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Summary

Recently, a Haley—Knott-type regression method using combined linkage disequilibrium and linkage analyses
(LDLA) was proposed to map quantitative trait loci (QTLs). Chromosome of 5 and 25cM with 0-25 and
0-05 cM, respectively, between markers were simulated. The differences between the LDLA approaches with
regard to QTL position accuracy were very limited, with a significantly better mean square error (MSE) with the
LDLA regression (LDLA_reg) in sparse map cases; the contrary was observed, but not significantly, in dense
map situations. The computing time required for the LDLA variance components (LDLA_vc) model was much
higher than the LDLA_reg model. The precision of QTL position estimation was compared for four numbers of
half-sib families, four different family sizes and two experimental designs (half-sibs, and full- and half-sibs).
Regarding the number of families, MSE values were lowest for 15 or 50 half-sib families, differences not being
significant. We observed that the greater the number of progenies per sire, the more accurate the QTL position.
However, for a fixed population size, reducing the number of families (e.g. using a small number of large full-sib
families) could lead to less accuracy of estimated QTL position.

1. Introduction position with a random model that included what
they called a “haplotype effect’. The haplotypes were
defined by a set of marker loci on the chromosomal
segment surrounding this position. However, this
terminology (haplotype effect) may be confusing: two
chromosome segments belonging to two different
individuals (or two chromosomes of the same indivi-
dual) and carrying the same (identical by state (IBS))
haplotype may not be (identical by descent (IBD)) at
the QTL. Thus, to avoid possible confusion, we will
prefer and use the wording ‘chromosomal segment
effect’ rather than ‘haplotype effect’. In this paper,
the term “haplotype’ will be restricted to a sequence of
marker alleles which can be found on these chromo-
some segments (with a maximum of 2 haplotypes
if they are assembled from m markers), while the term
‘chromosome segment’ defines physical DNA seq-
uences found in a population (2n distinct chromo-
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DNA sequencing and high throughput single nucleo-
tide polymorphism (SNP) analysis have increased the
resolution of quantitative trait loci (QTLs) mapping,
making possible the use of short-range linkage dis-
equilibrium (LD). Linkage analysis (LA), the most
popular tool for QTL detection 10 years ago, was
enriched by the addition of LD information in
so-called linkage disequilibrium analysis (LDLA)
methods. Several approaches have been proposed to
combine these levels of information (e.g. Meuwissen
et al., 2002; Farnir et al., 2002; Pérez-Enciso, 2003;
Legarra & Fernando, 2009). Some are computation-
ally intensive (Pérez-Enciso, 2003), whereas others,
limited to familial designs, were easier to compute
(Farnir et al., 2002). Meuwissen et al. (2002) proposed
testing the presence of a QTL at a given genomic
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derived from the Haley—Knott method (Knott et al.,
1996) and a mixed linear model. Their regression
model is simpler and faster than the Meuwissen et al.
(2002) model. The association between the quantitat-
ive phenotypes recorded in the last generation and
transmitted founder chromosomal segments is tested
considering gamete transmission probabilities along
generations. The authors make no assumption about
the LD generation process, i.e. about identity between
the founder chromosomal segments, and leave users
free to implement or not haplotype clustering. They
simply consider that two chromosomal segments
carrying IBS haplotypes belong to the same ‘class’
and model the effect of the classes on the quantitative
trait. Legarra & Fernando (2009) compared their
regression model to a variance component IBD-based
model (vcIBD) (Meuwissen et al., 2002; Lee & Van
der Werf, 2006) in terms of mapping accuracy. Based
on their results, the regression model appeared to be
more accurate than the vcIBD method when the only
source of LD was drift. However, their numerical
evaluation was limited to only one family size and
low-marker density.

Several studies (Lee & van der Werf, 2004, 2005;
Heuven et al., 2005; Hayes et al., 2006) have eval-
uated the potential of LD to improve mapping accu-
racy when using familial linkage information. They
investigated the effects of pedigree information,
marker density, effective population size and mu-
tation age on the vceIBD-based model. This method is
computationally intensive and both the number of
scenarios and replicates per scenario was limited.

The first purpose of this work is to extend the
comparison between the linear regression (Legarra
& Fernando, 2009) and IBD variance component
models (Meuwissen et al., 2002). The original IBD-
based method described by Meuwissen et al. (2002) is
modified according to Druet et al. (2008) by clustering
the chromosomal segments based on their IBD prob-
abilities. Various numbers of markers per haplotype
and levels of chromosomal segment clustering are
tested.

A second objective of this work is to extend the
study of the LDLA regression (LDLA_reg) tech-
nique, considering different designs defined by the
number of descendants per sire, the type of design
(either half-sibs or a mixture of full- and half-sibs) and
the number of genotyped animals. Here, we exploit
the computing time of the regression technique, al-
lowing more scenarios and replicates to be examined.

2. Materials and methods

(1) Simulated designs

LD in a historical founder population, and geno-
types and performance in a two-generation mapping
population were simulated with the LDSO software
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(Ytournel et al., 2010). Full and half-sib designs were
simulated for the mapping population.

