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Abstract
We consider pricing of a specialised critical illness and life insurance contract for breast cancer (BC) risk.
We compare (a) an industry-based Markov model with (b) a recently developed semi-Markov model,
which accounts for unobserved BC cases and progression through clinical stages of BC, and (c) an alter-
native Markov model derived from (b). All models are calibrated using population data in England and
data from the medical literature. We show that the semi-Markov model aligns best with empirical evi-
dence. We then consider net premiums of specialized life insurance products under various scenarios of
cancer diagnosis and treatment. The results show strong dependence on the time spent with diagnosed
or undiagnosed pre-metastatic BC. This proves to be significant for refining cancer survival estimates and
accurately estimating related age dependence by cancer stage. In contrast, the industry-based model, by
overlooking this critical factor, is more sensitive to the model assumptions, underscoring its limitations in
cancer estimates.
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1. Introduction
Critical illness insurance (CII) is one of the most significant insurance products and provides
coverage against a wide range of diseases, including cancer. Cancer remains one of the most com-
mon causes of morbidity and mortality worldwide with an estimated 19.3 million new cases and
almost 10 million deaths occurred in 2020 (Sung et al., 2021). Meanwhile, in the aftermath of the
COVID-19 pandemic, cancer has been one of the diseases impacted the most due to the dramatic
changes in relevant healthcare pathways introduced as a response to the pandemic (Alagoz et al.
2021; Lai et al., 2020; Maringe et al., 2020; Sud et al., 2020).

Our focus is on breast cancer (BC). This is one of the most common cancers diagnosed in
women and one of the leading causes of death for women in several countries (American Cancer
Society, 2021;McDonald et al., 2008). Besides, BC is one of themost common causes of CII claims,
e.g., accounting for 44% of female CII claims in the UK in 2014 (CMI, 2011; Aviva, 2015). Also,
BC is one of the cancer types with significantly higher cancer survival as compared to other can-
cer types, e.g., lung cancer. This, combined with a better understanding of BC risk, has led to
changes in insurance practice, such as the "right to be forgotten" initiative in Europe, with more
and more BC survivors being insurable and with new insurance options being available to women
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with medical history (iamInsured, 2023; Insurance Europe, 2021; SCOR, 2020; The Insurance
Surgery, 2023).

It is also important to note that BC is one of the key cancer types for which screening is
often available. The availability of screening is crucial for early diagnosis of cancer, which is also
a main determinant of cancer survival. Unfortunately, national-level lockdowns, introduced as
a response to the COVID-19 pandemic, had significant consequences leading, for instance, to
suspension of cancer screening programs and treatments between March and June 2020 in the
UK (CRUK, 2021).

In this paper, we build on and extend earlier work (Arık et al., 2023, 2024), to derive BC and
other cause mortality at a wide range of age groups, and provide pricing for a specialized acceler-
ated CII contract and a life insurance contract, for both healthy and post-cancer women. Our
modeling allows the inclusion of cancer stage and results are obtained under various scenar-
ios relating to cancer diagnosis and treatment. We also consider a commonly used modeling
framework for pricing (Baione & Levantesi, 2018; CMI, 1991) and provide detailed compar-
isons between these approaches. The comparisons showcase the diverse implications arising from
varying modeling assumptions in the context of life insurance.

Specifically, we consider two main multiple state models in a continuous time framework for
modeling BC, e.g., see Soetewey et al. (2022, 2023), Baione & Levantesi (2018), Ozkok Dodd et al.
(2014). First, we consider an industry-based Markov model (Reynolds & Faye, 2016) with 4 states,
also discussed in Baione & Levantesi (2018), as our baseline model. This model is similar to the
3-state (healthy-ill-dead) model used by Soetewey et al. (2022), but the latter is within a semi-
Markov framework. The difference between these models stems from how death is defined. In the
industry-based model, death is divided into two categories: due to critical illness or other causes.
Since we are interested in pricing both CII and traditional life insurance contracts, we focus on
the 4-state model rather than the 3-state model. Moreover, these earlier literature models account
for cancer incidence in a single state. An exception is the study by Soetewey et al. (2023). They
introduce cancer stage into the model, while retaining all-cause mortality for death.

