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Summary

Muller’s ratchet is an evolutionary process that has been implicated in the extinction of asexual
species, the evolution of non-recombining genomes, such as the mitochondria, the degeneration
of the Y chromosome, and the evolution of sex and recombination. Here we study the speed of
Muller’s ratchet in a spatially structured population which is subdivided into many small
populations (demes) connected by migration, and distributed on a graph. We studied different types
of networks: regular networks (similar to the stepping-stone model), small-world networks and
completely random graphs. We show that at the onset of the small-world network – which is
characterized by high local connectivity among the demes but low average path length – the speed
of the ratchet starts to decrease dramatically. This result is independent of the number of demes
considered, but is more pronounced the larger the network and the stronger the deleterious effect of
mutations. Furthermore, although the ratchet slows down with increasing migration between demes,
the observed decrease in speed is smaller in the stepping-stone model than in small-world networks.
As migration rate increases, the structured populations approach, but never reach, the result in the
corresponding panmictic population with the same number of individuals. Since small-world
networks have been shown to describe well the real contact networks among people, we discuss
our results in the light of the evolution of microbes and disease epidemics.

1. Introduction

The accumulation of deleterious mutations in the ab-
sence of recombination due to genetic drift is known
as Muller’s ratchet (Felsenstein, 1974). This process
was first proposed by Muller (1964) as a major
mechanism distinguishing the evolutionary fate of
asexual populations from that of sexual populations.
Muller’s ratchet has since been one of the theories
invoked to explain the evolution of sex (Barton &
Charlesworth, 1998). It has also been suggested to
play a major role in the evolution of sex chromosomes
(Charlesworth, 1978; Gordo & Charlesworth, 2001)
and mitochondrial genomes (Loewe, 2006; Lynch,
1996), and the extinction of small asexual populations
(Lynch et al., 1993). Briefly the process works as
follows: because the vast majority of newly arising

mutations are deleterious, natural populations are
continuously subjected to the mutation pressure to
new deleterious alleles and their elimination by
natural selection. This creates a standing level of di-
versity for fitness in populations, which is known as
mutation–selection balance. But in small populations,
the role of genetic drift can become significant, in
addition to mutation and selection. In such cases the
class of individuals that is free from deleterious
mutations may be lost, especially if it is small. This is
likely to occur when either the population size is small
and/or the mutational input is high and/or the effects
of mutations are small (Gessler, 1995; Gordo &
Charlesworth, 2000b ; Loewe, 2006). If the population
lacks recombination, that class can only be recovered
through the rare event of a back-mutation. The
irreversible loss of the best class constitutes a click of
the ratchet (Haigh, 1978). Successive clicks result in* Corresponding author. e-mail : igordo@igc.gulbenkian.pt
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the continuous decline in mean fitness of the popu-
lation and can even lead to its extinction. The decline
in fitness as a consequence of the ratchet as well as its
signature at the molecular level (Gordo et al., 2002)
have been subject to several tests against empirical
data (Bachtrog & Charlesworth, 2002; Chao, 1990;
Filatov et al., 2000; Liu et al., 2004; Rice, 1994).

The accumulation of slightly deleterious mutations
is also important in conservation biology. It has been
shown to be important in diminishing the long-term
viability of natural populations with small effective
population sizes (see for example Lande (1995) for a
review). Muller’s ratchet has also been thought to
play a role in the evolution of asexual RNA viruses
(Moya et al., 2004), which have high mutation rates.

Most population genetic models for studying the
accumulation of deleterious mutations through the
ratchet have assumed that populations are homo-
geneous and that every individual competes with
every other individual in the whole population
(Butcher, 1995; Charlesworth & Charlesworth, 1997;
Fontanari et al., 2003; Gordo & Charlesworth,
2000b ; Kondrashov, 1994; Rouzine et al., 2003;
Stephan et al., 1993). However the vast majority of
species are to some extent structured into populations
where individuals compete with other individuals
locally. In particular, microbial populations are
naturally structured and this has gained increasing
recognition in the context of epidemiology (see for
example Keeling & Eames, 2005).