Genotypes were simulated for a number of biallelic
markers in either a 5 or 25 cM region, assuming link-
age equilibrium and isofrequent alleles at each locus.
The limited (5 and 25 cM) sizes of the explored region
were chosen to mimic the situation when a QTL is fine
mapped after having been detected via a full genome
scan. A biallelic QTL was located at mid-distance
between two markers at position 2-125 or 9-125 cM.
Neither mutations nor bottlenecks were simulated.
An effective population size of 100 was simulated
during 50 generations. This process created LD be-
tween loci. Three additional generations were simu-
lated, in order to increase the mixing of chromosomal
segments created after the initial 50 generations. The
actual size of the population was increased to 700 (350
males and 350 females) in generation 51, 2000 (50 sire
families of size 40 with two progeny per sire x dam
mating) in generation 52 and 4000 (100 sire families of
size 40 with two progeny per sire x dam mating) in
generation 53. Two additional generations (54 and 55)
formed the mapping population. Phenotypes were
simulated in the last two generations, with a QTL
allelic effect of one phenotypic standard deviation
and an environmental effect sampled from an N(0,1)
normal distribution.

For each scenario, a total of 100 usable replicates,
i.e. for which neither of the QTL alleles had a fre-
quency >0-90 in mapping population sires (in the
54th generation) were generated and analysed.

(1) Mapping analysis methods

Three QTL mapping methods were compared: (i) the
LA method according to Elsen et al. (1999), (ii) the
LDLA regression approach of Legarra & Fernando
(2009) and (iii) an LDLA variance components IBD-
based method derived from Meuwissen et al. (2002).
The methods will be designated LA, LDLA_reg and
LDLA_vc, respectively.

The first two models are implemented in the
QTLMap software (Filangi et al., 2010). Genome
scans were performed using a 0-1 cM step. For both
methods, the most probable parental phases (and thus
the haplotypes carried by the founders) were built
from the data (Favier et al., 2010), and the trans-
mission probabilities from the parents to the progeny
(Elsen et al., 1999) were computed. In brief, the LAs
systematically tested the difference in performance
levels between the progeny receiving the first
chromosome or the second chromosome from the sire
or the two parents at the tested position, weighted
according to the transmission probabilities in the
likelihood function. As described in Legarra &
Fernando (2009), the LDLA_reg method adds to the
LA model the effects of haplotype classes as observed
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on the chromosomal segments transmitted by the
parents to the progeny, weighted by the correspond-
ing transmission probability.

In Meuwissen et al. (2002), the covariance between
two chromosomal segment effects depended on the
probability that they carried IBD alleles at the QTL
given the marker and pedigree information (here, to
simplify the description, such chromosomal segments
will themselves be qualified IBD). The probabilities
that two founder chromosomal segments are IBD can
be estimated by the gene dropping method described
by Meuwissen & Goddard (2000), or the deterministic
method based on the simplified coalescence approach
reported by Meuwissen & Goddard (2001). The
probability that a non-founder chromosomal segment
is IBD with a founder chromosomal segment can be
estimated using the algorithm described by Fernando
& Grossman (1989). The number of different haplo-
types found in a population increases with the marker
density. The number of non-IBD chromosomal
segments may be very high, and proportional to the
population size. To reduce the impact of the esti-
mation problem, Blott et al. (2003) and Druet et al.
(2008) proposed that some chromosomal segments
should be clustered together before solving the mixed
model, but no clear rule was provided to achieve
an efficient clustering strategy. The third method
(LDLA_vc) was performed with the software suite
PIBD used at INRA (F. Guillaume, personal com-
munication). As phase reconstruction is not included
in the suite, phases built with LDSO software were
provided as input. We further checked that the phases
inferred with QTLMap were always exact. The
procedure included four steps. In the first step, the
haplotypes carried by the founders were identified.
In the second step, IBD probabilities (hereafter de-
signated Prob(IBD)) between founder chromosomal
segments were estimated as described in Meuwissen &
Goddard (2001). In the third step, the chromosomal
segments were grouped with a single linkage cluster-
ing technique (Hurtagh, 1985) using 1-Prob(IBD) as a
distance. The threshold for grouping chromosomal
segments was chosen in order to maximize the
accuracy of QTL location (see below). Covariances
between cluster effects were set to zero in the variance
component estimation step. The final step was
an EM-REML estimation of the parameters at the
putative QTL position, followed by a likelihood ratio
test (LRT) of the variance component associated with
the QTL (Visscher, 2006).

For all methods, the tested positions were never
coincident with the position of the simulated QTL.

(iii) Situations simulated

A summary of all situations examined is shown in
Table 1.
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The first aim of this paper was to extend the com-
parison between the linear regression (Legarra &
Fernando, 2009) and the IBD variance component
models (Meuwissen et al., 2002) from Legarra &
Fernando to several additional experimental situa-
tions. Sixteen scenarios were simulated, including the
“drift’ scenario of Legarra & Fernando (2009), with a
5cM segment (this case will be designated as the
‘reference scenario’).

