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Abstract

The adipocyte metabolism has been shown to change during the fat enlargement
process associated to obesity. Several procoagulant proteins such as plasminogen
activator inhibitor type 1, tissue factor or factor VII and also inducible nitric oxide
synthase show higher expression in adipose tissue of obese people in comparison
to lean. This overexpression could explain at least a part of the atherogenic and
cardiovascular risk associated with obesity.

In addition to cytokine secretion, many other features have been observed to
be common to adipocyte and monocyte/macrophage lines: for example, pha-
gocytic and microbicidal activities, and possibly a cellular plasticity of adipose
precursors.

Overweight and obesity are associated with an increased risk of such metabolic
abnormalities as dyslipidemia, hypertension or type 2 diabetes mellitus and
cardiovascular diseases, common features of the metabolic syndrome. Initially,
insulin resistance or hyperinsulinemia was suggested as the origin of these
abnormalities. More recent studies indicate that adipokynes have an important
role in obesity-associated metabolic complications, and suggest that chronically
elevated local or systemic concentrations of adipokynes contribute to the devel-
opment of complications associated with obesity and metabolic syndrome.

Considering all the evidence relating to diet and inflammation, the best diet for
protecting against the metabolic derangements associated with obesity and
metabolic syndrome would be high in fibre-rich cereals, fruit, vegetables, fish,
virgin olive oil and nuts; moderate in wine; and low in meat, processed meat
foods and trans-fatty acids.
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Obesity is considered to be an epidemic of the 21st

century. Its prevalence is increasing and its importance to

public health is considerable because it is associated with

a higher risk of type 2 diabetes, coronary heart disease

and certain cancers, and a shorter life expectancy.

Although the mechanism underlying the development of

obesity and its comorbidities are not well established, it

has been recognised that these clusters of disorders are

associated to chronic mild inflammation in which the

metabolism of fat tissue plays an important role1,2.

In recent decades, fat was considered to have a passive

role in the development of obesity and was simply stored

in the adipocytes. More recently, the adipocyte metabo-

lism has been shown to change during the fat enlarge-

ment process associated to obesity. Within these

mechanisms, a greater release of free fatty acids (FFA) and

glycerol from adipocytes has been described in obese

people than in lean individuals, probably promoting

insulin resistance and type 2 diabetes through its specific

actions that block insulin signal transduction3. Several

procoagulant proteins such as plasminogen activator

inhibitor type 1, tissue factor or factor VII and also

inducible nitric oxide synthase (iNOS) show higher

expression in adipose tissue of obese people in com-

parison to lean people4–7. This overexpression could

explain at least a part of the atherogenic and cardiovas-

cular risk associated obesity. White adipose tissue is also

specially characterised by the production and secretion of

more than 50 adipokines, such as leptin, tumour necrosis

factor (TNF) or interleukin-6 (IL6) with characterised local

and systemic pro-inflammatory effects2,8,9. Several of

these molecules are over released into the circulation in

obese subjects leading to a low grade of chronic systemic

inflammation. Recent data indicate that white adipose

tissue in obesity is infiltrated by macrophages, where they

apparently function to scavenge moribund adipo-

cytes10,11. Nevertheless, infiltrated macrophages could be

the major source of pro-inflammatory cytokine production

*Corresponding author: Email jordi.salas@urv.cat r The Authors 2007

https://doi.org/10.1017/S1368980007000663 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980007000663


in obese adipose tissue. Interestingly, weight loss is

associated with an improvement in the circulating pro-

inflammatory profile and a reduction in the macrophage

infiltration of white adipose tissue12.

Although knowledge about the interplay of inflamma-

tion and obesity is still being gained, the available evi-

dence indicates that dietary intervention will become an

integral part of future approaches to prevent and treat

obesity, the metabolic derangements associated with

obesity, the metabolic syndrome and ultimately the car-

diovascular disease associated with the atherosclerotic

processes. For this reason, in this review we analyse the

importance of a healthy diet if these metabolic alterations

are to be prevented.

