclude that the values of N and
N2 are sufficient.

5. Complexity analysis

5.1. 2-adic arithmetic
As central source for this section we use Chapter 12 in [4] by Vercauteren, and

we always assume asymptotically fast arithmetic, meaning that all basic arithmetic
operations can be done in quasi-linear time; see [1]. We suppose here that we are
working modulo 2N ; hence representing an element of Q2 takes O(N) bits (if minus
its valuation is not larger than O(N), which will always be satisfied) and computing
with it takes Õ(N) bit operations. Recall that q = 2a. Let Fq

∼= F2[x]/χ̄(x), then we
define Qq

∼= Q2[x]/χ(x) where χ is the Teichmüller modulus that projects to χ̄. A
Teichmüller modulus χ(x) is the (monic) minimal polynomial of some Teichmüller
lift, or equivalently χ(x)|xq − x. In Section 12.1.2 of [4] an algorithm of Harley is
given that computes χ in time Õ(aN). Basic arithmetic operations and the 2nd
power Frobenius automorphism σ need the same amount of time.
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If ψ̄(z) is the minimal polynomial of γ̄ over Fq, we can compute the Teichmüller
modulus ψ(z), being the minimal polynomial of the Teichmüller lift of γ̄ over Qq,
as follows. First determine ϕ(y) such that Qqn ∼= Q2[y]/ϕ(y), ϕ(y)|y2an − y and
ϕ̄(γ̄) = 0 as above, in time Õ(anN). Second, as ϕ(z) = 0, we have that ψ|ϕ, or
ϕ = ψ · ψ′ for a suitable ψ′. Now ψ̄ and ϕ̄ are known, hence ψ̄′ can be recovered
easily, and using Hensel lifting as in [9] gives ψ in time Õ(anN). Again this is also
the time required for basic arithmetic operations in Qqn and the action of σ.

Computing σk of an element of Qqn can be done trivially by applying k times σ,
resulting in a complexity of Õ(kanN). However, further on it will be advantageous
to be able to compute the action of σk on the Teichmüller lift z in a faster way. We
can compute γ̄2k

in time Õ(kan) by repeated squaring, and using the generalised
Newton lifting of [4] on the equation X2 −Xσ = 0 we find the Teichmüller lift of
γ̄2k

, which equals σk(z), in time Õ(anN).

5.2. Analysis of the algorithm and proof of Theorem 1
We use the 2-adic arithmetic always as in the previous paragraph. Let ω be

an exponent for matrix multiplication, which means that multiplying two k × k
matrices over some ring R takes O(kω) operations in R. We can take ω = 2.376,
see [5]. It is easy to check the following bounds:

ϕ = O(log g) = Õ(1),

Nf , N, N2 = Õ(ang),

NΓ = Õ(gκND̃) = Õ(g2aκnD̃).

Computing the lifts of H̄ and Q̄f̄ costs essentially nothing, and the computation
of the resultant r(Γ) (and R(Γ) as resultant later on) can be achieved in time
Õ(g1+ωaNgκ) = Õ(g3+ωa2κn), see for example [23], where we use the fact that
we are working with polynomials in Γ of degree at most O(gκ). To determine B
and D we have to use formula (2) at most O(g) times and each step requires time
Õ(aN · gκ · g), where we use that O(aN) is the bit size of an element of Qq, the
degree in Γ of the polynomials is O(gκ) and their degree in X is O(g). Together
this gives Õ(g4a2nκ).

Next we have the recursive formula for finding K. Each of the NΓ steps consists
of O(gκ) multiplications of matrices whose entries have size O(aN), resulting in
O(gκgωaNNΓ) = Õ(g4+ωa3κ2n2D̃). The size of K is O(g2aNNΓ) = Õ(g5a3κn2D̃),
which will be the overall memory requirements of the algorithm. Note that we can
ignore the operations for finding Bσ and the like.

For Step 3 of our algorithm we have to repeat part of the complexity analysis of
[6]2, where we can confine ourselves to the ‘worst case’ mentioned there rather than
to look at the ‘average case’. Having only to compute the matrix of the 2nd power
Frobenius F (0), Step 4 in the algorithm of [6] is the most time-consuming step,
taking time Õ(g3aN2) = Õ(g5a3n2). The memory requirements are O(g4a3n2).