Two parameters relating to the way haplotype
information is used were tested: the haplotype
length and the clustering threshold in the LDLA_vc
approach.

The haplotype length, a parameter needed in
LDLA methods, is usually defined by the number of
markers. Three cases were studied: 2, 4 and 6 marker
haplotypes. The effect of this parameter on the accu-
racy of the QTL location was investigated considering
a population of 1000 progeny from 5, 15, 50 or 100
sire families, with a 25 cM-long segment with 100 or
501 markers.

As explained above, the original IBD-based
method described by Meuwissen et al. (2002) was
modified according to Druet et al. (2008) by clustering
the chromosomal segments based on their IBD prob-
abilities: two chromosomal segments were grouped
together in the LDLA_vc method if their Prob(IBD)
was greater than a threshold. Three values were
compared for this threshold: 0-05, 0-50 and 0-95.
Mapping accuracy was tested in a subset of the
scenarios described previously, with 15 families
having a total of 1000 progeny, and a 25 cM-long
segment with 501 markers. From the results of this
first analysis, an average situation with haplotypes of
four markers and a clustering threshold of 0-50 was
kept for the following comparisons.

Then two series of comparisons were performed :

(1) Two region sizes, 5 and 25cM, and two SNP
densities, 0-25 or 0:05 cM between markers, were
simulated. The total number of markers was 21 or
101 for the 5 ¢cM segment, and 101 or 501 for the
25 cM segment.

(2) Four number of families (5, 15, 50 and 100),
setting to 1000 the total number of progenies were
simulated.

To evaluate the efficiency of various experimental
designs for mapping QTL with the LDLA_reg model
the effect of familial structure on the accuracy of
QTL location was explored. Four family sizes (40, 70,
100 and 160 descendants per sire) for a population
consisting of 15 sire families were studied, giving a
total population size between 600 and 2400. For
each family size, two designs were assessed: paternal
half-sibs (1 progeny per sire-dam mate) and a
mixture of full- and half-sibs (10 or 20 full-sibs per
family).


https://doi.org/10.1017/S0016672312000407

D. L. Roldan et al.

226

Table 1. Reference parameters and alternative simulation scenarios

Simulated scenario

1. Comparison of mapping accuracy between methods®
Region size (cM)
Distance (cM) between markers
QTL position (cM)
Number of sires in mapping population
Number of progenies per dam
Number of progenies per sire
Clustering threshold
Window size

2. Clustering threshold in LDLA_vc
Region size (cM)
Distance (cM) between markers
QTL position (cM)
Clustering threshold
3. Efficiency of experimental design with LDLA_reg and LA
Haplotype size
Region size (cM)
Distance (cM) between markers
QTL position (cM)
Window size
Offspring per family
Region size (cM)
Distance (cM) between markers
QTL position (cM)
Number of progenies per dam
Number of progenies per sire

2
25, 0-05
125, 9-125

15, 50, 100

()]

bl

Sl

— |

200, 67, 20, 10
0-50, none
4 SNP, 2 SNP for LDLA regression method

25

0-25, 0-05
9-125

0-95, 0-50, 0-05

25

0-25, 0-05
9-125

2,4, 6 SNPs

25

0-05

9-125

1, 10, 20

40, 70, 100, 160

“ The reference situation (Legarra & Fernando, 2009) is underlined.

(iv) Comparison criteria
(a) Accuracy of estimation of QTL location

Mean square errors (MSE) for the estimated QTL
location were obtained from 100 replicates for each
method and scenario. The MSE incorporates both the
bias and standard deviation of the estimates: the
smaller, the better.

(v) Computing time

The average (100 replicates) CPU time required by
each method to analyse the data sets was compared.
The computing time was measured on an Intel 64 bit
CPU Inter 64, (4 GB RAM) running under Linux.

3. Results and discussion

The validity of the simulations was assessed by con-
sidering the realized LD, measured by r%. The mean
value, estimated in sparse and dense maps (0-25 or
0-05cM interval between markers), was 0-:099 and
0-111, respectively, between adjacent markers. These
observed values for r* and the extent of the LD,
estimated from 100 replicates, suggest that our simu-
lation parameters generated a population that mimics
the LD values observed in existing populations
(McRae et al., 2002, 2005 in sheep population; Tenesa
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et al., 2003 and Farnir er al., 2000 in cattle;
Nsengimana et al., 2004 in pig lines).