As an alternative to the existing models, we propose to use a semi-Markov model as the second
approach that differentiates between life histories on the basis of cancer stage and whether or not
cancer diagnosis is made while maintaining two distinct causes of death (Arık et al. 2024). The
model presented in Arık et al. (2024) is further developed here in the following ways: (i) we con-
sider a collection of semi-Markov models for a wider age range starting from age 30 and (ii) we
apply generalised additive models to define transition intensities to account for changes in rates
of transition over time for a given cohort. We are particularly interested in understanding how
combining specific events, like BC registrations across different cancer stages at the time of diag-
nosis as assumed by the industry-based model, affects insurance cash flows, especially when there
is not enough data available. Thus, we show how both modeling frameworks can be implemented
to quantify net insurance premiums for specialized insurance products for women aged 35 to 60
years at the time of purchase. At the same time, we address differences raised by different model
assumptions. This includes clarifying the consequences of relying on the more compact model
and ignoring duration dependence in this specific case. Additionally, we highlight the potential
benefits of incorporating duration dependence by examining a special case of the proposed semi-
Markov model. This is achieved through comparisons of insurance premiums calculated under
the semi-Markov model and its special case. This is relevant to ongoing discussions around as-if-
Markov modeling as a substitute for semi-Markov processes for more refined actuarial (reserve)
calculations (Christiansen, 2021).

Calibrating BC risk in the absence of comprehensive data is complex, but we demonstrate a
suitable approach based on a pragmatic combination of publicly available cancer registrations
and deaths data in England from the Office for National Statistics (ONS), and published clinical
studies. Our study discusses shortcomings of the earlier literature ( CMI 1991; Baione & Levantesi,
2018; Reynolds & Faye, 2016) based on comparisons of estimated BC incidence andmortality with
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Table 1. Multiple state models used in the numerical results

M0 Industry-based Markov model
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M1 Semi-Markov model
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2 Markov model, as a special case of the semi-Markov model

Figure 1. Industry-based 4-state Markov model, M0, as in Baione & Levantesi (2018). Intensitiesμ are functions of age x.

observed rates. We also clarify the definition of a certain method, known as kx-method, prac-
tised by the insurance industry to determine other causes of death through critical illness deaths.
Overall, we conclude that the earlier literature model (which we call the industry-based model) is
more sensitive to model assumptions and should be approached with caution. We later show dif-
ferences in net single premiums for a specialized CII contract and a life insurance contract tailored
for women at ages 35 to 60 under different considerations associated with diagnosis and treat-
ment. Our calculations highlight each model’s capacity to adapt to shifts in insurance practice.
We demonstrate that our approach could be useful for underwriting more inclusive life insurance
products whilst capturing important features of BC risk, in contrast to the industry-based model.

The remainder of this paper is organized as follows. In Section 2, we introduce the multiple
state models used in this study. In Section 3, we describe available data. In Section 4, we explain
how to calibrate, implement, and validate the models. In Section 5, we describe specialized insur-
ance contracts and present estimated net insurance premiums under various scenarios linked to
BC diagnosis and treatment. In Section 6, we examine the sensitivity of the industry-based model
using an alternative calibration. In Section 7, we discuss our main findings and their implications
for the insurance industry.

2. Multiple state models
This section introduces the threemodels used in the paper to define the life history of an individual
exposed to BC risk (Table 1). In Section 2.1, we first present an industry-based 4-state Markov
model (M0), while in Section 2.2 we introduce a semi-Markov multiple state model (M1) and a
related simplified Markov version (M2). While Model 0 is based on an earlier study by Baione &
Levantesi (2018), Model 1 is a recently developed framework from Arık et al. (2024). Models M1
and M2 are further discussed and extended in later sections.

2.1 An industry-basedmultiple state model
We consider a multiple state model with four states as shown in Fig. 1. This model is used as a CII
industry model in Reynolds & Faye (2016) and is similar to the multiple state models discussed in
CMI (1991) and Baione & Levantesi (2018).

Fig. 1 demonstrates the life history of an insured individual in a continuous time setting.
Transition intensities from state i to state j at age x are denoted by μ

ij
x .
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Figure 2. A breast cancer semi-Markov model, M1. Intensitiesμ are functions of age x and/or duration z.

While four states allow us to price a contract paying a benefit on death specifically from
other causes (see Section 5), we would need additional states to describe different stages of BC,
or observed and unobserved cases. Such extensions are easily accommodated if necessary by
expanding the Kolmogorov equations for Model M0 provided in Appendix A.

