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THE GROUP OF UNITS IN K-THEORY MODULO 
AN ODD PRIME 

R. J. STEINER 

1. I n t r o d u c t i o n . There are several multiplicative cohomology theories for 
which the group of units in the zeroth term is the zeroth term of another 
cohomology theory. Examples, due to Segal, May and others, are given by 
ordinary cohomology with rather general graded coefficients, real and complex 
i^-theory with integral coefficients, and various bordism theories, also with 
integral coefficients [8, 7, 2, 5, IV]. The object of this paper is to show tha t 
complex i^-theory modulo an odd prime p provides a counter-example. 

To s ta te the theorem precisely we recall the result of Araki and Toda tha t 
there is a unique ant icommutat ive associative admissible multiplication in 
K*( ;Z/p) for p an odd prime [3, 3, 7, 10]; admissible is defined in [3] 
and means essentially tha t the reduction homomorphism K* ( ) —> K* ( ; 
Z/p) preserves products. Now K° (point ; Z/p) is the ring Z/p, so K° ( ; Z/p) 
is represented by a space Z/p X BUP with B Uv connected and the group of 
units is represented by (Z/p)* X BUP, where (Z/p)* is the group of units in 
Z/p. As an H-space, (Z/p)* X B Uv is the product of (Z/p)* with the if-space 
{1} X BUP = Blip®, say. To prove our theorem, it suffices to show tha t 
B Up® is not an infinite loop space. In fact we shall prove the following theorem. 

T H E O R E M . The H-space B Up® is not a fourth loop space. 

The method of proof is to compute the Z/^-homology of BUP® and its loop 
space Up (which represents K~l ( ; Z/p)) and to show tha t they do not 
admi t Dyer-Lashof operations satisfying all the formulae tha t they should; the 
formulae are given by Cohen in [4, I I I , 1]. 

The result is perhaps not very surprising, as the construction of the multi­
plication in K*( ; Z/p) is ra ther artificial. W h a t is perhaps surprising is the 
difficulty of the proof, a t least by the method used here. For one thing the Hopf 
algebra H*(BUP® \Z/p) is isomorphic to the Hopf algebra H*(BUP®; Z/p) 
(see 4.1 below), where BUP® is the if-space }0j X BUP C Z/p X BUP with 
product representing addition, and B Up® of course is an infinite loop space. We 
need the duals of Steenrod operations to distinguish these homologies. For 
another thing (3.3, 4.1) it turns out tha t pth powers of positive degree elements 
in H*(BUP®; Z/p) all vanish, which makes it appear possible for H*(BUv® ; 
Z/p) to admit trivial Dyer-Lashof operations. I t is to rule out this possibility 
t ha t we compute H*(UP\ Z/p) as well. 
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I t seems difficult to adap t the proof to other circumstances. I have tried and 
failed to apply it to complex bordism and to complex i^-theory modulo a com­
posite number (by [3], K*( ; Z/q) has an an t i commuta t ive associative 
admissible multiplication if and only if q ^ 2 modulo 4) . Also i^-theory 
localized a t the odd prime p has as a factor the multiplicative cohomology 
theory given by real /C-theory localized a t p and a smaller mult ipl icative 
factor given by Adams [1, 4]. These have their coefficient groups in degrees 
which are multiples of 4 and 2(p — 1) respectively, and yield / / -space factors 
of B Up® which are a t least 3-connected. The proof t ha t B Up® is not an infinite 
loop space uses homology classes of degree 2, so does not apply to these factors. 
A more efficient method might also determine whether B Up® is a loop space a t 
all (there seems no good reason why it should be) . 

We make the following conventions for the whole paper. All homology and 
cohomology groups have coefficients Z / p , p being the odd prime of the theorem. 
When a space X has two products , one representing addit ion and one rep­
resenting multiplication in i^-theory, then we shall use X® and X® for the two 
/ / -spaces and X for the underlying space. Beside BUP, for which this nota t ion 
was used above, this will be used for B £ /and BSU, the classifying spaces of the 
infinite uni tary and special uni tary groups U and SU. 