Adipose tissue and inflammation

Since the discovery of leptin in 1994, the perspective on

the physiological role of white adipose tissue has dra-

matically changed and it is now considered to be a major

endocrine organ with an important role in the regulation

of energy intake and metabolism. Indeed, as explained

above, adipose tissue secretes a multiplicity of factors

commonly termed adipokines with different protein

structures and functions: for example, cytokines or

related-proteins (leptin, TNF, IL-6, neurotrophins), chemo-

attractant proteins (monocyte chemotactic protein-1

(MCP-1)), proteins of the complement system (adipsin),

proteins involved in the regulation of blood pressure,

vascular haemostasis or angiogenesis (angiotensinogen,

plasminogen activator inhibitor-1 (PAI-1), vascular endo-

thelial growth factor (VEGF)), and molecules involved in

the glucose and lipid metabolism (adiponectin, resistin,

visfatin, cholesteryl ester transfer protein (CETP)). The

functional homology between adipocytes and cells from

the immune system reinforces the previously observed

relationship between adipose tissue and immunity13. In

addition to cytokine secretion, many other features have

been observed to be common to adipocyte and mono-

cyte/macrophage lines: for example, phagocytic and

microbicidal activities14, and possibly a cellular plasticity

of adipose precursors15.

The theoretical role of adipose tissue in the develop-

ment of local or systemic inflammatory status, especially

in obesity, could be complicated by its heterogeneity at

the cellular level. Mature adipocytes are not more than

half of the total cell content of white fat. The remaining

cell components contain pre-adipocytes, fibroblast,

endothelial cells and macrophages10. It is well-docu-

mented that during adipose tissue growth, for example in

obesity, there is an increase in the size and number of

mature adipocytes differentiated from progenitor cells

like preadipocytes present in the stroma-vascular fraction.

However, this phenomenon seems to be reversible during

adult life and the relation between the number of mature

adipocytes and preadipocytes can change16. Moreover,

infiltration of macrophages from peripheral blood has

been reported during fat mass expansion in obesity10,17.

Although the molecular mechanisms responsible for

these microphagic infiltrations have not yet been eluci-

dated, some adipokynes such as MCP-1 and leptin can

favour the diapedesis of macrophages from circulation to

adipose tissue18. Macrophages that infiltrate adipose

tissue seem to be responsible for almost the total amount

of TNFa and a significant part of IL-6 produced by this

tissue10. Factors secreted by infiltrated macrophages

inhibit the differentiation of preadipocytes into mature

adipocytes probably because the extracellular matrix is

remodelled19. So, the real capacity of adipose tissue to

produce and release inflammatory proteins may be rela-

ted to its cellular composition, and depends on the

degree of obesity.

Obesity, metabolic syndrome and inflammation

Overweight and obesity are associated with an increased

risk of such metabolic abnormalities as dyslipidemia,

hypertension or type 2 diabetes mellitus and cardiovas-

cular diseases – common features of the metabolic

syndrome. Initially, insulin resistance or hyperinsulinemia

was suggested as the origin of these abnormalities20.

Nowadays, more recent studies indicate that adipokynes

have an important role in obesity-associated metabolic

complications, and suggest that chronically elevated local

or systemic concentrations of adipokynes contribute to

the development of complications associated with obesity

and metabolic syndrome.

TNFa is a potent cytokine that induces the production

of IL-69, which is the major determinant of the acute-

phase response16,17 and is also produced by adipose

tissue. Plasma levels of TNF are persistently elevated in

obese or type 2 diabetic patients and among patients at

increased risk of recurrent coronary events9,21. Its role

favoring insulin resistance is mediated by the increase in

adipocyte lipolysis22 and through its role on insulin

receptor substrate-1 phosphorylation and modulating

glucose transporter type 4 (GLUT4) activity23. Because

TNF is the first step in the inflammatory cascade, it is not

surprising that plasma levels of IL-6 are high in obese or

diabetic subjects8. Like TNF, IL-6 concentrations correlate

with insulin resistance24,25 and increase lipolysis and fat

oxidation in humans25. Therefore, it is not surprising that

elevated levels of IL-6 have been associated with an

increased risk of type 2 diabetes26 and future myocardial

infarction in healthy men27.

One of the most important effects of IL-6 is that it

controls hepatic C-reative protein (CRP) production, one

of the most important inflammatory markers in humans,

also positively associated with degree of obesity, fasting

glucose and insulin, blood pressure and lipid profile26.
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CRP induces the synthesis of other cytokines, cell adhe-

sion molecules such as vascular cell adhesion molecule

(VCAM) or intercellular adhesion molecule (ICAM), and

tissue factor, and provides a link between inflammation

and atherosclerosis28. Elevated CRP levels have been

described as an independent predictor of risk of type 2

diabetes, myocardial infarction, stroke and peripheral

arterial disease even in healthy subjects26,29. Other

inflammatory markers, such as blood cell count, fibrino-

gen, ESR, inflammation-associated haemostatic variables

and low serum albumin, have also been associated with

obesity and its metabolic derangements30.