2.2 Semi-Markovmultiple state model
Fig. 2 displays a continuous time semi-Markov model with 6 states for the life history of a pol-
icyholder. This model, recently developed by Arık et al. (2024), presents an enhanced modeling
approach for BC risk by offering an improved accuracy in related estimates. It describes the devel-
opment of a single policy depending on age-specific transition intensities from state i to state j at
age x, denoted byμ

ij
x , and age- and duration-dependent transition intensities at age x and duration

z from state i to state j, denoted by μ
ij
x,z.

In this model, State 0 represents individuals free of BC. Fig. 2 distinguishes between observed
and unobserved BC cases. In particular, State 1 and State 3 show observed BC cases, whereas
State 2 shows unobserved BC cases. Note that observed and unobserved BC are distinguished
with respect to the availability of BC diagnosis. Incorporating unobserved BC cases as a separate
state allows for a more realistic health trajectory for each individual. This approach also enables us
to develop scenarios concerning BC diagnosis and the availability of BC treatment (Section 5.2).
States 4 and 5 correspond to death from other causes and BC, respectively.

Based on this model, the onset of BC, that is, new cancer cases at a given age x, can be
determined by the sum of the rates of transition from State 0 to State 1 and to State 2 such that

μ01
x + μ02

x = μ∗
x , (1)

where μ∗
x corresponds to all new BC cases. (1) leads to a convenient parametrisation such that

μ01
x = αx μ∗

x , μ02
x = (1− αx)μ∗

x , (2)
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where 0< αx < 1 quantifies a proportional relationship between μ01
x and μ02

x . See Arık et al.
(2024) for a detailed discussion about the model assumptions.

As part of the model, duration dependence is considered only in certain states, e.g., from pre-
metastatic BC to metastatic BC by following the related medical literature (e.g. Colzani et al.,
2014). Besides, it is assumed that individuals in State 1 may have treatments for BC, whereas this
would not be possible for individuals in State 2. Thus, we assume a lower rate of transition to
metastatic BC from State 1, compared to State 2, such that

μ13
x,z = βx,z μ23

x,z, (3)
where 0< βx,z < 1.

Model M1 in Fig. 2 is characterised by a set of modified Kolmogorov equations where a system
of integral-differential equations is involved due to the existence of duration dependence from
States 1 and 2 to State 3. These equations are explicitly provided in Appendix B. A fourth-order
Runge–Kutta scheme is applied to numerically solve the (modified) Kolmogorov equations under
consideration.

2.3 A special case of the semi-Markovmultiple state model
A Markov model (M2) is also considered as a special case of the semi-Markov model (M1) in
Fig. 2. This assumes a simplification of the semi-Markov model, where no duration dependence is
considered in any of the model states. In particular, (3) is modified as follows:

μ13
x = βx μ23

x ,
where 0< βx < 1.

Model M2 is introduced with the purpose of demonstrating differences in BC rates and related
insurance prices caused by duration dependence (e.g. Section 4). The relevant differences are
reported through a comparison between the semi-Markov and Markov models.

3. Data
In this section, we describe available data. The data were also used in Arık et al. (2024), which
focused on older age groups (65+). Here, our primary interest lies in the insured age groups,
specifically ages 30–60. However, the model calibration spans ages 30–89, as detailed in Section 4.

Specifically, the data consist of numbers of deaths by cause-of-death and cancer incidence
registrations in England for the following age groups: 30–49, 50–54, 55–59, . . ., 85–89. The cause-
specific number of deaths data are available up to age 89 from 2001 to 2022, whereas the cancer
registrations data are available from 2001 to 2020.

Cancer registrations are stratified by five-year age-at-diagnosis groups, type of tumor, single
calendar year, and gender, for the years between 2001 and 2020. These data are provided by the
ONS up to 2017 and later by the Health and Social Care Information Centre of the National
Health Service (NHS) of England, also known as NHS Digital. Cause-specific death numbers,
provided by the ONS, have similar granularity, where the data are split by five-year age-at-death
groups, causes of death defined based on ICD 10 classification, single calendar year, and gen-
der, between 2001 and 2022. Mid-year population estimates up to 2022 are also available from
the ONS.