(1) Preliminary analyses : haplotype information
(a) Clustering threshold

The effect of the clustering threshold on the accuracy
of QTL location with LDLA_vc is displayed in Table
2 for different numbers of families. For this compari-
son the number of markers was always four, and even
with this low number of markers, which generates
at the most 2*=16 different haplotypes, a large
number of clusters can be obtained. As reported by
Meuwissen & Goddard (2001), this is because two
chromosomal segments that are identical by state can
show low Prob(IBD). As expected, the higher the
clustering threshold is, the lower the number of
clusters there will be and the higher the number of
founder chromosomal segments in each cluster.
The lowest threshold (1 —Prob(IBD)>0-05) gave the
worst mapping resolution. In this situation, only the
chromosomal segments having a high probability of
being identical were put together and many clusters
were defined. Almost as many clusters as founder
chromosomal segments were thus available in the
analyses. As covariances between cluster effects are
set to zero in the variance component estimation step,
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Table 2. Average number of clusters and MSE values® of the LDLA_vc method depending on the clustering
thresholds of founder chromosomes and the number of families (501 markers scenario, 4 SNP haplotype size,
1000 progeny and 1 progeny/dam)

Clustering threshold of founder chromosomes

0-05 0-50 0-95
Number of sires NC? MSE? NC MSE NC MSE
5 4168 (1-17) 0-050 (0-010) 5-9 (0-08) 0-025 (0-004) 3-7 (0-006) 0-045 (0-014)
15 4267(1118) 0078 (0:022)  59(007) 0017 (0:003)  38(0:008)  0-028 (0-004)
50 439-9 (1-22) 0-052 (0-011) 61 (0-11) 0-014 (0-003) 3-7 (0-007) 0-045 (0-013)
100 4646 (130) 0054 (0014)  65(0-15 0018 (0:003) 3.8 (0:007)  0-029 (0-:005)

4 MSE, mean square error (cM?). Standard errors in parentheses.

> NC, number of clusters.

Table 3. Mapping accuracy of the LDLA_reg method for two-marker densities with different window sizes

(25 ¢M scenario)®

Marker density”

Number of sires

Number of markers per haplotype®

2

4

6

025 5 0-361 (0-091)” 0-235 (0-073)¢ 0-263 (0-053)¢
15 0-303 (0-061)” 0-194 (0-028)¢ 0-260 (0-032)¢

50 0-335 (0-067) 0-222 (0-032)¢ 0-255 (0-034)¢

100 0-353 (0-087) 0-238 (0-029)¢ 0-353 (0-087)¢

0-05 5 0-082 (0-022)¢ 0-033 (0-007)° 0-025 (0-004)°
15 0-045 (0-008) 0-022 (0-003)° 0-031 (0-003)°

50 0-048 (0-008) 0-028 (0-005)° 0-036 (0-006)°

100 0-075 (0-023)¢ 0-031 (0-006)° 0-035 (0-005)°

¢ Bonferroni ¢ test. MSE values with the same letter are not significantly different.

b Marker density (cM).

¢ Mean square error values (cM?). Standard errors in parentheses.

such analyses were close to a LA. In this situation, a
large number of segment effects have to be estimated,
based on limited information, and the mapping
accuracy is reduced. Increasing the clustering limit
from 0-05 to 0-50 decrecased the MSE values by
50-78% depending on the number of families.
Moving the threshold from 0-50 to 0-95 led to ‘over-
clusterization’ and increased the MSE values (from 38
to 70%). In this case, a large proportion of the
elements grouped in a cluster may not be IBD,
decreasing the differences between cluster effects if a
QTL exists. This result is in agreement with Ytournel
et al. (2007), who studied by simulation the ability of
estimated IBD probability to discriminate between
the IBD statuses of QTL loci. They found that, for a
0-90 clustering threshold, 75% of the QTL alleles
corresponding to chromosome segments grouped
together were not IBD.

Our observations partly contradict Calus et al.
(2009). They clustered founder chromosomal seg-
ments with IBD probabilities (their ‘limitIBD’
equivalent to our I-clustering threshold) of 0-55, 0-75
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or 0-95, and non-founder chromosomal segments
with IBD probabilities of over 0-95. They found
that the posterior probabilities for a QTL to be
found near to the true QTL location are practically
uninfluenced by the clustering threshold chosen. This
difference is probably due to the unique 0-95 thre-
shold that they applied to non-founder chromosome
segments.

The QTL effect was slightly underestimated (about
5%, data not shown) with the lower threshold and
overestimated for higher clustering thresholds. The
computing time was higher with larger numbers of
clusters (about 2-5 times higher with a 0-05 threshold
as compared with 0-50, results not shown).

(b) Window sizes

With the LDLA_reg method (Table 3), mapping res-
olution was optimal when haplotypes were defined
with four markers. Two-marker haplotypes re-
presented the worst solution, and doubled the MSE
compared with four-marker haplotypes. None of the
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Table 4. Mapping accuracy of the LDLA_vc method for two marker densities with different window sizes on
25 ¢M (for 15 half-sib families and 0-50 clustering threshold)”

Haplotype size

2 4 6
Marker density? NC¢ MSE“ NC MSE NC MSE
0-25 519 (2:41) 0563 (0:129) 161 (068)  0:328 (0:080)°  135(0:09)  0-117 (0-018)¢
005 272(078)  0-015 (0-004)¢ 59007 0017 (0:003)¢ 63(0:02) 0011 (0:001)7

¢ Bonferroni ¢ test. MSE values with the same letter are not significantly different.

b Marker density (cM).
¢ NC, number of clusters.