It is therefore important to understand how popu-
lation structure influences evolutionary mechanisms
such as Muller’s ratchet. Recently a few studies have
addressed the problem of accumulation of deleterious
mutations in subdivided populations (Bergstrom
et al., 1999; Gabriel & Burger, 2000; Gordo &
Campos, 2006; Higgins & Lynch, 2001; Salathe et al.,
2006). For example Higgins & Lynch (2001) have
shown that the risk of extinction due to the accumu-
lation of mildly deleterious alleles can be increased in
species that have a metapopulation structure. More
recently, Salathe et al. (2006) studied the maintenance
of sexual reproduction by elimination of deleterious
mutations in a spatially structured population and
proposed that spatial structure can help maintaining
sexual reproduction. It is also known that the rate of
fixation of beneficial mutations is lower in a spatially
structured population when the mutation rate to
beneficial alleles is high (Gordo & Campos, 2006).

Here we study how population structure influences
the speed of Muller’s ratchet in asexual organisms.
The speed of the ratchet is the inverse of the mean
time between its successive clicks, and it is pro-
portional to the decline in mean population fitness.

The influence of population structure on the
dynamics of mutations and the role of migration in
patterns of neutral variability has been established for

some models of population structure (Maruyama,
1970, 1974; Nagylaki, 1980, 1982; Slatkin, 1981;
Wright, 1931). The first model of population sub-
division, the island model, was introduced by Sewall
Wright (1931) and has been used since then as a
reference. In Wright’s island model, the species are
subdivided into several subpopulations, called demes,
within which there is random mating. Migrants are
exchanged between the demes and it is assumed that
they come, with equal probability, from any other
deme. The model is very simple and, to some extent,
allows one to equate the influence of structure in
evolutionary change. For example, Maruyama (1970)
has shown that, under certain types of population
structure (such as the islandmodel), the probability of
fixation of adaptive mutations is the same as in an
undivided population. Nevertheless, the result that
the fixation rate of adaptive mutations is independent
of population structure is not valid for all types of
structures. For instance, in a somewhat more realistic
model, where extinction and recolonization are
allowed to occur, that result is no longer valid (see
Barton, 1993; Roze & Rousset, 2003; Whitlock,
2003). Another characteristic of real biological species
is that there is some isolation by distance. Even
though in the island model each deme is isolated, all
islands are equally distant from each other. Kimura
(1953) considered a very simple model of spatial
isolation, in which demes are arrayed in a chain and
migrants are exchanged only between demes that are
situated close by in the population. This is known as
the stepping-stone model of population subdivision.

Real populations will, most likely, follow neither a
simple stepping-stone model nor an island model.
Most natural populations, and in particular those of
microbes that cause infectious diseases, will have a
structure in between the stepping-stone and the island
(Keeling & Eames, 2005). Here we analyse a slightly
different model of spatial structure from the one first
proposed by Wright. We assume a structured popu-
lation subdivided into small demes, which exchange
migrants. In addition, we also consider that the
network of demes that comprises the whole popu-
lation is a network of interactions that can exhibit a
small-world character. In the model considered in this
work each node of the network corresponds to a
deme. Following the procedure introduced by Watts
& Strogatz (1998), from a one-dimensional ordered
lattice, which is similar to the stepping-stone model,
we build up the small-world network structure by
rewiring each link between the nodes with probability
p. Small-world networks interpolate between a regular
network and random graphs.

Regular networks and random graphs have been
considered as models to describe the topology of most
systems for a long time. Regular networks have been
used as a paradigm for ordered topologies with both a
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large clustering degree and a large characteristic path
length. The clustering degree is defined as the prob-
ability that two nodes are connected, given that they
share a nearest neighbour. The characteristic path
length is defined as the average minimal distance
between all pairs of vertices in the network. Unlike
regular networks, completely random graph networks
present a low clustering coefficient together with a
small characteristic path length. Recent studies of the
structural properties of networks obtained from dis-
tinct systems, which range from biological to social
systems, show that regular lattices and completely
random graphs do not capture their topological
properties (for a review see Albert & Barabasi, 2002).
The properties of the networks of these natural
systems are between those of an ordered lattice and a
completely random graph.