2In that paper the memory requirements are actually log g bigger than written there, because
the computation of the characteristic polynomial of the big Frobenius needs to take care of the
emerging denominators. Although this factor log g is removed in the erratum [7], this is irrelevant
for us, as we are interested in the 2nd power Frobenius, whereas the problem only appears further
on in the algorithm of [6].
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The minimal polynomial ψ̄ in Step 5 can be computed in time O((an)2), see
[20], and finding ψ out of ψ̄ takes Õ(anN) bit operations.

Let f(Γ) be an entry of r(Γ)χ1R(Γ)F (Γ)B(Γ)−1, then we have to find f(z), being
a substitution Γ ← z that can be done very fast using our Teichmüller modulus.
Indeed, we just have to reduce f(z) modulo ψ(z), which takes for the whole of the
matrix Õ(g2aNNΓ) = Õ(g5a3κn2D̃) bit operations. Division by r(z)χ1R(z) and
multiplication by B(z) again can be ignored. We remark that until now, where
we have found the matrix of the small Frobenius, our algorithm has essentially a
quadratic dependency on n.

For the last step Kedlaya’s method consists of the following iteration:

Mi+1 = . . . , where M0 := F (z).

This requires log n times a matrix multiplication over Qqn , which needs time
Õ(gωanN), and in addition the computation of σk on 4g2 elements requires
Õ(g2 · k · anN) = Õ(g2a2n2N) bit operations.

Combining all these facts gives up to Step 5 a complexity of Õ(g4+ωa3κ2n2D̃)
bit operations and Õ(g5a3κn2D̃) bits of memory. However, as explained in Section
6.2 below, we can remove one factor g from these memory requirements. Now as
‘on average’ D̃ = O(1) — worst case being D̃ = O(g) — this gives the first term in
the time complexity and the memory requirements of Theorem 1. Step 6 gives the
second part of the time estimate.

6. Improvements

6.1. Subcubic counting

The most time-consuming step in the above algorithm is in fact the determination
of F (z)σk

for k of the order O(an), taking time Õ(g3a3n3). It is however possible
to do this with a faster method. Let α(z) ∈ Qq[z]/ψ(z), then the equality

α(z)σk

= ασk mod a

(zσk

)

shows that we only have to compute 4g2 log n times ασ�

(zσk

) with � = O(a) and
k = O(an), where α is a polynomial modulo 2N over Qq of degree at most n−1. The
computation of ασ�

takes at most time Õ(aN�n) = Õ(ga3n2). On the other hand we
have the modular composition of polynomials ασ�

(zσk

) mod ψ(z). As explained at
the end of Section 5.1, the computation of zσk

takes only Õ(ga2n2) time. Following
Sections 6.1 and 6.2 of [13], this modular composition can be achieved in time
Õ(ga2n2.667), at the cost of an increase in memory use, namely O(ga2n2.5). Doing
this for all 4g2 entries gives Theorem 2 from the introduction.

6.2. Using less memory

An easy adaptation of the algorithm presented in Section 4 decreases the memory
requirements by a factor g, without increasing the time complexity. The idea is as
follows: instead of computing the matrix K(Γ) mod 2N2 ,ΓNΓ at once and reducing
it modulo ψ(Γ) afterwards, we compute K(Γ) in parts of length NΓ/g. After each
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of the g steps we reduce the result modulo ψ(Γ). More precisely, first we compute

K0,K1, . . . ,KNΓ/g and K̃1 :=
NΓ/g∑
i=0

KiΓi mod ψ(Γ).

We only need the last O(gκ) matrices Ki in order to continue the computation.
Next we forget all Ki except these O(gκ) last ones, and continue with

KNΓ/g+1, . . . ,K2NΓ/g and K̃2 :=
2NΓ/g∑

i=NΓ/g+1

KiΓi mod ψ(Γ).

This can be done until the end, and the result is then

K(z) ≡ (K(Γ) mod ψ(Γ)) ≡
g∑

i=1

K̃i mod 2N2 .

Finally we multiply K(z) with B(z)/(r(z)MR(z)) and find F (z). It is easy to verify
that the global time complexity does not increase, whereas the memory require-
ments drop by a factor g.