4 MSE, mean square error (cM?). Standard errors in parentheses.

differences observed between four- and six- marker
haplotypes were significant.

The clustering threshold was 0-50 in these analyses,
and for the LDLA_vc model, significant differences
between two-, four- and six-marker haplotypes were
detected but only for the 0-25c¢cM marker density
(Table 4). In this case, the best result was obtained
with six markers per haplotype (P <0-05).

Those results are partly in agreement with other
reported observations. Grapes et al. (2004) found that
an LD regression based on two-marker haplotypes
was more accurate (in terms of QTL position) than a
single-marker regression. Grapes et al. (2006), ex-
ploring the optimal haplotype structure for the
IBD-based LD approach of Meuwissen & Goddard
(2000), found that using haplotypes of four or six
markers always gave lower MSEs than smaller (1, 2)
or larger (10) haplotypes, the four-marker haplotypes
performing most often best. Zhao et al. (2007) also
found that four-marker haplotypes minimized the
MSE in the LD variance component-based IBD
method, but also found that single marker regression
is often the best solution. Calus et al. (2009), using the
average frequency of correct positioning of the QTL,
found that haplotypes consisting of two markers were
much less efficient than haplotypes consisting of
six and 12 markers, the four marker case not being
studied.

For the LDLA_vc model, larger window sizes
correspond to lower numbers of clusters and higher
numbers of chromosomal segments in each cluster.
This is partly in agreement with Calus ef al. (2009)
who studied the effects, on mapping accuracy, of
window sizes (2, 6, 12 and 20) and clustering thresh-
olds of IBD probability between founder haplotypes
(0-05, 0-25 and 0-45). They found that increasing the
window size decreased the number of founder and
non-founder chromosomal segments for the lower
(0-05 and 0-25) clustering thresholds, with the number
reaching a minimum with six markers when the
threshold reaches 0-45.
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Whatever the haplotype size and family number,
accuracy increased with the map density. In the
following comparisons, the LDLA_vc analyses were
performed with values of 0-50 for the clustering
threshold, and four-marker haplotypes were used.
The latter may be suboptimal for LDLA_vc with
sparse maps, but facilitated comparing the methods,
in particular for the computing time criteria.

(i1) Comparison of mapping methods

Meuwissen et al. (2002) depicted the fairly used model
for LDLA QTL detection in livestock. The regression
model from Legarra & Fernando (2009) is a simple
linear-models framework for association and linkage
that reduces to well-known models on the hypothesis
of LE or complete LD. In addition, it is computa-
tionally simple to use. For these reasons, a simple but
not extensively used LDLA model was compared
against the most fairly used LDLA model.

The performance of the methods applied to half-sib
populations of total size 1000 is listed in Tables 5-7
for different sizes of the explored region (5 or 25 cM),
marker density and number of families. Tables 5 and
6 concentrate on the mapping accuracy for region
sizes of 5 and 25 cM, respectively. Differences in MSE
between scenarios were tested with ANOVA adjusted
for multiple comparisons (Bonferroni test at a global
5% level). Significances are given in Tables 5 and 6
for combinations of methods (LA, LDLA reg and
LDLA_vc), numbers of sire families (5, 15, 50 or 100)
and marker densities (0:25 versus 0-05). Table 7 sum-
marizes the computing time for both region sizes and
both marker densities.

(a) Estimation of QTL position

The MSEs we obtained in the ‘reference scenario’
were not significantly different from the MSEs found
by Legarra & Fernando (2009) in their 5cM drift
case: 2-781 (£0-250), 0456 (+0-055) and 0-440
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Table 5. Precision of QTL position for the three models for the region size of 5 cM and the two marker densities
“applied to a half-sib designs (1000 progeny in total)

Marker density?

Models®
Number of sires

MSE?

LA

LDLA _reg

LDLA_vc

025 5 1-840 (0-203)a: 0-251 (0-037)>a 0-393 (0-100)>
15 1-425 (0-194)@a- 0-239 (0-038)>-« 0-328 (0-080)>4

50 1-398 (0-191)@<- 0-239 (0-036)"-4 0-272 (0-074)>-xa

100 1-748 (0-232)@a- 0-251 (0-037)>-4 0-305 (0-075)>4

0-05 5 0-821 (0-163) 0-028 (0-005)> 0-027 (0-008)>
15 1-126 (0-205)@- 0-037 (0-007)>4> 0-021 (0-004)>>

50 0-730 (0-143)@0 0-036 (0-006)>+ 0-017 (0-003)>

100 1-455 (0-216)<> 0-093 (0-020)>4 0-039 (0-009)>+

“ Bonferroni ¢ test. MSE values with the same letter are not significantly different. First letter: differences between methods;
second letter: differences between family numbers; third letter: differences between marker densities.