Some models have been proposed to better describe
these systems. Small-world networks are amongst the
most successful (Albert & Barabasi, 2002; Watts &
Strogatz, 1998). These networks display a small
average path length, like completely random graphs,
together with a large clustering coefficient, like regular
lattices.

Recent investigations have found these small-world
properties in many different natural networks such
as mammalian cerebral cortical networks, protein–
protein interaction networks and metabolic networks
(Albert & Barabasi, 2002). The study of small-world
networks is also of great relevance in studying
the effects of the interplay between the underlying
disordered network and the dynamics of several
systems such as physical systems (Barrat & Weigt,
2000), spread of infectious diseases and epidemics
(Kuperman & Abramson, 2001) and social inter-
actions (Klemm et al., 2003). In ecology, small-world
networks are known to describe food webs and some
natural structural populations, such as the ones
composed of plants and their pollinators (see Lazaro
et al., 2005; Lundgren & Olesen, 2005; Olesen et al.,
2006, and references therein).

In the current work, we investigate how population
structure, modelled according to regular, small-world

and totally random topologies, affects the speed of
Muller’s ratchet in an asexual population. In the
context of a network, we study the influence of
the rewiring probability, which changes the relative
connectivity and average path length between demes,
on the speed of the ratchet on the whole population.
We also study how random extinction of a deme can
influence the accumulation of deleterious mutations
in the whole population.

2. Materials and methods

We consider the evolution of spatially structured
populations of asexual haploid organisms. We assume
non-overlapping generations and the following life
cycle : migration, reproduction, mutation and selec-
tion. The population is subdivided into D demes, each
composed ofNd individuals. Thus, the population has
Nt=DNd individuals. In order to model population
structure we follow the model proposed by Watts &
Strogatz (1998). We begin from an ordered one-
dimensional lattice with D nodes, where each of the
nodes is connected to its immediate four neighbours
(k=4) (Fig. 1), as in the initial Watts & Strogatz
(1998) algorithm. In our model, each node corre-
sponds to a single deme. We then rewire each edge
of the network, with probability p, excluding self
connections and duplicates. The aforementioned
procedure will connect nodes that were unconnected
and disconnect others, putting in contact nodes that
were initially distant from each other. Thus demes can
be connected to a varying number of other demes. In
this way we produce new neighbourhoods and new
local structures. We do not allow for any deme to be
completely isolated from the network or networks
with more than one component. This is done by
choosing a deme and checking whether all the other
demes in the network are reachable. If this is not the
case another network is constructed.

There are two important limiting cases in these
types of networks: regular networks and completely
random networks. The case p=0 corresponds to
regular networks, in which the average distance

Fig. 1. Diagram showing the topological structure of the population. Each deme (node) has a fixed number of individuals
(Nd) and is connected to other demes (represented by lines connecting nodes). Migrants are exchanged between linked
demes and the mean number of migrants leaving each deme equals the mean number of migrants entering it. In the
leftmost part a regular network is shown ( p=0), which is similar to the classical stepping-stone model of population
structure. Then from left to right the rewiring probability increases ( p=0.25, p=0.5 and, in the rightmost part, p=1).
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between pairs of nodes increases linearly with system
size (i.e. the number of nodes in the network). Regular
networks have also a high clustering coefficient. The
case p=1 corresponds to random graphs, in which
the average path length increases with the logarithm
of the system size and the clustering coefficient is
very low. Increasing the probability of long-distance
connections, p, introduces long-range links in the
network. This leads to a decrease in the average path
length, which becomes of the order of that for a
random network, while the clustering degree remains
almost unchanged. These networks which interpolate
between an ordered lattice and a random network are
named small-world networks.

We have studied all the range of values of the
rewiring probability from p=0 to p=1. Each edge of
the network connects two demes that exchange
migrants with probability m per individual. We have
assumed bidirectional migration, where the average
number of emigrants and immigrants per link is the
same. In order to simulate migration the number of
migrants in each deme is taken by sampling from a
Poisson distribution with meanNdmKi, where Ki is the
connectivity of the deme. The individuals that migrate
are sampled at random, without replacement, from
the original deme and added to the recipient demes.
After all migration events have occurred the size of
each deme can be different from Nd. Then mutation
and selection occur in each deme and after these
processes all demes have their sizes restored to Nd.
During the mutation–selection process each indi-
vidual is chosen randomly, with replacement, to give
rise to new offspring. The offspring of a given indi-
vidual can acquire a given amount of new deleterious
mutations, which is taken from a Poisson distribution
of mean U. To make the model simple, every muta-
tion is assumed to cause the same decrease in fitness, s,
and a multiplicative fitness assumption is made, i.e.
the fitness of an offspring with i deleterious mutations
is (1xs)i. Offspring survive and become part of the
next generation with probability proportional to their
fitness.