Fig. 3 shows age-specific BC incidence and mortality along with mortality from other causes
over time. This builds on a similar figure presented in Arık et al. (2024), incorporatingmore recent
data in the current version. Here, BC incidence is defined as new BC registrations at a certain age-
at-diagnosis group in a given year, divided by the relatedmid-year population estimates. Mortality
from other causes is defined similarly, with deaths from BC being excluded.
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Figure 3. Breast cancer incidence, mortality, and mortality from other causes (excluding breast cancer).

Fig. 3a demonstrates that BC is a greater risk for women from age 50 onward. Also, BC inci-
dence mostly exhibits an increasing trend at different ages over calendar years apart from 2020,
where we observe a sharp decline, as low as 25% at ages 60–64 (see also Fig. 4a). This is more
evident for women older than 30–49, reflecting a reduction in cancer registrations due to the
changes in availability of cancer services, e.g., a halt in cancer screening from late March 2020 till
June 2020, as a result of national lockdowns introduced as a response to the COVID-19 pandemic
(CRUK, 2021).

Fig. 3b and c show a generally decreasing trend in BC and other-causemortality. This trend was
interrupted by COVID-19 in 2020, with increasing mortality from other causes at all considered
ages by 10–13% as compared to 2019 (Fig. 4c). BC mortality increased in 2020, up around 7%, for
older ages, while it decreased for younger ages (Fig. 4b).

4. Model calibration and validation
In this section, we first present key transition intensities used to calibrate the models described
in Section 2. We show our main findings based on different modeling assumptions, summarised
in Table 1. Each model across M0–M2 is calibrated for women aged 30 to 89 years, partly using
the population data of England (see Section 3). However, only M1 is accounting for duration
dependence, and the other two models (M0 and M2) do not involve duration dependence. We
exclude the calendar years 2020–2022, while calibrating the models, as the COVID-19 pandemic
has had a major impact not only on cancer diagnoses and treatments but also on health-seeking
behavior in general. The models are then used to estimate age-specific occupancy probabilities in
future years, starting from 1 January 2020 onward. The occupancy probabilities are subsequently
used to derive net cancer survival at different ages of diagnosis.
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Figure 4. Change (%) in breast cancer incidence and mortality, and in mortality from other causes,in 2020 as compared to
2019.

4.1 Transition intensities
Key transition intensities used in this paper are summarised in Table 2. In the models tabulated
in Table 1, we use available data as introduced in Section 3, up to 2019. To be specific, we use
average cancer incidence and type-specific mortality between 2001 and 2019 to determine age-
specific rates of transition in the models under consideration, and by doing so we ignore the time
trend. This is mainly for easiness of computation. We then fit generalised additive models to these
rates, see Section 4.2, while obtaining insurance premiums to account for changes in incidence
and mortality rates at different ages.

Hereby, we use average cancer incidence in England to determine age-specific rates of transi-
tion from State 0 to State 1, μ01

x . We note that BC registrations by stage in England are available
between years of diagnosis 2012–2015 (ONS, 2016). Following Table 1 in ONS (2016b), 81% of
new cancer registrations between 2001 and 2019 is used to represent Stages 1–3 BC, i.e. transitions
to State 1 in M1 and M2.

Furthermore, in the models summarized in Table 1, we use average mortality from other causes
between 2001 and 2019 to determine age-specific rates of transition from State 0 to death from
other causes, i.e., μ02

x in M0 and μ04
x in M1 and M2. Survival probabilities from other causes for

BC patients could be different than the ones for women with no BC (Cho et al., 2013). Particularly,
BC patients could be more susceptible to die from other causes due to additional risk factor (can-
cer incidence) (Andersen & Keiding, 2012). However, in the absence of comprehensive data, we
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Table 2. Age-specific transition intensities for the BCmodels M0–M2 based on available data
andmedical literature

μ02x in M0 μ13x in M0
Age μ01x in M0 μ01x in M1&M2 μ04x in M1&M2 μ35x in M1&M2

30–49 0.00106 0.00086 0.00084 0.16739
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50–54 0.00277 0.00224 0.00228 0.24005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55–59 0.00287 0.00233 0.00363 0.24005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60–64 0.00349 0.00282 0.00588 0.28060
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65–69 0.00393 0.00318 0.00952 0.28060
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70–74 0.00345 0.00280 0.01643 0.36002
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75–79 0.00384 0.00311 0.02987 0.40000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80–84 0.00417 0.00338 0.05496 0.49711
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