5 MSE, mean square error (cM?). Standard errors in parentheses.

¢ Models: LA, linkage analysis; LDLA_reg, LDLA analysis by regression model; LDLA_vc, LDLA analysis by IBD
variance component model.

4 Marker density (cM).

Table 6. MSE values“of QTL position estimations for the three methods in a chromosomic region of 25 ¢cM, with

two-marker densities, applied to a half-sib designs® (1000 progeny in total)

Marker density?

Models®
Number of sires

MSE“

LA

LDLA reg

LDLA vc

025 5 7-067 (2-811)%a 0-235 (0-073)>- 0-382 (0-078)>«
15 4-108 (2-228)%a 0-194 (0-028)7<- 0-338 (0-056)>4
50 2:096 (0-650)% 0-222 (0-032)P- 0-405 (0-068)>%4
100 2:593 (0-895)@ 0-238 (0-029)>4: 0-383 (0-070)>«
0-05 5 6-963 (2-870)%4 0-033 (0-007)>- 0-025 (0-004)>%
15 1-544 (0-421)@ab 0-022 (0-003)> 0-017 (0-003)>
50 1-362 (0-388)%“ 0-028 (0-005)" 0-014 (0-003)>>
100 5081 (2:383)a« 0-031 (0-006)"< 0-018 (0-003)>*

4 MSE, mean square error (cM?). Standard errors in parentheses.

> Bonferroni ¢ test. MSE values with the same letter are not significantly different. First letter, differences between methods;
second letter, differences between family numbers; third letter, differences between marker densities.

¢ Models: LA, linkage analysis; LDLA_reg, LDLA analysis by regression model; LDLA_vc, LDLA analysis by IBD

variance component model.
4 Marker density (cM).

(+£0-076) versus 2-22 (+0-22), 0-67 (£ 0-09) and 0-780
(+0-15) in Legarra & Fernando (2009) for LA,
LDLA reg and LDLA _vc, respectively. The (non-
significant) differences between these two LDLA_vc
approaches may come from different choices with
regard to haplotype length and the clustering step
(in Legarra & Fernando (2009) all 21 markers in the
chromosome were considered and haplotypes were
not clustered).

The LDLA_reg model was used without any as-
sumption about the LD generation process: the clus-
tering of the chromosomal segments was simply based
on the IBS status of the corresponding haplotypes.
In contrast, in the LDLA_vc model, the IBD

https://doi.org/10.1017/5S0016672312000407 Published online by Cambridge University Press

probabilities were derived following an approximate
coalescence model. In spite of this difference, our
study showed that both regression and IBD-based
variance component LDLA models could precisely
place a QTL in a correct location with both marker
densities (0-25 and 0-05 marker per cM) studied, while
LA estimates were more variable (Tables 5 and 6, see
also Fig. 1). The LRT curves obtained with LDLA
models were clearly sharper than the curves obtained
using LA (Fig. 2), which are flat and smooth, due to
high correlations between LRT values at successive
positions. For sparse maps, the LDLA_reg model was
more accurate than the IBD-based method in locating
the QTL (Table 5). For dense maps, the IBD variance
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Table 7. Average computing time required for each method to analyse a dataset marker density and family
population in the 5 and 25 ¢cM scenarios
LDLA_vc®
Models? LA LDLA reg 5cM 25cM
Marker
density”  No.ofsires 5cM  25cM 5cM 25cM PIBD ANVA PIBD ANVA
0-25 5 02s 08 s 03s 13s 16 s 06m 14s 02m 34s 14m07s
15 04 s 15s 05s 19s 17s 08m22s 0lm18s 14m35s
50 12s 36s 14s 48 s 17 s 06m 14s 0lm18s 11md42s
100 16 s 0lm13s 26s 0lm44s 17s 05m 57s 0lm18s 10m24s
0-05 5 02s 08s 03s 14s 0lm18s 19m 30s 12m 54s 58m03s
15 04 s 19s 05s 27 s 0lm19s 21m36s 13mO03s 52m 16s
50 09 s 45s 12s 57s 0lm19s 21m 36s 13m08s 45m 58 s
100 24 s ImlI8s 36s 0l m53s 0lm I8s 19m 30s 13m12s 32m49s

¢ Marker density (cM).

b Models: LA, linkage analysis; LDLA_reg, LDLA analysis by regression model; LDLA_vc, LDLA analysis by IBD

variance component model.

¢ PIBD, computing time for the estimation of IBD probabilities; ANVA, computing time for the estimation of variance

components.
s, second, m, minute.

component method seems slightly better at estimating
the QTL position than the regression LDLA model,
although the absolute gain in accuracy is small
(Table 6). A possible explanation could be the number
of clusters of chromosomal segments analysed in both
LDLA versions. For dense maps, the LD is high and
only few founder haplotypes had effects estimated by
the LDLA _reg, whereas the LDLA vc model, in
which the clusters are formed based on chromosomal
segment IBD probabilities, produces more clusters
and estimates are therefore less constrained.