The successive sections of the paper compute H*(UV), H*(BUP®), 
H*(BUP®), and give the proof of the theorem. 

The material is taken from my doctoral thesis a t the Universi ty of Cam­
bridge. I am grateful to my supervisors V. P. Snaith and J. F . Adams ; to 
Professor Snaith for posing the problem and encouraging me to work on it, 
and to Professor Adams for help with technical details. 

2. T h e h o m o l o g y of Up. From the Bockstein sequence 

K~\ ) >K~\ ;Z/p) >K\ )*É>K\ ) 

we obtain a fibration sequence of representing spaces 

U-+UP-^ZXBU^ZXBU 

and by taking connected components a homotopy-commuta t ive diagram of 
/ / -spaces 

U > U 

Up- • * 

r 

• P + 
BU® *BU®, 
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whose columns are nbrat ions. We shall compute H*(UP) from the cohomology 
Serre spectral sequences of these fibrations, and then obtain H*(UP) by 
dualization. 

Thus we have a morphism Er —» Ër of spectral sequences of algebras. They 
begin with 

E2
iJ = H\BU) 0 H\U)^®\H\BU) ® Hj(U) = E2

Uj 

and Er => Z/p, Er => H*(UP). The behaviour of £ r is well-known. We have 

(2.1) H*(BU) = Z/^[c i , c2l . . •] with deg (ck) = 2*, 

the polynomial algebra on the modulo p reductions ck of the universal Chern 
classes, and 

(2.2) H*(U) = A[«i, w2, • • .] with deg(uk) = 2k - 1, 

the exterior algebra on classes uh defined by 

(2.3) a*ck = uk, 

where a*: H*(BU) -^ H*(U) = H*(tiBU) is the cohomology suspension. 
From (2.1) — (2.3) we obtain a description of Er: we find tha t 

E2T-I = E2r = Z/p[ck: k ^ r] ® A[uk: k ^ r] 

with b idegfe ® 1) = (2fc, 0) and bideg(l ® uk) = (0, 2& - 1); the dif­
ferentials are given by 

dr(ck ® 1) = 0 for all r and &, 

^2*(1 ® uk) = ck ® 1, 

d r ( l 0 WA;) = 0 for all other r and k. 

Now the morphism E2 —> £ 2 sends c* 0 1 to ^*cA ® 1 and 1 ® ^ to 1 ® w*. 
To compute p* we recall tha t the coproduct in H*(BU®) is given by 

(2.4) 0*fe) = £*+,=* c, <g> c, (co = 1), 

where 0 is the product in B U®. Therefore 

</>*(l + ci + c2 + . . .) = (1 + ci + c2 + . . .) <g> (1 + ci + c2 + . . . ) , 

p*(l + cx + c2 + . . .) = (1 + a + c2 + . . .)*, 

/>% = 0 if £ I &, 

We now obtain £ r by induction on r: 

E2p(j-i)+i = E2p(j-1)+2 = . . . = £ 2 p j = Z/p[ck: k ^ 1 ] / 

(d*f . . . , G,-?) <g> Afe: k^p,2p,...,(j - l)p] 
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and 
dT{ck ® 1) = 0 for all r and k, 

d2pj(l <S> llpj) = CjP ® 1, 

J r ( l ® Wjt) = 0 for all other r and fe. 

For the only differentials among these which can be non-zero are those whose 
images lie in the first quadran t , and they are determined by the differentials 
in Er. 

Consequently, 

Eœ = Z/p[ck: k £ l ] / ( c / : k ^ 1) ® A[uk: p \ ft] 

= Z/p[ck:k à 1 ] / / ? ® A[«*:^ I ft], 

where £ denotes the Frobenius homomorphism x i—> xp in a Z/p-a lgebra . 
Therefore H*(UP) is obtained from 

r*H*(BU) = Z/p[ck
f; ft ^ l ] / / £ fo' = r % ) 

by adjoining for each ft with £> | ft an indecomposable w/ of degree 2ft — 1 
with s*w/ = uk. By an t icommuta t iv i ty , ^ / 2 = 0. Now in a b icommuta t ive 
biassociative connected Hopf algebra A of finite type over Z/p we have a 
Mil nor-Moore exact sequence [6, 4.23] 

