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1. Introduction 

An analytic function /(z) is said to have a fixpoint f ^ oo of multiplier 
1 if /(£) = f, /'(I) = 1. The function then has an expansion 

(1) ){z) = * + ( * - £ ) + I «*(*-*)*. <Wi # 0, m ^ 1. 

It has been shown in [1] that there is for every complex s a unique formal 
iterate 

(2) /.(2) = 1 + ( * - * ) + | a k ( s ) ( z - S ) \ am+1(s) = saa+1, 
m+l 

(where the at(s) are well-defined polynomials in s) satisfying the formal 
identity 

(3) /<>/.(*) = / . o / « 

(where fog(z) denotes f(g(z))) and indeed 

(4) / .o / , (*)=/„, (*) . 

The series /j(z) is identical with f(z) and, more generally, for s = n, 
a positive integer, fn(z) is identical with the formal iterate / o / o • • • o /(z); 
by analogy the /,(z) are called fractional iterates. 

It was shown in [1] that the set of s-values corresponding to /, with a 
non-zero radius of convergence has one of the forms: (i) the whole complex 
s-plane, (ii) a discrete one-dimensional lattice {nsj}, n = 0, ± 1,"' *. S I ^ 0 or 
(iii) a discrete two-dimensional lattice {ms^+ns^, m, » = 0, ± 1, • • •, sjs2 

not real. Cases (i) and (ii) were shown to occur for / = z/(l—z) and 
/ = cz— 1 respectively. G. Szekeres [4] has shown 

THEOREM 1. / / /(z) in (I) is an entire or rational function and © is the 
set of those s-values for which the series (2) has a positive radius of convergence, 

143 

https://doi.org/10.1017/S144678870002334X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002334X


144 I. N. Baker [2] 

THEN <B IS NOT THE WHOLE PLANE (AND CONSEQUENTLY <B IS A DISCRETE LATTICE) EXCEPT 

IN THE CASE 

(5) /(,) = £+(,_£)/{! + «(,_£)}, 
WHEN 

(6) /.(*) = *+(*-*)/{!+«(*-*)}. 
In this connexion Szekeres asks whether the same result holds for 

the class of meromorphic or, more generally, single-valued analytic functions. 
We shall prove: 

THEOREM 2. IF (1) IS THE EXPANSION ABOUT £ OF A MEROMORPHIC FUNCTION, 

THEN © IS THE WHOLE PLANE ONLY WHEN THE FUNCTION HAS THE FORM (5). 

The proof of 2 will give a somewhat different approach to Theorem 1. 
It may easily be shown (c.f. [1, section 7], [4, introduction]) that there are 
series (1) other than (5) for which S is the whole plane: these examples 
of functions of F(Z) and their iterates are many-valued under analytic 
continuation. It may be remarked in conclusion that no examples are 
known where <© is a two-dimensional discrete lattice. 

2. Preliminary results 

We shall prove Theorem 2 only for the case M = 1 in (1), i.e. when 
oo 

0) № =H-(*-f)+a,(*-£)»+2 « » ( * - * ) » , « A * 0 . 
3 

The ideas in the general case are the same, but the description of certain 
regions involved is more complicated. 

It is convenient to transfer the fixpoint £ to oo. If we change variables 
in the transformation ZX = F(Z) by putting Z—G = K\T, ZX—G = KJTLT the 
function F(Z) becomes for suitably chosen K (c.f. [4]) 

(8) TL = G(T) =T+L+FBHT-K 

i 
and the same change of variables turns FS(Z) into 

oo 

(9) <. = g.W = *+s+2 ».(*)<-*• 
1 

The G, are the unique series of form (9) such that 
( 1 0 ) G.OG = GOG,; 

further 
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(11) G.°GT = G.+T. 

and G,(T) is convergent for values other than T = oo if and only if /, in (2) 
is convergent for values other than Z = f. 

FROM NOW ON G,(T) WILL DENOTE THE SERIES (9) AND G = GT WILL BE ASSUMED 

CONVERGENT FOR \T\ > R. 

We quote the following results from [1, 2]: 

LEMMA 1 [1, p. 272] 1/ THE REGION $(#) = U-<W4) *«*<»/*) ®(«- K)> 
WHERE @(<x, K) IS THE HALF-PLANE {Z |Re (ZE~IA) > K}, THEN FOR ALL SUFFICIENTLY 
LARGE K(> R), GN(Z) IS REGULAR, 

(12) GN(Z)E®(K), « = 1, 2,--. 