Because in natural populations there is a chance
that some of the demes can go extinct, we also studied
the effect of extinction in our network model. This
was implemented as follows. Extinction was modelled
by assuming that at each generation each deme can go
extinct with probability e. The extinction procedure
takes place before migration events. If a deme goes
extinct then it can be recolonized in the next gener-
ation by new individuals that migrate from demes that
are connected to the deme in question. All the simu-
lations start with individuals that are free of dele-
terious mutations. Measurements are then performed
after the population has evolved for an initial equili-
bration period of 5/s generations (Johnson, 1999).
Every generation, after this initial period, we count

the number of individuals that have the lowest
number of deleterious mutations, for each deme and
for the whole population. If this least-loaded class is
lost in the whole population, a click of the ratchet is
recorded. If more than one class is lost in the same
generation, the corresponding number of clicks is
counted. Therefore the number of clicks corresponds
to the number of least-loaded classes lost. For each set
of parameters 100 simulations were run and in each
simulation run at least 30 clicks occurred.

3. Results

(i) Muller’s ratchet in the stepping-stone model

The rate of Muller’s ratchet is defined as the inverse of
the mean time between its clicks. We have studied this
time in a population that is composed of many demes
arranged in a network.

We start by studying the ratchet in a regular
network which is similar to the classical stepping-
stone model of population structure (Kimura, 1953),
but slightly modified. In our regular network, each
deme connects to 4 neighbours instead of 2 (one-
dimensional stepping-stone model). Under this model
we wish to access the effect of migration in the speed
of the ratchet. In Fig. 2 we show how migration
increases the mean time between clicks of the ratchet
(Tclick) in a regular lattice with 60 demes each with 100
individuals. When there is no migration, demes are
independent and, as expected, the rate of the ratchet
is simply the same as in an isolated population of
100 individuals. For example for the case of U=0.3
and s=0.1 Tclick(m=0)=49. This result remains
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Fig. 2. The mean time between clicks of Muller’s ratchet,
Tclick, in a regular network. On the x-axis we plot the value
of Km, where K=4 in this network. The mutation rate and
fitness effect of each deleterious mutation are given on the
figure. The population is composed of 60 demes, each with
100 individuals and error bars correspond to 2 SE, in all
parts of the figure.
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essentially unchanged for very low values of the
migration rate. But when the migration rate achieves
an intermediate value, Tclick starts to increase rapidly
with m. The value of the migration rate at which this
happens is approximately given by the condition
n0dKmy1/Tclick(m=0), where K is the number of
neighbour demes and n0d is the mean number of in-
dividuals in the least loaded class in a deme. The ob-
served value of n0d is very close to Nd exp (xU/s) for
parameter sets where Nd exp (xU/s)>1 (as it is in the
case of U=0.3 and s=0.1) (Gessler, 1995; Gordo &
Charlesworth, 2000b ; Gordo & Charlesworth, 2001;
Loewe, 2006; Stephan & Kim, 2002). The condition
n0dKmy1/Tclick(m=0) reflects the fact that, when the
rate at which ‘good migrants ’ are exchanged between
demes equals the rate at which they are lost within
demes, then increasing migration slows down the
ratchet. This means that, for the case U=0.3 and
s=0.1 in Fig. 2, when Km>0.001, the speed of the
ratchet starts to get closer to the one expected in a
undivided population with Nt=NdD=6000 indi-
viduals. For such a panmictic population and with
these parameters of mutation and selection, the ratchet
does not click (we have run 20 simulations for a pan-
mictic population and did not observe any click of the
ratchet during 100 000 generations). For our struc-
tured population, when Km=0.4, U=0.3 and s=0.1,
we also did not observe any click of the ratchet, in 20
simulations each with 100 000 generations. With a
slightly smaller value of the selection coefficient (s=
0.075) we observe that the value of m above which the
ratchet starts to slow down significantly (relative to
the case m=0) increases. For this value of s the mean
time between clicks of the ratchet in an undivided
population is 12 944 (¡834). Although increasing
migration does slow the ratchet down, its speed is
always higher in the structured population, for all
values of m tested. For example with Km=0.5,
U=0.3 and s=0.075 the ratchet is around 12 times
faster in the structured population than in the un-
divided population. When the value of the selection
coefficient decreases to s=0.02, with U=0.3, then the
speed of the ratchet is almost invariant over all the
range of migration considered. For this set of par-
ameter values the time between clicks of the ratchet in
the undivided population is 16.2 (+0.4), whereas in a
structured population with Km=0.01 it is 10.0 (+0.9)
and with Km=0.5 it is 14.3 (+0.7).