85–89 0.00447 0.00362 0.10112 0.50000

assume that transitions to death due to other causes from all live states are equal to the transition
to death due to other causes from State 0, i.e.,

μ12
x = μ02

x ,

in M0, and

μ14
x = μ24

x = μ34
x = μ04

x ,

in M1 and M2.
We determine rates of transition to death from BC denoted by μ13

x , in M0, and by μ35
x in M1

and M2, using the information reported in Zhao et al. (2020). Moreover, we refer the study of
Colzani et al. (2014) to determine rates of transition for developing metastatic BC after being
diagnosed with pre-metastatic BC, denoted as μ13

x,z in M1. See Arık et al. (2024) for an in-depth
discussion about the appropriateness of these sources for model calibration purposes. Note that
we assume μ13

x = 0.0194 in M2, which is a special case of M1. This value is consistent with first
distant metastasis rates based on Table 1 in Colzani et al. (2014).

Rates of transition for developing metastatic BC in the absence of cancer diagnosis and treat-
ment, i.e.,μ23

x,z, are determined based onμ13
x,z (see (3)). Thus, underM1,μ23

x,z accounts for duration
dependence, whereas duration z is ignored under M2, with μ13

x = 0.0194.
There is no reliable data to support a particular assumption regarding the choice of αx and

βx,z (see (2)–(3)). Thus, an extensive scenario analysis is carried out by considering a range of
values of αx = α = {0.1, 0.2, . . . , 0.9} and βx,z = β = { 1

2 ,
1
3 , . . . ,

1
10
}
in the context of life insurance

premiums (see Section 5.2). Furthermore, following Arık et al. (2023), we assume αx = α = 0.6
and βx,z = β = 1/7, in M1 andM2, while providing comprehensive discussions regarding BC risk
and related insurance products in Sections 4–5.

4.2 Generalized additive models for key transition intensities
We consider Markov (M0 and M2), and semi-Markov (M1) models, and we model transition
intensities as a smooth function of age by using a generalized additive model. Hereby, we apply
generalized additive models of the following form to the observed transition intensities in Table 2:

g(E(yi))= α +
∑
p

sp(xip), (4)

where α is the intercept; g(.) is a smooth monotonic link function used to transform the expec-
tation of the outcome y; and y is modeled as the sum of smooth functions, s(.), of covariates x
(Wood, 2017). We use cubic splines as basis functions.
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Figure 5. Key transition rates, in themodels listed in Table 1, as functions of attained age, x+ t, where circles show observed
values taken from Table 2, and lines show fitted values from the relevant generalized additive models.

Fig. 5 displays observed, provided in Table 2, and fitted values of key transition intensities, as
functions of (attained) age based on the additive models in (4). The plots in Fig. 5 demonstrate
smooth fitted rates across different ages. Fig. 5a shows, once again, a significant difference in BC
morbidity before and after age 50, where the increase in BC incidence seems to slow down from
age 65 onward. Fig. 5b and c exhibit increasing mortality rates from other causes and BC, respec-
tively, for higher ages. Fig. 5d suggests a decrease in developing a higher stage of BC, i.e., a more
progressed BC, after being diagnosed with BC over time. Note that this is taken as fixed for each
age.

4.3 Occupancy probabilities for different insured ages

In Markov-type models, the occupancy probability, tp
ij
x , is defined to be the probability that an

individual in state i at age x will be in state j at age x+ t (Macdonald et al., 2018).
Fig. 6 presents occupancy probabilities for an individual aged between 30 and 60 years, with

no BC at the beginning of the insurance contract, based on M0. Note that these probabilities can
be associated with a policyholder at these ages at the time of purchase of a particular insurance
product. Hereby, in the figure, we assume that time spent on the contract depends on the policy-
holder’s age at purchase. We also assume that the maximum age for these insurance contracts is
90. This means that the policy purchased by a person who is aged 50 years could be in-force for at
most 40 years, whereas policy purchased by a 60 year old could be in-force for at most 30 years.
Accordingly, in each subplot, we see shorter time periods for higher ages on x axis.
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Figure 6. Occupancy probabilities for a policyholder with no breast cancer, at different contract entry ages, based on the
industry-based model M0.
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Figure 7. Occupancy probabilities for a policyholder with no breast cancer, at different contract entry ages, based on the
semi-Markov model M1.

Similarly, Fig. 7 displays occupancy probabilities for women with different ages ranging from
30 to 60, with no BC at time zero, based on M1.