(2.5) 0->P£A ->PA -+QA - + [ P £ ( . 4 * ) ] * - > 0, where PA = [Q(A*)]* 

and QA = [P(A*)]*; 

here P denotes primitive submodule, Q denotes indecomposable quot ient , 
asterisks denote vector space duals, Pj~A —» PA is the inclusion, QA —^ 
[P£(A*)]* is the dual of the inclusion P£(A*) -+P(A*), and PA -+ QA is the 
obvious homomorphism, dual to the obvious homomorphism P(A*) —> Q(A*). 
In part icular we see t h a t PAk = QAk if ft is not a mult iple of 2p. We may 
therefore specify the indecomposable uk in H2k~l(Up) with s*uk' = uk uniquely 
by requiring it to be primitive, since uk G H2k~1(Up) is primit ive (from (2.3), 
as the image of the cohomology suspension is contained in the pr imit ives) . 

We deduce the following description of H*(UP). 

PROPOSITION 2.6. 

H*(UP) = Z/pW: ft ^ l ] / / £ ® A[«*': p \ ft] with d e g f o ' ) = 2ft, 

d e g ^ ' ) = 2ft - 1. 

Se£ Co' = 1. Under r: Uv^> BU and s: U —-> Up we have 

r*ck = ck
f for ft ^ 0, s*ck' = 0 / o r ft ^ 1, s*uk' = ukfor p \ ft. 

Let <f> be the product in Up ; then 

4>*Ck = J2i+j=k c/ ® c/, 4>*uk = w/ ® 1 + 1 ® «*'• 

Indeed the formula for </>*c/ follows by na tura l i ty from (2.4) as r: Up —> B U® 
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is an i7-map, s*c/ = 5*r*^ = 0 for k ^ 1 as rs is null-homotopic, and the rest 
of 2.6 has already been proved. 

Next we compute H*(UP) by dualization. First we recall the homology of 

5C/eand U. 

(2.7) H*(BU®) = Z/p[bu b2} . . .] with deg(bk) = 2k, 

where 

(cik, bk) = 1, (tn, bk) = 0 for other monomials m in the ck, 

(ck, b\k) = 1, (c*, w) = 0 for other monomials m in the bk. 

The diagonal A* is given by 

A*(6*) = £/+*=*&* ® &; (6o = 1). 

(2.8) H*(U) = A[vu v2, . • •] with deg(vk) = 2* - 1, <«*, v*> = 1, 
^ primitive. 

It follows from 2.6 that H*(UP) is a tensor product of Hopf algebras 
A' 0 s*H*(U) with r* mapping ^4' isomorphically onto 4̂ C H*(BU®), 
where A is the annihilator of the ideal (£H*(BU)) = (cip, c2

p, . . .)• It is clear 
that the kernel of s* is the ideal (vp, v2p, . . .)» a n d it remains to compute ^4. We 
proceed as follows. For & = 1, 2, . . . let ak Ç H2k(BU®) be the &th Newton 
polynomial in the fr*. Since we are working modulo p we find that 

(2.9) akp = a / ; 

on the other hand 

(2.10) ak = (—l)k~1kbk modulo decomposables, 

so the ak with p \ k generate a polynomial algebra 

P = Z/p[ak: p \ k] CH*(BU®). 

We claim that A = P. Indeed each ak is in A because it is primitive, so annihi­
lates decomposables; thus P C A. To establish equality, we show that the 
Euler-Poincaré polynomials 

f(P) = £*-o (dim Pk)t* 
and 

f(A) = Z*=o (dim^ t ) /* 

are equal. Indeed 

/C?) = FL* (1 + t" + ^ + • • •) = UP ft 1/(1 - *"), 
while 

f(A) = n*âi(i + <» +1* + . . . + <2<p-i>t) 
= rUi (i - t2pk)/a - n, 
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since A is dual to Z/p[ck: k £ l]/(ck
p: k è 1). Plainly f(P) = f(A), so 

P = A as claimed. 