(ii) Muller’s ratchet in small-world networks

We now study the ratchet in more complex and
realistic networks and try to access the effects of the
rewiring probability and network size on its rate. In
Fig. 3 we show the results of the mean time between
clicks of Muller’s ratchet as a function of the rewiring
probability. We have studied different network sizes :

60, 100, 200 and 300 demes. From Fig. 3 we see that,
for a given network size, the mean time between clicks
of the ratchet is constant for low values of p but
increases considerably above a given value of p. For
example, for D=60 the Tclick values for p<0.01 are
not significantly different from the one obtained when
p=0. When p=0.02 a significant difference starts to
be observed.

To relate the speed of the ratchet with the topo-
logical properties of these networks we show, in the
bottom panel of Fig. 3, two of the most important
properties of these networks for two different network
sizes (D=60, Fig. 3B ; D=300, Fig. 3C). The average
path length (L) measures the number of links in the
shortest path between two nodes, averaged over all
pairs of nodes, and the average clustering coefficient
(C) measures the extent to which neighbours of a
particular node are connected between themselves
(more specifically if a node has Ki neighbours then at
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Fig. 3. (A) The mean time between clicks of Muller’s
ratchet, Tclick, and the rewiring probability, p. The
population is composed of D demes each with 100
individuals. The mutation rate and fitness effect of each
deleterious mutation is U=0.3 and s=0.1, respectively.
The migration rate is m=0.005 for all data points. Open
circles correspond to Tclick for D=60, filled circles for
D=100, squares for D=200 and triangles for D=300. The
grey shading refers to the approximate small-world region
for the networks considered. (B), (C) The normalized
average path length (open triangles), the normalized
average clustering coefficient (open squares) and the
normalized speed of the ratchet (open circles) – see text for
details – are shown for comparison with the properties of
the network. On the left side D=60 and on the right
D=300. In all points error bars correspond to 2 SE.
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most Ki(Kix1)/2 links can exist between them, if Ci is
the fraction of these allowable links that actually exist
then the average clustering coefficient C is the average
of Ci over all i) (Watts & Strogatz, 1998). In the
bottom panel of Fig. 3 we show these properties
normalized by their values at p=0 and p=1, as well as
a normalized speed of the ratchet. The logarithmic
scale resolves the rapid drop of L with p. For example,
by normalized average path length we mean:

Ln=
L(p)xL(p=1)