We note that the death probabilities from BC for a healthy woman under M0, tp03x , are esti-
mated as significantly higher than those under the semi-Markov model, M1, tp05x , for the same t.
This is related to the assumption about the risk of dying from BC after receiving a BC diagnosis,
that is μ13

x under M0. In the absence of relevant data, we use a similar assumption for μ35
x under

M1, leading to high deaths from BC (Table 2). See Section 6 for further discussion related to this
assumption.

4.4 Model validation: Breast cancer survival
We calculate age-specific net cancer survival, following the ONS definition (ONS, 2019b), with
the aim of comparing our results with the ONS findings. This measures survival from a given
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Figure 8. Estimated net cancer survival at different ages under the semi-Markov model M1, for a woman diagnosed with: (a)
pre-metastatic breast cancer and (b) metastatic breast cancer.

cancer type after receiving a diagnosis, assuming that this cancer can be the only cause of death
(Mariotto et al., 2014; Swaminathan and Brenner, 2011). As an example, we can consider a woman
diagnosed with pre-metastatic BC at age x. BC survival of this woman in t years can be obtained,
based on M1, as follows:

1− tp14x − tp15x
1− tp14x

, (5)

where tp14x represents mortality from other causes, and tp15x represents mortality from BC at age x
in t years time.

Fig. 8 shows net cancer survival from pre-metastatic and metastatic BC for a woman diagnosed
with the related BC at different ages, based on M1. The relationship between BC survival with
a pre-metastatic BC and age, Fig. 8a, demonstrates an inverse pattern, where survival seems to
increase from age 30 to 60. These estimates are aligned with BC statistics in England. For instance,
5-year cancer survival for women aged 15–39 years at diagnosis between 2010 and 2014, followed
up to 2015, is reported to be 85.5%, whereas the same survival for women aged 40–69 years is
between 90.7% and 93.0%. Note that these figures do not distinguish cancer stages. Higher survival
at older ages may be linked to the availability of BC screening for women aged 50–70 years at the
time (ONS, 2016). Another reason might be the type of BC, which is more likely to be a more
aggressive cancer for younger women as compared to older women (ONS, 2019a).

At the same time, Fig. 8b points out significantly lower cancer survival estimates for women
with metastatic BC, as compared to those with pre-metastatic BC (in Fig. 8a), where higher age is
associated with lower cancer survival. One- and 5-year age standardised survival rates for women
diagnosed with Stage 4 BC in 2012 to 2016, followed up to 2017, are reported to be 66% and
27.9%, respectively, while even 5-year survival estimates remain very high for women diagnosed
with Stages 1–3 BC, which is above 96.5% (ONS, 2019a). It is important to highlight that while the
age-standardized rates reported by the ONS are based on ages from 15 to 99 years, our estimates
specifically focus on insured ages ranging from 30 to 60 years.

Note that survival estimates obtained under M0 are identical to the ones in Fig. 8b due to the
assumptions about rates of transition to death fromBC and other causes, respectively (see Table 2).

4.5 Model validation: The proportion of breast cancer deaths over all deaths
Model M0 in Fig. 1 is widely applied in CII by the insurance industry. Also, in the absence
of reliable cause of death data, a particular approach, known as kx-method, is employed based
on this model (Dash & Grimshaw, 1990; SAS, 2011; Institute and Faculty of Actuaries, 2014;
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Reynolds & Faye, 2016). Specifically, this approach aims to identify the proportion of deaths from
other causes in a given year depending on an input: kx. This input, kx, is defined to be the propor-
tion of deaths from a certain critical illness condition over all deaths at a given age x. Appendix F
provides a detailed account of derivation of kx as outlined, e.g., in Reynolds & Faye (2016). Note
that the related derivation shall be read in conjunction with the assumptions made under M0
(see Section 4.1).

We understand that the motivation behind kx-method is to find a reasonable and simple
approach to differentiate between critical illness and other causes of death in the absence of a com-
prehensive dataset. Particularly, kx values are used to indirectly estimate other causes of deaths in
practice. Here, we attempt to define model-based kx values under each model considered as part
of this study. Afterward, the model-based kx values are compared with BC statistics in England to
further validate model results.