We obtain the following description of H*(UP). 

PROPOSITION 2.11. 

H*(UP) = Z/p[ak': p \ k] <g> A[vk': p \ k] with deg(a/) 

= 2k, degfe') = 2fe - 1, 

a / and ^/ primitive. Under the H-maps r: Up —> 5C/ 0 and 5: U —> Up we have: 

for p \ k, r*ak = ak, r*vk = 0, s*vk = «/*'; 

for p I fe, 5*^ = 0. 

3. The homology of BUP®. In this section we compute H*(BUP®) as a 
preliminary to computing H*(BUP®). We also compute the Bockstein and the 
duals of the Steenrod operations in PH* (B Uv) (note that PH* (B Up) does not 
depend on the product in BUP that we use). 

The computation of H*(BUP®) is similar to the computation of H*(UP) in 
the last section. The Bockstein sequence in i^-theory yields a fibration se­
quence 

ZXBU®^ZZXBU®- Z/pXBUt 
-0 

of iJ-spaces, hence, by killing low-degree homotopy groups, a homotopy-
commutative diagram of i^-spaces 

P 
Bl -+BU* 

-+BU® 

su- •+SU, 

whose columns are fibrations (note that as an 77-space U is the product oî SU 
with the circle Sl). Here ilf^r, iïs ~ s, where r and 5 are as in the last section. 

The homology Serre spectral sequences of these fibrations behave in the same 
way as the cohomology spectral sequences considered in the last section. To 
see this we observe from (2.7) that H*(BU®) = Z/p[bu b2, . . .] with deg(bk) 
= 2k and A*bk = ^2i+j=kbi 0 bjy that we may make an identification 

(3.1) H* (SU) = A[v2, V3, ...]CH*(U) with deg(vk) = 2ft - 1, 

vk primitive, 

from (2.8), and that the homology suspension cr*: H*(BU®) —• H*(SU) is 
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given by 

(3.2) fft{bk) = ( - l ) V i 

(the sign, which is not very important , is obtained by looking a t the effect of 
the Bot t periodicity map X2BU —> BU on the Chern character) . Arguments 
like those in the last section now show tha t H*(BUP®) has the following 
description. 

PROPOSITION 3.3. 

H*(BUP®) = Z/p[bk": ft è l ] / / £ ® A f o " : p \ ft], 

a tensor product of Hopf algebras, with deg(bk") = 2ft, deg(xk
f) = 2ft + 1. 

Under the H-maps f: BUP® —> SU and s: BU® -± BUP® we have 

r*bk" = Ofor ft ^ 1, ?+xk" = vk+1, s*bk = bk". 

The xk" are primitive. The primitive submodule of Z/p[bk': k ^ 1] has a base 
consisting of one element ak" = s*ak in each degree 2k with p \ k. 

T o justify the last sentence, we note tha t the ak" are primitive by natural i ty , 
t ha t ak" 9^ 0 for p \ k as ak = (— \)k~lkbk modulo decomposables in 
H*{BU®) by (2.10), and tha t the ak" and xk" together span PH*{BUP) 
because the dual space QH*(BUP) has, by analogy with 2.11, dimension 1 in 
degrees 2k and 2k + 1 with p | k and dimension 0 in other degrees. (Note 
t ha t s*ak = 0 if k = pj is a multiple of p, for (2.9) then gives ak = £(fly).) 

The suspension a*: QH*(UP) —» PH*(BUP) is given by 

(3.4) a*vk = ak' and a*ak = -kxk" for p \ ft. 

For dualizing (2.3) and using (2.7) and (2.10) shows tha t 

(3.5) a+vk = ak 

under a*: QH*(U) —> PH*(BU), whence a*vk = ak' by natural i ty . As for 
o-*«*' = ~kxk", (2.7) and (3.2) give <r+ak = — ft^+i, so f*<T*ak = a*r*ak = 
°*(h = ~kvk+1 = r+( — kxk"). Bu t f* : PH2k+i(Up) —» PH2k+i(SU) is a mono-
morphism, so a*ak = —kxk" as claimed. 