We also computed (results not shown) the fre-
quency of replicates positioning the QTL within an
interval of 2 ¢cM around the true location. This last
criterion must be interpreted with caution when the
explored genome region is of a limited size (the chance
of randomly positioning a QTL within the 2 cM
interval increases when the region is smaller). On the
whole, those two criteria gave consistent conclusions.
They demonstrate that LA and LDLA are quite
different, with LA having very low power to locate
the QTL. MSE was able to discriminate between
locations estimated using LDLA_reg and LDLA_vc,
while the frequency of correct positioning was not
discriminating in dense maps.

With respect to the number of families, even though
no significant differences were detected, the general
picture for all methods is that the most precise design
is intermediate, 15 or 50 sires, the extreme (5 and 100
families) generally displaying lower accuracy.

(b) Computing time

Whatever the method, the computing time (Table 7)
was higher for larger numbers of markers (from 21 to
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501 SNP positions). The average time per analysis was
very similar between LA and LDLA_reg. For these
regression methods, the time increased nearly linearly
with the number of families. The computing time
required by the LDLA_vc model was much higher,
5-140 times higher than LDLA_reg, depending on the
scenario (e.g. QTL analysis of five families from the
sparse map and small fragment size required 2s
for LA and 3s for LDLA_reg, versus 6-5min for
LDLA vc). With LDLA_vc the computing time was
relatively insensitive to the number of families, with a
tendency towards a reduction when this number
increases. This insensitivity suggests that it can be
computationally more efficient with a very large
population. Most of the computing time of LDLA_vc
(about 85-95% of total time by analysis) was spent
on the variance component estimation step.

(ii1) Comparison of experimental designs

This study focused on classical designs (half-sibs
and a mixture of full- and half-sib families) used in
livestock population to map QTLs with genome
scans.

For a given number of sires (15), the estimate of the
QTL location was more precise when the number of
progeny per sire was higher (Table 8). This has al-
ready been shown in similar comparisons by Hayes
et al. (2006), Zhao et al. (2007) and Cierco-Ayrolles
et al. (2010).

Within the half-sib family structure, as shown in
Tables 5 and 6, an optimum (in terms of MSE) was
generally found for the three studied methods (LA,
LDLA_reg and LDLA_vc) between the number
and size of families: as compared with intermediate
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Fig. 1. Errors (cM) distribution of the linkage method and
two LDLA methods with a 15 half-sib family design for a
5 cM (left side) and 25 cM (right side) chromosomal region
and for the two marker densities (025 cM (upper) and
0-05 cM (lower)). LA, linkage analysis; LDLA_reg and
LDLA_vc, LDLA analysis by regression model and
IBD-based variance component, respectively. The blue
triangle is the true QTL location.

solutions (15 or 50 families), the accuracy of QTL
positioning was reduced with few large families (five
sire families of 200 progeny) or a large number of
small families (100 sire families of 10). As we analysed
replicates in which the favourable QTL allele fre-
quency in the sires was over 10 %, in designs with few
families, there was a risk that only one of them would
segregate for the QTL. Conversely, using many small
families increased the error in estimated location.
Our results are not in full agreement with Lee & van
der Werf (2004) who analysed, using an IBD-based
variance component model, a population of 128 in-
dividuals belonging to between 2 and 64 half-sib or
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full-sib families. For their half-sib families, the accu-
racy was not strongly affected by the number of fam-
ilies, the tendency being a lower (resp. higher)
precision when increasing the family number in LA
(respectively LDLA). Many differences between our
work and the Lee & van der Werf study (2004) could
explain this discrepancy: population size and struc-
ture, marker density (they explored a 10 cM segment
with only 10 markers), QTL effect size (their QTL had
an effect in the range 0-707—1-18 phenotypic standard
deviation). The high accuracy found by Lee & van der
Werf (2004) with only two families of 64 sibs in the
LA clearly points out that a high proportion of sires
were heterozygous at the QTL, a situation probably
different from our work.

The half-sib structure allows a more precise
estimation of QTL location than nested familial
structures (full-sib within half-sib) when LDLA _reg
techniques are employed, but less precise estimates
for LAs (Table 8). Increasing the dam family size
(from 10 to 20 progeny) reduces the precision
of LDLA_reg. This observation was reported by
Heuven et al. (2005) who observed a similar tendency
in two scenarios comparing two full-sib family sizes
for the same number (eight) of sires: 24 dams per
sire X 10 progeny per dam versus 12 dams per sire x 20
progeny per dam for a map distance of 2 cM between
markers.

In LAs, the MSE was minimized for an intermedi-
ate dam family size (10 versus 1 or 20). This result was
consistent with the idea that, in outbred populations
where only a proportion of the parents are hetero-
zygous at markers and QTLs, there is a trade-off be-
tween the number and size of families: the former is
linked to the number of informative families, the lat-
ter to the precision of the estimation based on data
from informative families. This tendency was, how-
ever, not observed in Heuven et al. (2005) who re-
ported a small increase of precision between 10 and 20
progenies.