In obesity, the decrease in production and expression

of adiponectin, a molecule with an anti-inflammatory

action, exacerbates the important role of inflammation in

the obese state31,32. Plasma adiponectin concentrations

are lower in patients who have type 2 diabetes or cor-

onary heart disease than in controls, even when body

mass index or age are matched33,34. Adiponectin may

affect insulin sensitivity because it acts on muscle fatty

acid oxidation and hormone-sensitivity lipase2,35. The

stimulation of nitric oxide production and the reduction

in the expression of adhesion molecules in endothelial

cells explains the anti-hypertensive and anti-atherogenic

properties of adiponectin.

Several clinical studies have demonstrated that it is

abdominal fat distribution, not the amount of fat deposi-

tion, which is better associated with multiple metabolic

risk factors. In fact, epidemiological studies have sug-

gested that abdominal fat distribution is a significant

predictor for coronary artery disease independent of body

mass index36. Quantitative and qualitative changes in

serum lipids and lipoproteins such as small dense low-

density lipoproteins (LDL), hypertriglyceridemia or the

hyperinsulinemic state are more closely related to visceral

than subcutaneous fat. Furthermore, differences in adi-

pokyne expression and production between visceral and

subcutaneous fat depots have also been reported. For

example, TNF is significantly overproduced in visceral

adipose tissue. Because this cytokine is a strong inhibitor

of adiponectin promoter activity37, it may explain the

negative correlation observed between visceral adiposity

and adiponectin levels. It has been speculated that

approximately 20% of all genes in subcutaneous adipose

tissue encode secretory proteins, and increase visceral fat

by about 30%38. Recently, a visceral-fat-specific adipo-

cytokine, visfatin, was described39. Plasma visfatin levels

strongly correlated with the amount of visceral adipose

tissue estimated by computed tomography39. Higher vis-

fatin plasma levels have also been observed in patients

with type 2 diabetes mellitus40 or in those with rheuma-

toid arthritis41. Although its physiological significance is

not fully understood, visfatin mimics the effect of insulin

and has a potent activity on adipogenesis.

Although knowledge about the relationship between

inflammation and obesity is increasing, whether the

inflammatory state is the cause or the consequence of

obesity remains to be elucidated. It has been recently

proposed that local hypoxia during white adipose tissue

mass expansion is the first sign that the production of

inflammatory adipokines and related substances is being

stimulated. Hypertrophic adipocyte expansion during the

development of obesity is associated with low oxygen

tension and metabolic adaptation to hypoxia42,43. Within

the adaptative mechanism, the overexpression of

hypoxia-inducible genes such as VEGF, erythropoietin

(EPO) or hypoxia-inducible factor (HIF-1) has been

described in the adipose tissue of human obese subjects.

This overexpression decreases after weight loss12. It has

been suggested that these molecules may stimulate the

release of inflammatory cytokines and other inflammatory

substances44,45.

Inflammation and weight loss

Evidence for a connection between obesity and inflam-

mation has also been found in clinical weight loss studies.

Since adipose tissue from obese patients overexpresses

adipokynes, it seems reasonable that a reduction in adi-

pose mass after weight loss will restore inflammatory

levels because adipose tissue expression and secretion

will decrease, and insulin resistance and other cardio-

vascular risk factors will improve. Several studies of

weight loss due to dietary intervention or exercise, report

a decrease in circulating levels of several peripheral

inflammatory markers46,47. Weight loss due to bariatric

surgery or fat removal by liposuction is also associated

with an improvement in the inflammatory state48. How-

ever, there are some discrepancies in terms of adipose

tissue adipokyne expression after weight loss. While

some studies describe a decrease in TNF or IL-6 adipose

tissue expression, others have found an increase or no

changes49,50. As has been previously suggested by our

group, these discrepancies may be due to the sign of the

energy balance at the moment of the study51. While most

of the studies describing a decrease in adipokyne

expression were made a long time after weight loss, and

the weight loss had stabilised, in our study we evaluated

subcutaneous adipose tissue adipokyne expression in

negative energy balance conditions when lipid metabo-

lism is stimulated. Because several pro-inflammatory

cytokines have lipolytic activity, our results were not

surprising.