Particularly, we define the proportion of model-based BC deaths at attained age x as

k̂x = xp010 μ13
x

xp000 μ02
x + xp010 μ12

x + xp010 μ13
x
,

based on M0; and

k̂x = xp030 μ35
x

xp000 μ04
x + xp010 μ14

x + xp020 μ24
x + xp030 μ34

x + xp030 μ35
x
,

based onM1 andM2. Note that, for simplicity, the formulas above are defined for a cohort starting
in State 0 at age 0.

Fig. 9 exhibits model based and observed values of kx. Specifically, Fig. 9a shows estimated BC
deaths over all deaths for policyholders aged 30 years, with no BC (State 0), at time zero. Note
that the models are calibrated as described in Sections 4.1–4.2 with a boundary condition 0p0030 = 1
(Appendices A and B). Meanwhile, Fig. 9b displays the proportion of BC deaths over all deaths,
based on the population data of England in 2001 and 2019. We see significantly higher estimates
based onM0 as compared to the observed values, such as around 48%, for a woman aged 30 years,
after staying for 10 years in State 0. The same value is estimated to be 18% and 25% based on M1
and M2, respectively, which are more aligned with the observed value at ages 40–44. The main
reason for this difference is that the rates of transition to death from BC after a diagnosis under
M0, have been defined using the mortality of women with metastatic BC. It is important to note
that this assumption, made in the absence of relevant data, results in higher than expected BC
deaths in that modeling setting. Nonetheless, this indicates high sensitivity to model assumptions
under M0, urging to be cautious with the related assumptions. Provided that we rely on average
rates of transition in 2001–2019, we see that the estimates based on M1 (primarily) and M2 in
Fig. 9a are broadly aligned with the empirical values shown in Fig. 9b, with an obvious discrepancy
at age 30 due to the boundary condition.

5. Net premium rates: Definitions and results
In this section, we first introduce two main types of insurance contracts and explain calculation
of related net insurance premiums. Then, we examine the insurance premiums for the CII con-
tract described in (7) and the life insurance contract described in (9) under various scenarios
linked to BC diagnosis and treatment. Last, we present and compare net insurance premiums for
a wider range of life insurance contracts for women across varying ages under different modeling
assumptions.
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Figure 9. k̂x values (a) based on different models, and observed kx values (b) based on the ONS data.

5.1 Net single premiums for different insurance contracts
CII is a popular insurance contract that covers cancer as one of the core diseases, also including
heart attack, stroke, and so on. Alongside, BC life insurance has recently been attracting more
attention in the life insurance industry. This is possibly linked to increasing demands from people
with existing conditions or, perhaps, with a related medical history. However, premium rates for
the latter contract are noted to vary significantly from one insurance company to another, as a
result of several factors impacting the underwriting process (iamInsured, 2023). For instance, age,
a common risk factor, can be a strong determinant of a BC premium, due to the distinctive age-
specific curve in BC incidence resulting from very large changes in estrogen level of women after
age 50 (Bray et al., 2004; Henderson et al., 1988). At the same time, provided high survival rates
from BC, increasing chances of preventing recurrence with more advanced medical technology
and a better understanding of the disease over time, it would be possible to tailor a contract for
an individual surviving BC. In that case, other factors, such as cancer stage and time since the
end of treatment, can become the main determinants of the insurance premium (The Insurance
Surgery, 2023).

We consider two different insurance contracts here, noting that our focus is on the impact of
different modeling assumptions. Following the study of Baione & Levantesi (2018), the first is a
special accelerated CII contract, where a single benefit is paid when the insured

(i) is either diagnosed with BC for the first time; or

(ii) dies from other causes before being diagnosed with BC.

The net single premium for this contract is an accelerated death benefit along with a benefit
paid at the time of diagnosis, and this can be calculated based on the industry-based model, M0,
in Fig. 1 as

CI,1Āx =
∫ ∞

0
e−δt

tp00x
(

μ01
x+t + μ02

x+t

)
dt. (6)

The net single premium for the same contract, based on the semi-Markov model, M1, in Fig. 2,
can be determined as

CI,2Āx =
∫ ∞

0
e−δt

tp00x
(

μ01
x+t + μ04

x+t

)
dt (7)

+
∫ ∞

0
e−δu

up00x μ02
x+u

∫ ∞

0
e−δt

tp22[x+u]

(
μ23
[x+u]+t + μ24

[x+u]+t

)
dt du.
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Here, δ is the instantaneous constant force of interest rate, and we assume that

(i) the insured purchases the product before being diagnosed with BC, i.e., in State 0 “No
BC”; and

(ii) there is no waiting time between cancer diagnosis and the insurance payment.