6.3. Lots of curves

Using fast multipoint evaluation and fast matrix multiplication it is possible to
compute n zeta functions within one family in time Õ(n3.376) and memory O(n3).
We do not go into all the details, but the main steps needed for this estimate
are the following. Suppose a = 1, and we only look at the dependency on n. As
before we compute r(Γ)χ1R(Γ)F (Γ)B(Γ)−1 in time Õ(n2), and some Teichmüller
modulus ψ(z). Let γ̄1, . . . , γ̄n be the parameters for which we want to calculate
the zeta function. Computing all the Teichmüller lifts γ1, . . . , γn takes Õ(n3) time.
Next there are two main points. First we can use fast multipoint evaluation to
compute all the matrices F (γi) at once in time Õ(n3) and space O(n3), and second
we can compute for k = O(n) and a set {αi}ni=1 ⊂ Q2n all the values σk(αi) in time
Õ(n3.376) and space O(n3) using fast matrix multiplication. In going from F (γi) to
F(γi) for all i this is the only step requiring more time than Õ(n3) and hence the
result follows.

We explain first how to compute all the matrices F(γi) together in time Õ(n3).
Let the ring R be equal to Z2n considered modulo 2N , then Corollary 10.8 in [9]
says the following: We can evaluate any polynomial in R[Γ] of degree less than n at
n elements of R using Õ(n2) operations in R. For our situation we need degree O(n)
instead of ‘less than n’ — but this is an immediate consequence of the corollary —
and memory requirements equivalent to representing at most O(n2) elements of R,
which is easily derived from the proof of the corollary. The matrix 2ϕF (Γ) consists
of polynomials in Z2n [Γ] (in fact, in Z2[Γ]) modulo 2N+ϕ of degree O(n), and hence
we can find all matrices F(γi) in time Õ(n3) and space O(n3).

Next we have n elements αi(z) ∈ Q2n = Q2[z]/ψ(z). We fix some power k of σ
and compute first β(z) := σk(z) and the powers βj(z) := β(z)j for j = 0, . . . , n−1.
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This can certainly be done in time Õ(n3). We write

αi(z) =
n−1∑
j=0

ai,jz
j and βj(z) =

n−1∑
�=0

bj,�z
�.

With A the matrix over Q2 consisting of the entries ai,j and similar B for the bj,�,
we have to compute

σk(αi(z)) = αi(β(z)) =
n−1∑
j=0

n−1∑
�=0

ai,jbj,�z
� or

σ
k(α1(z))

...
σk(αn(z))

 = A ·B ·

 z0

...
zn−1

 .

We can conclude that we only have to compute the product of A and B, which
requires O(n2.376) operations in Q2, as proved in [5].

Note that this result is also applicable to the situation in [13], hence for hyper-
elliptic curves in odd characteristic.

6.4. Quadratic counting with gnb

If we work over fields Fqn where a Gaussian normal basis (gnb) of type t for some
small t exists (see [4, Section 2.3.3.b], and [15] for the existence of such bases), then
we can make our algorithm quadratic for some well-chosen parameters. Here is an
outline of how this works for t = 1 and a = 1, which means we have a representation

F2n ∼= F2[x]
xn + xn−1 + · · ·+ x+ 1

.

The same minimal polynomial (xn+1− 1)/(x− 1) can be used over Q2 to represent
Q2n , and it is clear that it is a Teichmüller modulus. Note that xn+1 = 1, which
makes computing a lot easier. Suppose now that our parameter γ equals some power
of x, say xk. We note that this is a very strong condition, for there exist only n+ 1
such parameters γ. As explained earlier the crucial step is computing α(γ)σ�

for
� = O(n) and α some polynomial of degree O(n) over Q2 modulo 2O(n). Now if
α(Γ) =

∑m
i=0 aiΓi, then we have (using a redundant representation, a non-unique

form using the generating set 1, x, . . . , xn)

α(γ)σ�

= α(x2�k) =
m∑

i=0

aix
2�ki mod n+1,

and this last expression is easily evaluated. We can conclude that this gnb allows
us to compute the zeta function for certain parameters in time Õ(n2). Here too we
can draw the same conclusions for the odd characteristic case.
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