Next we give the Bockstein (3 on primitive elements of H*(BUP). Clearly 
(3ak

f = 0 by natural i ty , as /3 vanishes in 77* (i? U). We also have 

(3.6) pxk" = e ^ V for ^ ^ ft, 

where ep = ± 1 and depends only on p, not on ft. Essentially I owe this result 
to Professor Adams. 

The proof of (3.6) is as follows. The modulo p Bockstein sequence of a 
cohomology theory represented by a spectrum E may be obtained by smashing 
E in the stable category with the cofibration sequence 

co Xp co v c i Xp c i 
. . . > o > o » y » o » o > . . . 
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and the portion of this sequence displayed is the first desuspension of wha t is 
obtained from the cofibration sequence of spaces 

by applying the suspension spectrum functor. Connective i£-theory is repre­
sented by the 12-spectrum (. . . , U,BU,SU,...), so we have a homotopy-
commuta t ive diagram 

l A l 1 A 7T 
U A S1 • U A M • U A S2 

eA e\ e2\ 
4̂  T T 

517 >BUV > SU, 

with e\ and e2 the obvious evaluation maps arising from U ^ Q.B U, U ^ tt2SU. 

Let gi Ç Hi(S1) and h2 G H2(S
2) be the s tandard generators. By the defini­

tion of the homology suspension we have 

0i* (z A gi) = o-*2, 02* (z A h2) = a*a*z 

for z Ç H*(U). Also H*(M) has a base consisting of g = i#gi of degree 1 and 
h of degree 2 with ir*h = h2 and fig = epA, the sign ep depending on sign-
conventions. For p \ k, let z = -k~]vk G H2k-i(U). By (3.5), (3.2) and 
(2.10), 

0i*(z A gi) = o-*z = —k~lak, e2*(z A A2) = o-*o-*s = ^ + 1 . 

Therefore 

r*xk" = VA;+I = 02*(z A A2) = 02*(1 A n)*{z A h) = r*e*{z A h). 

Since f* induces an isomorphism from QH2k+i(BUp®) toQH2k+i(SU), 

xk" = e*(z A h) modulo decomposables in H*(BUp
e). 

vSince fi vanishes in H*(U), we have 

fixk" = fie*(z A h) = — e*(z A fih) = — epe*(z A g) 

= —epe*(l A t)*(z A gi) = —eps*ei*(z A gi) 

= ePs*k~1ak= epk~lak" modulo decomposables in H*{BUP®). 

Since fixk" is primitive, we must have fixk" = epk~lak". This completes the 
proof of (3.6). 

From (3.6) we obtain a formula concerning the duals of the Steenrod 
operations in H* (BUP)\ 

(3.7) P\fixk" = fiP\xk" îorpJfk and p \ k - (p - \)i. 

Conceptually, (3.6) relates these Bocksteins to suspensions; Steenrod opera-
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tions commute with suspension, so they should here commute with the 

Bockstein. 

T o prove (3.7), let I = k — (p — \)i. Since P\ak is primitive in H*(BU) 

we mus t have P^ak = ^(h for some X Ç Z/p. By (2.10) and (3.2), a*ak 

= —kvk+i, a*(ii = —lvi+i. As P z * commutes with suspension, P\vk+i = 

\lk~lVi+i\ t ha t is, 

?*P\%k = f*\lk~ X i . 

Since P\xk' and %{' are primitive and f*: PH2i+i(BUp) -+ PH2i+i(SU) is 
an isomorphism, P\xk

f = \lk~lx"'; by (3.6), 

0 P W - X e ^ V . 

Using (3.6) again then shows tha t 

PUfak" = *pkrlP\ak" = epk~lP\~s^ak = Xepk^s^ii 

= Xe.k^a/' = t3P\xk", 

as required. 

4. T h e h o m o l o g y of BUV®. As announced in the introduction, we have the 
following result. 

PROPOSITION 4.1. There is an isomorphism 6: H*(BUP®) —> H*(BUP®) of 
Hopf algebras restricting to the identity on PH*(BUP). 