AND 

(13) REGN(Z) -*• oo as N -*• oo 

FOR ALL Z IN THE CLOSURE 5) (if) OF %(K). 

By [1,273(21)] (13) holds uniformly on any compact subset of 25(i£). 

LEMMA 2 [1, p. 273] FOR ALL SUFFICIENTLY LARGE K THE DOMAIN %(K) OF 

LEMMA 1 HAS THE PROPERTIES: 

(14) A(T) = lim {GN{T)-N-H log N), 

(WHERE BX IS AS IN (8)) EXISTS UNIFORMLY FOR T e %(K); MOREOVER A (T) IS REGULAR 

AND SCHLICHT IN LS)(K) AND A'(T) -y 1 UNIFORMLY AS T -> oo IN ^(K). ONE HAS 

(15) A(G„(T)) = A(T)+N for Te$(K). 

LEMMA 3 [4, § 2] / / THE SERIES (9) HOPE A POSITIVE RADIUS OF CONVERGENCE 

FOR EVERY S, THEN B(T) = A'(T) IS REGULAR IN A FULL NEIGHBOURHOOD OF T = oo 

AND HAS AN EXPANSION 

(16) B(T) = 1— B1T~1+ 2/V-* 

2 
WHICH MAY BE CALCULATED FROM 

BOG(T)=B(T)LG'(T). 

We now prove 

LEMMA 4. IF THE SERIES (9) HAVE A POSITIVE RADIUS OF CONVERGENCE FOR EVERY 

S, AND IF GN(T) ARE SINGLE-VALUED IN THEIR WHOLE DOMAIN OF EXISTENCE FOR 

N — \ , 2, • • •, THEN THERE EXISTS R0 > 0, SUCH THAT FOR T IN ANY ANNULUS 

R0 < RX g \T\ g/f2< oo ONE HAS FOR ALL LARGE ENOUGH N 
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(i) £»(0 regular, g„(t) e 2>(if), and 
(ii) gB(2) -> oo uniformly as n -> oo. 
PROOF. Choose if so large that Lemma 2 holds and that [Lemma 3] 

A'(t) is regular in \t\ > if. By enlarging if we may suppose A'(t) as close 
to 1 (uniformly) as we please in 2)(if). Then t-+w = A(t) maps 2)(if) 
univalently and conformally on to a region 6 of the co-plane lying to the 
right of a curve (of the same general appearance as the boundary of 2)(if)) 
which approaches oo in the directions arg to = ±3^/4. (£ contains a half 
plane Re co > B. One may now take R0 > if, R0 < Rt < R2. Let 
Rt<r < i?2 and y be the segment t > r, of the real < axis, /? the semicircle 
t = r/ 9 , O g f i g i . By Lemma 3, o(*) = A'(t) is regular on /3 u y, and 
so A (t) may be continued regularly along u y to < = — r, the values 
4̂ (/?) being bounded. For all large enough n the values A (ft) +n lie in the 

half plane Re co > B, while for all positive n, t e y C 2>(if) implies by (15) 
A(t)+n = /l(g„(/)) e©. Thus ^4(/Suy)+M is a curve in ©. Consider 
A-i{A(t)+n} = A(<) on |5uy. On y, h(t) = g„(t), while as < describes 

v y, A(/)+» describes 4((Su y)+w in K and the inverse of the schlicht 
map A: 2)(if) -> 6 gives a regular continuation h(t) otg„(t) along /8 to —r. 
Moreover for t = reie, 0 6 5g n, Rx r 5= R2 we have gB(2) lying in a 
compact subset of 2>(if). 

A similar argument may be applied to the path /J'+y where /?' : re'9, 
0 2: 0 22 — n. The assumption that g„(0 is single-valued assures that both 
the upper and lower continuation yield the same result for gn(t). Thus 
g„(t) is regular in the annulus R1 ^ \t\ ^ R2, gn(t) maps the annulus into 
a compact subset of 2>(if), and by lemma 1 (ii) follows. 