The restoration of inflammatory levels could also be

explained by the decrease in the infiltration of macro-

phage adipose tissue after weight loss10 and changes in its

distribution12. Although the mechanisms responsible for

macrophage recruitment in white adipose tissue are

unknown, such chemotactic factors as MCP-1 showed

decreased expression after weight loss. Tissue and cel-

lular hypoxia is a well-known cause of macrophage
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attraction and retention, particularly in tumours and

atherosclerotic plaque52. The overexpression of HIF-1a in

morbid obesity and its lower expression after weight loss

also indicate that local white adipose tissue hypoxia

contributes to macrophage movement, as suggested53.

The role of diet in inflammatory modulation

Inflammation is a normal response to tissue injury or

infection. However, several studies suggest that when a

source of chronic inflammation exposure persists, a low-

grade inflammation response develops, thus increasing

the risk of obesity, insulin resistance, diabetes, metabolic

syndrome, cardiovascular disease or cancer26,54–56. Dietary

habits are probably one of the key determinants of the

balance that influences the overall inflammatory process

in chronic conditions. Genetic polymorphisms at multiple

sites may alter the ability of bioactive food components to

influence the overall process by modulating pro- and/or

anti-inflammatory mediators. The modulation of this

inflammatory response by diet would be fundamental if

such metabolic derangements associated with obesity

such as insulin resistance, type 2 diabetes, hypertension,

atherogenic dyslipidaemia and metabolic syndrome are to

be prevented and treated.

The inflammatory process is initiated by the synthesis

and secretion of pro-inflammatory cytokines in response

to an inflammatory insult (for example, a non-healthy

diet). The increased production of cytokines and the

subsequent increase in reactive oxygen and nitrogen

species are recognised hallmarks of inflammation. This

process is regulated by a negative feedback mechanism

and is closely followed by the secretion of anti-inflam-

matory cytokines to reduce the accumulation of reactive

species. The cellular anti-oxidant defence system is also

activated to limit the development of chronic inflamma-

tion in which the risk of metabolic syndrome and sub-

sequently atherosclerosis is much higher than normal.

The binding of pro-inflammatory cytokines to their

receptors triggers the mitogen-activated protein kinase

(MAPK) pathway that ultimately results in the activation

of two redox-sensitive transcription factors: nuclear factor

kappa B (NFkB) and the c-Jun part of activating protein-1

(AP-1). These transcription factors activate the expression

of a wide variety of genes including cytokines, chemo-

kines, adhesion molecules, and inducible effector

enzymes such as iNOS and cycloxygenase-2 (COX-2).

There is evidence to suggest that such dietary compo-

nents as eicosapentaenoic acid (EPA), docosahexaenoic

acid (DHA), butyrate, curcumin, resveratrol, lutein,

quercetin and oleuropein can influence the inflammatory

process at various sites and thus modulate the balance

within the process. For example, the production of IL-6 or

IL-1b in THP-1 cellules was reduced after incubation with

DHA or ALA57. Several phenolic compounds have also

been identified as anti-inflammatory compounds; how-

ever, phenolic compounds from extra virgin olive oil have

been shown to have different anti-inflammatory effects in

human whole blood cultures58. Likewise, a number of

dietary components, including resveratrol in red grapes,

butyrate generated through the microbial metabolism of

dietary fibre in colon, and curcumin in curry spice, have

been reported to suppress the TNF-a-induced activation

of NF-kB and COX-2 expression in vitro and in vivo. The

mechanisms by which these bioactive components influ-

ence inflammation are not known with any certainty, but

may involve transport, activation or inactivation processes.

Resveratrol has been shown to inhibit the translocation of

NF-kB from the cytoplasm to the nucleus by modulating

the IkB kinase (IKK) activity in various cell types (for

example, myeloid, lymphoid and epithelial cells)59.

Cereals, fibre and glycaemic response

Fasting and postprandial hyperglycaemia are very fre-

quently observed in obesity. They can reduce the avail-

ability of nitric oxide60, and increase the free radical

production, which also activates inflammation by mod-

ulating protein kinase C (PKC) and NF-kB function61.