L(p=0)xL(p=1)
,

which will be between 0 and 1. In the region of low
p values, the average path length, L, is high, which
implies that the mean distance between demes is high.
The connectivity between demes (a local property of
the network) is also high in this region. But above a
given value of p, there is a drop in the value of L and
immediately after such a drop the speed of the ratchet
decreases very rapidly. The region where L drops
while C stays high corresponds to the region where
the small-world effect starts, as defined in Watts &
Strogatz (1998). The region corresponding to the
small-world effect is defined by the conditions low L
(as in random networks) and high C (as in regular
networks). In this region, the time between clicks of
the ratchet starts to increase rapidly. From studies of
the topology of these types of networks it is known
that the onset of the small-world behaviour takes place
when py1/D (Albert & Barabasi, 2002). We observe
that for a given value of the network size, for values of
p below 1/D, the ratchet speed has a value not sig-
nificantly different from that in a regular network,
which is expected since in this case the number of
long-range interactions is negligible. On the other
hand, when p is larger than 1/D, the ratchet steadily
slows down with increasing p. As we have seen above,
increasing migration causes the ratchet to slow down
and the same applies for the rewiring probability. In a
regular lattice (p=0), because the degree of isolation
of each deme is very high (here, by isolation we mean
that the interactions take place only between nearby
demes), both globally (large L) and locally (large C),
one expects the ratchet to click very rapidly. This is
due to the fact that if a deme loses its best class it is
very difficult to regain it from another deme, because
the strength of migration is locally limited. As p
reaches a value close to 1/D, the value of L decreases
and so the degree of isolation of a deme decreases. If
now it has lost its best class it has a higher chance of
regaining it from another deme. So the value of p
where Tclick is expected to start increasing is the one
corresponding to a decrease in L. After the sharp
decrease in L, as p continues to increase, C starts de-
creasing, so the level of isolation of a deme continues
to decrease and Tclick continues to increase.

Fig. 3 also shows the results with different numbers
of demes. As expected the absolute value of the
ratchet speed depends on the size of the whole popu-
lation. All else being equal, the speed is lower the
larger the value of NdD. However, the effect of
increasing network size is different according to the
value of p. The slowdown of the speed of the ratchet
with increasing D is much smaller for values of p
below 1/D than for values of p above 1/D. For ex-
ample, with p=0.002 the speed of the ratchet drops
from 0.0039 to 0.0033 when the network size increases
from D=60 to D=300. With p=0.1 the drop is from
0.0028 to 0.0013. Therefore the deceleration of the
ratchet for p=0.002 is about 15% but for p=0.1 it is
about 53%.

There are two important limits with which to com-
pare the results of Fig. 3: the value of Tclick in a single
isolated deme and the value of Tclick in an undivided
population with the same total number of individuals.
These limits can be compared with analytical ap-
proximations available in the literature for the speed
of the ratchet without population structure (Gessler,
1995; Gordo & Charlesworth, 2000a, b ; Stephan &
Kim, 2002). For an isolated deme with 100 individuals
and with the values of U and s considered in Fig. 3, it
is 49. In an unstructured population the ratchet does
not click (over 100 000 generations in 20 simulations)
for these values of U and s or for any of the values of
Nt=NdD considered in Fig. 3. Clearly when p=0,
Tclick is higher than 49 generations. This is because
the value of migration in Fig. 3 is higher than
m=0.00025, which is the critical value of m below
which we do not expect to observe significant differ-
ences in the speed of the ratchet from that in a isolated
deme (see above and Fig. 2). Increasing p (above 1/D)
slows down the ratchet in all cases, but even with p=1
we do not achieve the panmictic result. For example,
with D=60 and p=1 the mean time between clicks
of the ratchet is 743¡18 generations, a result very
different from the panmictic case.

In Fig. 4 (A,B) we have considered a fixed number
of demes and show that for different values of U and s
the mean time between clicks of the ratchet always
increases in the small-world region, with increasing p.
Clearly the increase depends on the particular values
of U and s. For a given value of U that increase is
larger when selection is stronger. Furthermore in the
parameter range where Nd exp (xU/s)>1 (see for ex-
ample Fig. 4B ; s=0.01 and 0.0075), that increase is
more easily seen and stronger (for p>1/60). For par-
ameter sets that lead to Nd exp (xU/s)<<1 this
increase, although present, is much less pronounced.
For example, in Fig. 4A we can see that for U=0.3,
s=0.1 (Nd exp (xU/s)>1), we have Tclick (p=0)=
251(¡2) andTclick (p=1)=743 (¡18). This corresponds
to a 3-fold increase from the regular network to the
random network. With s=0.04 (Nd exp (xU/s)<<1),
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Tclick (p=0)=19 (¡1) and Tclick (p=1)=23 (¡3),
leading to a minute increase. For these parameters,
in the undivided population Tclick=47 (¡6), so the
speed of the ratchet is higher than in the panmictic
case, even in the random network.