We may restate lemma 4 in terms of the function f(z) with a finite 
fixpoint f: 

L e m m a 5. If the series (7) 

(7) /(*) = |+ (*-£) +fl,(,_£)i+ 2 a»(*-f)*, a, # 0, 
3 

and rte fractional iterates (2) 
oo 

(2) /.(*) = £+(*-<?)+sa2(z-f)2+ 2 *»(«)(*-£)* 
3 

all have a positive radius of convergence, and if fn (t) are single valued in their 
whole domain of existence for n = 1, 2, • • -, then there exists p0 > 0, such that 
for z in any annulus 0 < p2 ^ \z—1| pi < p0, one has for all large enough n 

(i) fn(z) regular, and 
(ii) fn(z) -> £ uniformly as n oo. 
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3. Proof of theorem 2 
Without loss of generality we assume 1 = 0. Suppose that F(Z) is 

entire or meromorphic and that the set <B of theorem 2 is the whole plane. 
(i) In the case where F(Z) is rational or entire the theorem follows 

at once from results of Fatou [2, 3] who proved that (i) a fixpoint of mul­
tiplier 1 belongs to the set % of nonnormality of {FN(Z)}, (ii) g is perfect 
(except when F(Z) is of the form (5)). Thus, however small we take PX, 
there are points of f$f in 0 < \Z\ g PX, and hence there is an annulus 
0 < P2 52 |z| ^ PX in which (/„(z)} is not a normal family, in contradiction 
to Lemma 5. 

(ii) If F(Z) is a transcendental meromorphic function we take P0 as 
in Lemma 5 and show that there are in the disc ft : \Z\ < P0 no antecedents 
of poles of F(Z), i.e. no /3 for which a = F„(FI) is a pole of F(Z). If /9 were such 
a point, then for any neighbourhood 9? of /?, /„(3?) is a neighbourhood of 
*> /n+i(3f) a neighbourhood of oo, and /n+*(9?), K ̂  2 includes all points 
of the plane with at most two exceptions. Thus /8 is an essential singularity 
of all / n + i (z) in contradiction to lemma 5. Thus our assertion is established 
and it follows that all F„(Z) are regular in ft. 

We now note that (/„(z)} does not form a normal family in ft. If {/„(?)} 
is normal, then we can extract a subsequence {/„- (Z)} uniformly convergent 
in \Z\ = PX < P0 to a regular function, which by Lemma 5 is identically 
zero. But for this it is necessary that /„- (0) -> 0, while, in fact F'„'(0) = 1. 

Since {/„} is not normal in ft the functions FN(Z) take in ft all values 
with at most two exceptions. If there are at least two (finite) poles A, B 
then /„ = A, B or oo in ft, which contradicts the first paragraph of (ii). 
We are left only with the case when F(Z) has a single pole A. If /(z) = A 
has a solution C, then C ?t A and we can find solutions in ft of /„ = c, A or oo, 
which again gives a contradiction. 

If {(Z) has a single pole A and F(Z) = A has no solution {e.g. F(Z) = 
A+E'L(Z—A)}, consider the meromorphic function 
(17) *(*) = ( / (* ) -* ) / ( / (* ) -« ) . 
(17') /(*) = («A(*)-*)/(A(*)-l). 

The function A(z) has no finite poles (since F(Z) ^ a) and is not a 
polynomial since otherwise F(Z) would be rational by (17'). Hence H(Z) is 
entire transcendental and H(Z) 1 for Z ^ A. Therefore by Picard's theorem 
it has infinitely many zeros and F(Z) = Z has infinitely many solutions. 
Returning to the non-normal family F„(Z) we see that there is a z0eft 
such that F„O (Z0) = ZLT ZX ^ 0, J(ZX) = ZX. Then /„(z0) = ZX for all N > N0, 

and in any annulus 0 < P.2 = \Z\ px < ft, containing z0, the sequence 
FN{Z) cannot tend uniformly to 0. 

We have now established theorem 2 in all cases. 
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4. Extensions 

The differences caused by assuming m > 1 in (1) are that the region 
2) (if ) of Lemmas 1, 2 must be replaced by a set of m smaller ones (essentially 
sectors of opening 3jï/2»m; cf. [1]), and that the expansion (16) of A'(t) 
has a different form. We shall not state the necessary modifications in the 
proof of theorem 2. 

It is interesting to note that our method extends to further classes of 
functions. If, for example, f(z) in (1) is a single-valued function defined in 
the whole plane except for a number (> 2) of isolated essential singularities, 
then the argument of § 3(ii) shows that there are no antecedents of these 
singularities in a disc ® surrounding z = f and the family {/„} is con­
sequently regular and normal in which by the second paragraph of 
§ 3(ii) cannot be the case. 

Although I have been able to prove various results of the above type, 
I have not been able to extend theorem 2 to cover all single-valued f(z). 
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