Refined starches and sugars cause a rapid increase in

blood glucose and insulin levels, and a subsequent

decrease in glycaemia, which leads to hunger and a

decrease in fat oxidation. For this mechanism, the intake

of foods with a high glycaemic index is associated with

hyperglycaemia being a major stimulus for inflammation.

A cross-sectional study performed in 720 diabetic

patients between 40 and 75 years old from the Health

Profesionals’ Follow-up study supports this hypothesis. In

this study, subjects with diets low in glycemic load and

high in dietary fibre have higher plasma levels of adipo-

nectin, a molecule with anti-inflammatory properties that

protects against diabetes and atherosclerosis62. Also

recently, in two more cross-sectional studies, plasma

levels of CRP have been observed to be negatively related

to the total fibre intake in 524 healthy adult subjects63 and

in patients with diabetes, hypertension or obesity from

the NHANES study64. These associations were maintained

when variables were adjusted for other confounding

dietary and non-dietary factors. Some interventional stu-

dies support the hypothesis that fibre can improve

inflammation46. In fact, recent epidemiologic studies

suggest that a high consumption of dietary fibre or cereals

decreases the risk of diabetes or atherosclerosis and is

associated with a decrease in weight gain65–67.

Fish and omega-3 fatty acids

One of the most commonly studied dietary compounds is

omega-3 (v3) fatty acids. v3 fatty acids (especially EPA
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and DHA) decrease the arachidonic acid content of cell

membranes, which results in the synthesis of eicosanoids

that have fewer inflammatory properties than those

synthesised from omega-6 (v6) fatty acids. Several

studies support the idea that v3 may play a major role in

modulating inflammation associated with diseases and

situations.

Several cross-sectional studies support the idea that v3

fatty acids have anti-inflammatory properties. In a sample

of individuals from the Nurses’ Health Study II and the

Health Professionals Follow-up Study, Pischon et al.68

observed that a high intake of v3 (EPA and DHA) and a

low intake of v6 (linoleic acid) was associated with lower

levels of soluble TNF receptors 1 and 2, indicating a low

level of inflammation. This anti-inflammatory effect of

EPA and DHA has also been observed in other cross-

sectional studies performed in healthy individuals from

the Nurses’ Health Study69 and the Attica Study70 or in

patients with established coronary artery disease71. Some

interventional studies also support the anti-inflammatory

effect of the v3 in humans. For example, dietary fish oil

has been observed to decrease CRP and IL-6 in post-

menopausal women72. The anti-inflammatory effects of

the a-linolenic acid have also been observed in several

interventional studies73–75.

Trans- and saturated fatty acids

Some observational and interventional studies in humans

suggest that diets rich in trans- or saturated fatty acids are

more closely associated with inflammation than vegetar-

ian diets, which usually contain fewer of these com-

pounds. For example, subjects consuming a diet rich in

trans-fatty acids showed higher levels of CRP, IL-6,

sTNFR2, E-selectin, sICAM-1 and sVCAM-1 than those in

the low quintile of trans-fatty acid consumption76. In a

randomised cross-over study, CRP and IL-6 increased

when 9% of fatty acids were replaced with trans-fatty acid

or estearic acid77. However, some studies show that

intake of trans-fatty acid has no effect on inflammatory

parameters. CRP levels increase with trans-fatty acid

substitution in a high fat diet in healthy subjects, whereas

6% substitution of trans-fatty acids in a standard fat diet

(30% fat) showed no effects on CRP in moderately

hypercholesterolemic subjects although TNF and IL-6

levels increased78.

Virgin olive oil and nuts

Other important foods with anti-inflammatory properties

are virgin olive oil and nuts. Virgin olive oil is a rich

source of MUFA, and retains all the lipophilic components

of the olive fruit, especially the phenolic compounds with

strong anti-oxidant and anti-inflammatory properties79,80.

The administration of olive oil with a high phenolic

content has been shown to protect against inflamma-

tion81. In addition, phenolic compounds derived from

extra virgin oil were recently shown to decrease the

production of inflammatory mediators in human whole-

blood cultures58 and to inhibit endothelial adhesion

molecule expression in vitro82. These processes may at

least partly explain why the Mediterranean-type pattern

of food intake is thought to protect against athero-

sclerosis.