This effect was generally reinforced particularly in
the case of larger dam families. In LDLA, the MSE
increased (i.e. the precision decreased) when the
number of progeny per dam increased, this tendency
being probably due to the concomitant diminution of
the number of dam families, and thus to the fact that
there were fewer chromosomal segments sampled on
the dam side to exploit the LD.

In LAs, the MSE was minimized for an intermedi-
ate dam family size (10 versus 1 or 20). This result was
consistent with the idea that, in outbred populations
where only a part proportion of the parents are het-
erozygous at markers and QTLs, there is a trade-off
between the number and size of families: the former is
linked to the number of informative families, the
latter to the precision of the estimation based on data
from informative families.


https://doi.org/10.1017/S0016672312000407

D. L. Roldan et al. 232
Table 8. Accuracy of QTL mapping (as an MSE®) depending on the number of progenies per sire and dam
(the number of sires is 15) for the 501-marker scenario and using LA and LDLA_reg models

Number of progenies per sire and dam”
Number of LA LDLA_reg®
progenies Total
per sire 1 10 20 1 10 20 progeny
40 7-352 (1-804)  4-760 (1-080)  7-984 (1-534)  0-051 (0-015)  0-076 (0-016)  0-181 (0-043) 600
70 1-544 (0-421)  0-805 (0-264)  3-012(0-844)  0-022 (0-003)  0-064 (0-009)  0-131 (0-047) 1050
100 1-143 (0-589)  0-302 (0-064)  2-621 (1-815)  0-020 (0-004)  0-054 (0-010)  0-089 (0-023) 1500
160 1529 (1-101)  0-200 (0-040)  0-353(0-192)  0-018 (0-002)  0-051 (0-013)  0-067 (0-014) 2400

@ MSE, mean square error (cM?). Standard errors in parentheses.
5 Number of progenies per sire and dam: 1, all families are paternal half-sib families, 10 and 20, each family is a mixture of

full- and half-sib families.

¢ LA, linkage analysis; LDLA_reg, LDLA analysis by regression model.

800 -
700 4

600 /
500 | ;

& 400 / \
300 // ®
o A 3
200 4 ’_T -_: g ’“'%«_._-"_‘_ ;
H‘.—i
100
G T T Ll L 1 T T T L] L} 1 T L} L T T T L} L L T T T L}

1 2345678 910111213141516171819202122232425

Positions (ci)

Fig. 2. LRT averaged over 100 replicates in each tested position (from 0-05 cM marker spacing and 15 sires) for LA and
LDLA _reg and IBD-based variance component (LDLA_vc) models. LRT =2(log Lot —10og Lo gri)- Shaded box, LA ;

solid triangle, LDLA _reg; solid diamond, LDLA_vc.

(iv) Limits of our study

The comparisons were performed in a restricted range
of genetic structures. LD was generated only by drift
due to limited effective population size. The number
of ‘historical’ generations creating the LD state was
limited to 50, one of the values considered by
Meuwissen & Goddard (2000). Even if the LD simu-
lated mimics the LD observed in real populations,
different haplotype configurations may have been
obtained in other cases. Other situations, including
natural and artificial selection, mutation, migration
(with cross-breeding or not) could influence the re-
sults. The choice to simulate only drift was mostly for
its simplicity and because it corresponds to most of
the simulations performed in similar work, although
mutations were considered in Lee & van der Werf
(2004) and cross-breeding was considered in Grapes
et al. (20006). Single QTL tests were applied. Extension
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to other genetic models would be possible, including
the option of a finite number of QTLs segregating in
the same linkage group or on different chromosomes.
In the regression LDLA model, haplotypes were
clustered based on their IBS. Another criterion, such
as the IBD probabilities as implemented in the
LDLA_vc method, could be examined. An alternative
to this simulation process would be the use of
experimental data to examine mapping accuracy
of cluster IBD- and regression-based models under
experimental conditions.

The comparisons between regression and variance
component LDL methods were done in the context of
classical experimental designs for QTL detection, i.e.
sets of paternal half-sib families or nested dam full-sib
within sire half-sib families. The information used in
the statistical models was limited to the two genera-
tions (parents and progeny) of this design, while ad-
ditional data (pedigree, and possibly markers and/or
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phenotypes) could be used in more general treat-
ments. This choice was made to reflect the frequent
situation of a second study devoted to the fine map-
ping of a QTL previously detected in such standard
population designs.

In conclusion, the overall result is that QTL
locations are estimated with similar accuracy under
LDLA regression and variance components ap-
proaches, with a dramatic difference of the computing
time in favour of the regression. This result suggests
that LDLA_reg should be used (1) for a rapid explo-
ration of the data and (2) for optimization of the
protocol design.

The population structure had an impact on the
precision of the QTL position, with the optimum
balance between the number and size of families de-
pending on the characteristics of the particular study
(length of the explored segment, mapping density,
total population size, etc.). When possible, larger
populations and half-sib family structures should be
preferred.
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