This of course does not imply tha t B Up® and B Up® are equivalent / / -spaces, 
for we do not say tha t 6 is induced by a map from BUP® to BUP®. On the 
contrary, B Up® is an infinite loop space and B Up®, as we shall show eventually, 
is not. The arguments of the next section show in a roundabout way tha t 6 
does not commute with Steenrod operations. 

Proof. I t suffices to show tha t there is an isomorphism #*: H* (BUP®) —» 
H*(BUP®) of Hopf algebras inducing the identi ty on QH*(BUP). The algebra 
s t ructure of H*(BUP) (which does not depend on any product in BUP) may 
be obtained by comparing 2.6, 2.11 and 3.3: like H*(UP) it is a polynomial 
algebra on generators of degrees 2k with p \ k tensored with an exterior 
algebra on generators of odd degrees. By the Milnor-Moore exact sequence 
(2.5) the canonical maps PH*(BUP®) -> QH*(BUP) and PH*(BUP®) -> 
QH*(BUP) are both surjective. So we can define an algebra isomorphism 
<9*: H*(BUP®) - » H*(BUP®) inducing the identity of QH*(BUP) and sending 
primitive generators to primitive generators. The last point makes 6* a mor-
phism of Hopf algebras. This completes the proof. 

Now consider the map Z X B U —> Z/p X BUP representing the reduction 
homomorphism K°( ) —> K°( ; Z/p). Because reduction preserves addit ion, 
the m a p mus t be nomotopic to 

p X s:Z X BU-+Z/P X BUt 
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with p:Z —>Z/p the reduction homomorphism and s:BU —> BUV the map of 
the last section. Because reduction preserves multiplication, s:BU® —> BUP® 
(the restriction of p X s to the 1-components) must be an / / - m a p . Therefore 
H*{BU®) contains a Hopf subalgebra s*H*{BU®). 

Consider also the odd degree primitive elements xk" for p \ k in H*(BUV) 
given in 3.3. Recall t ha t deg (xk") = 2k + 1. Combined with the last para­
graph they yield a Hopf algebra homomorphism 

a:sH*(BU®) ® h[xh":p Jf k]-+H*(BUP®). 

We claim tha t a is an isomorphism. Indeed a clearly restricts to a monomor-
phism on primitive elements, so its dual a* induces an epimorphism on indé­
composables, a* is itself an epimorphism, and a is a monomorphism. A dimen­
sion count using 3.3 shows t ha t a is an isomorphism, as required. 

So the s t ructure of H*(BUP®) may be described as follows. 

(4.2) H*(BU®) =s*H*(BU®)® A[xk":p \ k] with deg (**") = 2fc + 1, 

xk" primitive. 

We next compute Steenrod operations in Qs*H*(BU®) C QH*(BUP®). 

We claim tha t Qs*H*{BU®) has a base 

(4.3) {/*: k not a power of p\ \J {gu gp, gv-i, . . .) 

with deg(fk) = 2k, d e g f e ) = 2k, such tha t in QH*(BUP®) ( tha t is, modulo 
decomposables) 

(4.4) for k not a power of p 

Pi*fk = (h k — pi)fk-(p-i) i if k — (p — Vji is not a power of p, 

0 if & — (p — l)i is a power of £; 

^ * & - = gvm if i = 0, w ^ 0, 

gpm-i if i = pm~l, m ^ 1, 

0 otherwise 

(the notat ion (i, & — pi) means a binomial coefficient). 
T o see tha t (4.3) and (4.4) are t rue we observe from 3.3, 4.1 and (4.2) t ha t 