Nuts are rich in unsaturated fatty acids83 and, besides

having favourable fatty acid profiles, they are a good

source of bioactive compounds with potential benefits

against metabolic syndrome and cardiovascular disease.

Nuts are rich in fibre84, phenolic compounds and other

anti-inflammatory and anti-oxidant molecules85. Also,

nuts contain sizeable amounts of L-arginine, a precursor

of the endogenous vasodilator nitric oxide86,87. Walnuts

differ from all other nuts in that they have a high a-

linolenic acid content88,89 which also has anti-inflamma-

tory properties. A high consumption of nuts and seeds

has recently been shown to be associated with lower

concentrations of inflammatory markers in the MESA

atherosclerosis study90. Also, clinical trials of nut con-

sumption have reported decreases in inflammatory

markers75 and improvements in the endothelial function91.

This mechanism has been proposed as a potential

explanation for the established cardio-protective effect of

frequent nut intake92.

Fruit and vegetables

An increase in the consumption of fruit and vegetables

has also been advocated for the prevention of strokes and

other cardiovascular events93. Fruit and vegetables are

very rich in anti-oxidants and other anti-inflammatory

phytochemicals. Plasma CRP and homocysteine con-

centrations have been related to frequent fruit and

vegetable intake in the Massachusetts Hispanic Elders

Cross-sectional Study after adjusting for confounding

variables. Moreover, a significant relationship between

vitamin C or b-carotene and CRP levels has been

observed in healthy subjects94. Several interventional

studies have demonstrated an anti-inflammatory effect

of fruit and vegetable or some of their individual

compounds95–97.

Wine and alcohol

Both epidemiological and experimental studies have

proposed that moderate consumption of red wine can

contribute to promote health and prevent disease prob-

ably because of their content of resveratrol or other

polyphenolic compounds and flavonoids, and their effect
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on the modulation of inflammation. A 4-week consump-

tion of 30 g day21 of red wine led to a significant decrease

in the serum concentration of CRP, VCAM and ICAM in

healthy adult men98. Lower levels of circulating CRP have

also been observed associated to a moderate consump-

tion of red wine in a cross-sectional study performed on

more than 2800 men and women of the PRINCE study99

or in subjects from the NHANES III study100. Some of the

mechanisms that explain the biological activities of

resveratrol involving downregulation of the inflammatory

response are the inhibition of synthesis and release of

pro-inflammatory cytokines, modification of eicosanoid

synthesis, inhibition of activated immune cells, or inhi-

bition of iNOS and COX-2 via the inhibitory effects on

NFkB or the activator protein-1 (AP-1)101. The effect on

NFkB may explain the suppression of the ex vivo pro-

duction of TNF, IL-1 and IL-6 by mononuclear blood cells

observed after the incubation with trans-resveratrol102.

Flavonoids are another of the bioactive compounds of red

wine with anti-oxidant and anti-inflammatory properties.

Studies performed in cell cultures show that the expres-

sion of endothelial adhesion molecules is inhibited,

which leads to a reduction in atherosclerotic lesion

formation103.

Moderate alcohol intake has also been associated with

beneficial effects on markers of inflammation, indepen-

dently of the bioactive components of grapes104. This

effect, however, is controversial105.

Healthy dietary pattern

Considering all the evidence relating to diet and inflam-

mation, the best diet for protecting against the metabolic

derangements associated with obesity and metabolic

syndrome would be high in fibre-rich cereals, fruit,

vegetables, fish, virgin olive oil and nuts; moderate in

wine; and low in meat, processed meat foods and trans-

fatty acids. In fact, in a cross-sectional study from the

Nurse’s Health Study I Cohort, a prudent pattern was

associated to low levels of some inflammatory and

endothelial function markers in comparison to the results

from a Western dietary pattern69. Furthermore, the tradi-

tional Mediterranean-type diet has been associated to a

low risk of cardiovascular disease106 probably mediated

by inflammation related factors107,108 although some of

the results are controversial109. Some unpublished results

from our group show lower serum concentrations of

inflammatory markers, especially those related to endo-

thelial function, in those subjects who consume more

fruit, cereals, olive oil and nuts. However, controlled trials

analysing the effects of Mediterranean-type diets on

inflammation parameters are required if the cross-talk

between diet compounds and the modulation of inflam-

matory state associated with obesity and metabolic syn-

drome is to be elucidated.
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