(iii) Size of the least-loaded class in
small-world networks

One of the key parameters that determines the rate of
the ratchet in an unstructured population is the size
of the class with the lowest number of mutations,
also known as the least-loaded class (Gordo &
Charlesworth, 2000b ; Haigh, 1978). In Fig. 5 we show
how the distribution of classes of deleterious muta-
tions, in the whole population, changes with the type
of network. We have run 100 replicate simulations for

three different values of p (for the case D=60) and
measured the average size of the class with the least
number of mutations as well as the following classes.
In a population without any spatial structure and
without accumulation of deleterious mutations this
distribution is Poisson with mean U/s (Haigh, 1978).
In our network model the mean number of deleterious
mutations is higher than U/s. In fact, as shown in
Fig. 5, the mean number of mutations in the whole
population decreases as the rewiring probability in-
creases. In particular, the size of the least-loaded class
increases as p increases. This is consistent with the
observed decrease in the rate of the ratchet with in-
creasing values of p. The distributions for p=0.1 and
p=1 are significantly different from the distribution
for p=0 (P<0.001 by a x2 test).

(iv) Effect of migration in small-world networks

Another important parameter in this process is the
level of migration in the population. The expectation
for a given topology of the network is that if
migration rates between demes are low the ratchet will
click much more rapidly than if migration is high. In
Fig. 6 we have studied the effect of migration on the
ratchet speed. In our networks we observe that when
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p is small the effect of increasing migration is only
slight, but in the region of p corresponding to the
onset of the small-world effect, the effect of increasing
migration is much more pronounced. In Fig. 6 that
region starts when p=0.02. This qualitative result is
observed for different values of U and s. When s=0.1,
the ratchet does not click in a panmictic population
but with s=0.075 the observed mean time between
clicks of the ratchet in the panmictic case is 12 944
(¡822). For this value of s, in a random network
(p=1) with a large migration rate (m=0.15) Tclick=
6080 (¡605), still smaller than the panmictic result.

In Fig. 6 an increase in the migration rate corre-
sponded to an increase in the overall number of
migrants in the whole population. Fig. 7 displays
the results of simulations where we have kept both the
number of migrants per link (Ndm=0.65) and the
total size of the population (Nt=NdD=3000) con-
stant and have studied different numbers of demes.
This means that as we increase the number of demes,
the size of each deme will decrease and the rate of
migration (m) will increase. In the figure, we plot the
ratio between the time between clicks for networks
with p>0 and the time between clicks in a regular
network (p=0) as a function of the rewiring prob-
ability p. We plot this ratio because the absolute
values of Tclick are different for different system sizes,
and because we want to emphasize the comparison
with the result of a regular network. From Fig. 7, we
clearly notice that as the population becomes struc-
tured into a larger number of smaller subpopulations,
i.e. as we augment D, the time between clicks

(compared with that in a regular network) also in-
creases. However, this effect is only pronounced for
intermediate and large values of p. Furthermore we
observe that the maximum increase observed is for
p=1 and intermediate values of D. For example with
the parameter values of Fig. 7, the maximum effect is
achieved for D=150. For larger systems, Nd becomes
very small and the effect of drift within demes
becomes increasingly pronounced, making the effect
of the topology less important.

(v) Muller’s ratchet with extinction on
small-world networks

Up to now we have studied cases where the popu-
lation is subdivided into many stable demes of equal
size. A more realistic structure of natural populations,
in particular populations of microbes, is that local
populations can be pruned to occasional extinction
and recolonization (Maruyama & Kimura, 1980).
These extinction and recolonization events can lead to
substantial reductions in the levels of neutral diversity
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in populations (Maruyama & Kimura, 1980; Pannell
& Charlesworth, 1999). We have introduced in our
random-network model these events in order to assess
how important extinction is for the speed of the
ratchet. In our model each deme can go extinct, with
probability e, and be recolonized by individuals from
neighbouring demes to which the deme in question is
connected. Similar models of extinction and re-
colonization have been considered by Slatkin (1977)
and Whitlock & McCauley (1990). It is known
that the effective size of a population is decreased
when extinction and recolonization occur (Maruyama
& Kimura, 1980; Pannell & Charlesworth, 1999;
Whitlock & Barton, 1997). If this reduction also holds
in our model we should observe an increase in the
speed of the ratchet with increasing levels of e. Fig. 8
shows that this is in fact the case. In the figure we
show several values of the probability of extinction,
e, in networks with different rewiring probabilities.
For every value of p we observe that the mean time
between clicks of ratchet decreases with increasing e.
However, we can see that the effect of extinction is not
the same for all network structures. Extinction has a
much more pronounced effect when p is high than