Qs*H*(BU®) has the same dimensions as Qs*H*(BU®) = H*(BU®)//£; 
t ha t is, 1 in degrees 2, 4, 6, . . . and 0 in other degrees. So the base proposed in 
(4.3) is a t any rate the right size. Let us write A for the Hopf algebra s*H* 
(BU®); then s* maps A* monomorphically into H*(BU®). I t is well known 
tha t BU® is as an / / -space the product of BSU® with infinite complex pro­
jective space CPœ; the inclusion i: BSU —> BU also gives an / / - m a p from 
BSU® to BU®; and BSU® and BSU® are equivalent / / -spaces after localiza­
tion or completion a t p by the theorem of Adams and Pr iddy [2]. Pu t t ing all 
this together we see t ha t there is a monomorphism 

7 : A* -> H*(BSU®) (g) H*(CPœ) 
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and an epimorphism 

i*:H*(BU®)->H*(BSUe); 

these are both morphisms of Hopf algebras and commute with the Steenrod 
operations. To compute the dual Steenrod operations in QA it suffices to 
compute the Steenrod operations in PA*. We therefore consider PH*(BSU®), 
PH*(CPœ), and the monomorphism 

7: PA* -> PH*(BSU®) ® PH*(CPœ). 

We know tha t i* identifies H*(BSU®) with 

I t follows tha t the Frobenius homomorphism £ acts monomorphically on 
H*(BSU); it also acts monomorphically on H*(BSU®) as this is contained in 
the polynomial algebra H*(BUe). Using the Milnor-Moore exact sequence 
(2.5) and induction on degree we find tha t PH*(BSU®) has dimension 1 in 
degrees 4, 6, 8, . . . and dimension 0 in other degrees. Also if k is not a power of 
p then PH2k(BSU®) is generated by i*dk where dk G H2*(BU) is the fcth 
Newton polynomial in the ck. For dk is known to be primitive in H* (B U®) and 
i*dk 9e 0 for k not a power of p since dk = ( — \)k~lkck modulo decomposables 
and dpj = df, analogous to (2.9) and (2.10). As for H*(CPœ), we have 
H*(CPœ) identified with Z/p[a] C H*(B U), so, again using (2.5), PH*(CPœ) 
has a base {ci, Cip, Cip2, . . .} . 

I t follows tha t PA* has a base consisting of elements/** with k not a power 
of p and gk* with k a power of p such tha t yfk* = ^*^, 7^1* = Ci, and ĝ m* = 
gi*pm, whence 7 & - = c / m . We shall let {/*, g*} be the dual base for QA. The 
verification of (4.4) now amounts to computing the Steenrod operations on the 
dk and on the powers of c\. On the powers of C\ the computat ion is e lementary; 
to compute the operations on the dk we identify the ck with the elementary 
symmetric functions on indeterminates t\, t2, . . . of degree 2. The Newton 
polynomial dk is thereby identified with the sum of the kih powers of the tni 

whence Pldk = (i, k — i)dk+{v^i)t. From these computat ions follows (4.4). 

Finally in this section we compute the Bockstein in QH*(BU®)\ 

(4.5) fix\" is a non-zero multiple of gi, 

fixk" is a non-zero multiple of/* for k ^ 2 and p \ k, 

all the @fk and j3gk vanish. 

For fixk" 9^ 0 for p \ k by (3.6) and is primitive, so indecomposable by the 
Milnor-Moore exact sequence (2.5), while the Pfk and f3gk vanish s ince/* and 
gk lie in the image of H* (B U) under s*. 
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5. Proof of the theorem. In this section we shall suppose that BUP® is 
a fourth loop space and obtain a contradiction, thereby proving the theorem. 
We first recall the structure on the homology of an (n + \)th loop space X as 
given by Cohen [4, III, 1]. 

For s ^ O and 2s — q < n there is a homomorphism Qs: Hq(X) —» 
Hg+2(p-i)(X) called a Dyer-Lashof operation. If 2s = q, then Qs is the pth 
power; if 2s < q then Qs vanishes. The Qs are stable; that is, they commute 
with the suspension o-*: H*(ÇlX) —> H*(X). They satisfy Cartan formulae, 
which suffice to show that they map primitives to primitives and decomposables 
to decomposables. They are related to the Steenrod operations by the Nishida 
relations: 

(5.1) P\QS = 2 < ( - l ) r + ' ( r - pi, (p - l)s -pr + pt)Qs~^iP\, 

Pr*$Qs = E i ( - l ) r + i ( r - Pi (P - Vs - Pr + pi- l)PQs~r+iP\ 

+ E*(-l) r + i(^ -pi -hip- l)s ~ pr + pi)Q*-r+iP\$. 