when it is low, and the boundary is given by the small-
world region. To better understand the differentiated
effect of extinction with p, we have studied how the
size of the best class in a given deme relates to the
number of connections that a deme makes (K). Fig. 9
shows that better-connected demes have larger best
classes. This implies that extinction of a highly con-
nected deme has a stronger impact on the speed of the
ratchet than extinction of a deme that has few con-
nections. This fact leads to the pattern observed in
Fig. 8, with high values of p showing a stronger effect
on the extinction/recolonization events.

4. Discussion

We have introduced a model of population structure
to study the patterns of mutation accumulation in
asexual organisms. The model tries to capture some
characteristics of the spatial structure observed in real
biological populations. We have focused our study on
the effects of the spatial structure on the speed of
mutation accumulation due to the evolutionary pro-
cess known as Muller’s ratchet. This process has been
implicated in several evolutionary features. In par-
ticular it has been suggested that Muller’s ratchet can
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be an important mechanism in the evolution of
microorganisms, specially those with a high mutation
rate (Chao, 1990; Moran, 1996), in the evolution of
recombination (Barton & Charlesworth, 1998) and
of the Y chromosome (Charlesworth, 1978; Gordo &
Charlesworth, 2001).

We have seen that the speed of the ratchet is highly
dependent on the type of structure of the population.
In particular, in regular networks, such as those con-
sidered in the stepping-stone model of population
subdivision, the ratchet clicks much faster than in
small-world networks. Furthermore the importance of
migration rates in slowing down the ratchet is much
more pronounced in small-world networks than in
regular ones. In addition the effect of extinction and
recolonization events in local populations will have an
impact in small-world networks, whereas it has much
less influence in regular networks. We have also seen
that the ratchet clicks faster in small-world networks
than in a corresponding unstructured population.

There is evidence that some microbial populations,
such asEscherichia coli, are structured (Whittam et al.,
1983). It is natural to think that microbial population
structure is associated with the structure of contacts
of their hosts. For example, in humans it has been
suggested that such contacts have a small-world
property (Liljeros et al., 2001; Milgram, 1967). With
the results obtained in this study we can observe that
such host contact networks tend to minimize the rate
of fitness decline of their asexual parasites. Although
we have considered low values of the parasite effective
population size within a host (Nd), possibly lower
than those in real populations, the speed of the ratchet
is far more sensitive to the values of mutation rate and
selection coefficient than on Nd. Furthermore the
relevant value of Ne of the parasite within a host
strongly depends on the number of parasites that
initiate infection (Gordo & Dionisio, 2005), which
is normally small. We have also considered, for
simplicity, a model with constant effects of mutations,
whereas a model assuming a distribution of effects is
closer to the real situation. Although the distribution
of deleterious fitness effects of mutations is at present
poorly established, we expect that the qualitative
results presented here will apply in a more complex
and realistic model for the effects of mutations.

Although we have only addressed the rate of
accumulation of deleterious mutations, in natural
populations both adaptive and deleterious muta-
tions occur. If we ignore deleterious mutations,
Maruyama’s result (1970) shows that the probability
of fixation of adaptive mutations is independent of
structure if there is conservative migration. It is also
known that deleterious mutations have an impact on
rates of adaptation in asexual organisms (Bachtrog &
Gordo, 2004; Charlesworth et al., 1993; Orr, 2002) ;
roughly, the rate of adaptation is reduced by the

fraction of individuals that are free of deleterious
mutations. As we have shown here, the size of the
class of individuals free of deleterious mutations in-
creases with the rewiring probability p. Given this, we
would expect that the rate of fixation of adaptive
mutations in asexuals, where both adaptive and
deleterious mutations occur, should increase in small-
world networks.
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