There is also a "top operation" £n, not a homomorphism, which maps Hq{X) 
to HPQ+n(P-i)(X) for n + q even. It may be regarded as a substitute for Qs 

with 2s — q = n. In particular there is a Cartan formula showing that £„ 
maps primitives to primitives. The analogues of the Nishida relations (5.1) are 
complicated, but fortunately we shall use only the simple special cases given 
in the following lemma. 

LEMMA 5.2. If X is a fourth loop space and x Ç Hz{X), then the formulae for 
Pl^x and Pl*fâ?,x are those given by (5.1) for P1*Q*x and Pl*(3Q*x respectively. 

Proof. First consider P 1 * ^ . By [4, III, 1.3(3)] the formulae for Pl^x and 
Pl*Qzx differ by an error term of the form 

L(P1^x, x, . . . , x) (p — 1 components x) 

where L:H*(X)P —> H*(X) is a multilinear function of degree S(p — 1) made 
out of Browder operations. Since Pl*x has negative degree, the error term 
vanishes. 

As for Pl*f3^x, in the notation of [4, III, 1] we have 

Pl*fc*x = P^fsx + P1* ada^1 (x)((3x) 

by the definition of f3 [4, III, 1.3]. By [4, III, 1.3(3)], P\^x is Pl*pQ*x as 
given by (5.1), so we need to show that Pl*&àzv~l(x) (0x) vanishes. By defini­
tion [4, III, 1.3]. 

adzp~l (x) (fix) = Lf (x, • • • , x, fix) (p — 1 components x) 

for Lf:H*(X)p —» H*(X) a multilinear function of degree 3(£ — 1) made out 
of Browder operations. Using the precise definition of L' and [4, III, 1.2(7)] 
we see that 

P\V = V{P\ X l X . . . X l ) + . . . + Z/(l X . . . X 1 X P1*), 
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just as if V were an iterated cup-product. But Pl*x and Pl*$x vanish, so 

PltdA£~l(x){fix) = P^Lf(x, . . . , x, fix) vanishes as required. This completes 

the proof. 

Suppose now that B Uv® is a fourth loop space, so that Up is a fifth loop space. 
Recall H*(UP) from 2.11. We see that in H*(UP) 

Q V = ai'* * 0. 

By (5.1), 

Pl*QW = QW * 0, 

so Q2cii 7e- 0. Since Q2a,i is primitive, Q2ci\ is a non-zero multiple of a2p-i . 
Since Q2 commutes with suspension, (3.4) shows that in H*(BUP®) 

(5.3) Q2Xi" is a non-zero multiple of x2p-i
f. 

Now consider £3^1". It is primitive, so must be a multiple of x37,_2
// by 3.3. 

From (3.7) we deduce that 

By 5.2, this gives 3/3Ç2*i" - Ç W = 2 0 Ç V ; that is, 

QW = PQW. 

By (5.3), Q2pXi" is therefore a non-zero multiple of fix2p-i
/; use of (4.5) then 

shows that Q2g\ is indecomposable. 
Henceforth we shall work in QH*(BUp®); we shall use (4.3), (4.4) and 

(5.1) repeatedly. So far we have Q2gi j* 0. Therefore 

P\Qp+lgv = Qhi * 0, &>+% * 0, P* 2*<? 2 +V 

= Qp+lgP * 0, <?*+%> * o, 

Qp2+lgp2 is a non-zero multiple of/p3+p_i. 

Now 

PP2~P*fv*+p-l = / 2p2_ l , 

SO 

That is, 

0 ^ P * 2 - % < ? 2 + V = <2P+1&*. 

However 2(p + 1) - deg(g^) = 2(£ + 1) - 2p2 is negative, so Qp+1gp2 = 0. 
This contradiction completes the proof. 
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