Note that, in order to make the formulae clearer, we have slightly modified earlier notation and
have used actuarial selection notation. For instance, μ23

x,z is presented based on select attained age
[x] with duration z, such that μ23

x,z = μ23
[x]+z.

The second contract under consideration is a life insurance contract that can also be purchased
with an existing BC condition and provides a single death benefit at the time of death. The net
single premium for this contract, that is a death benefit from any cause for an insured person with
no BC at the time of purchase, can be expressed based on the industry-based model as

LI,1Āx =
∫ ∞

0
e−δt

(
tp00x μ02

x+t + tp01x
(
μ12
x+t + μ13

x+t
))

dt, (8)

while under the semi-Markov model it can be written as

LI,2Āx =
∫ ∞

0
e−δt

(
tp00x μ04

x+t + tp01x μ14
x+t + tp02x μ24

x+t

)
dt (9)

+
∫ ∞

0
e−δu

up01x μ13
x+u

∫ ∞

0
e−δt

tp33[x+u]

(
μ34
[x+u]+t + μ35

[x+u]+t

)
dt du

+
∫ ∞

0
e−δu

up02x μ23
x+u

∫ ∞

0
e−δt

tp33[x+u]

(
μ34
[x+u]+t + μ35

[x+u]+t

)
dt du.

At the same time, the net single premium for the same contract, for an insured individual with BC
at the time of purchase, can be determined based on the industry-based model as

LI,3Āx =
∫ ∞

0
e−δt

tp11x
(

μ12
x+t + μ13

x+t

)
dt, (10)

and the premium for an insured person with pre-metastatic BC, is written based on the semi-
Markov model as

LI,4Āx =
∫ ∞

0
e−δt

tp11x μ14
x+tdt (11)

+
∫ ∞

0
e−δu

up11x μ13
x+u

∫ ∞

0
e−δt

tp33[x+u]

(
μ34
[x+u]+t + μ35

[x+u]+t

)
dt du.

Note that the net single premiums of the contracts under consideration, defined in (6)–(11),
are expressed for whole life insurance contracts. The upper bound of related integrals in each
formula would change in the case of term insurance contracts. We also note that the net single
premiums for these contracts under the special case of the semi-Markov model, M2, can be found
in Appendix E.

5.2 Different diagnosis and treatment considerations
In this section, we examine estimated net insurance premiums under various considerations relat-
ing to BC diagnosis and treatment in the semi-Markov model (M1). This is done by choosing a
range of values for parameters α and β , such that α = {0.1, 0.2, . . . , 0.9} and β = { 1

2 ,
1
3 , . . . ,

1
10
}
.

Particularly, the value of parameter α is associated with BC diagnosis, allowing us to distinguish
between diagnosed and undiagnosed BC cases, by considering the proportion of BC diagnoses out
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Figure 10. Net single premium rates for a specialized life insurance contract, (9), for policyholders without breast cancer at
the time of purchase, £1,000 benefit, payable at the time of death, based on the semi-Markov model M1.

of all BC cases. We consider a range of α values changing from 0.1 to 0.9, while all other model
quantities are calibrated as before. Note that α is defined within the range 0< α < 1 (see (2)),
where α = 0.1 is associated with, e.g., a health system with notably poor BC diagnosis (represent-
ing 10% of all BC cases) while α = 0.9 corresponds to high BC diagnosis (representing 90% of all
BC cases).

The value of parameter β is used to differentiate between rates of transition from pre-metastatic
BC, whether observed or unobserved, to metastatic BC. In other words, this parameter can be
considered as a proxy to the rate of BC metastasis in the absence of cancer treatment since BC
treatment would not be accessible to the women with undiagnosed cancer. We consider a set
of β values from 1

2 to 1
10 within the range 0< β < 1 (see (3)). Here, β = 1

2 is associated with
a higher-level access to BC treatment, whereas β = 1

10 is relating to a lower-level access to BC
treatment.

Our analysis suggests that changes in the values of α and β have no impact on life insur-
ance premiums, described in (11) and (12), for women with (pre-metastatic) BC (see (2)–(3) and
Table 2 for the definitions of related transition intensities). However, any adjustment in the value
of α or β does impact insurance premiums for a healthy woman. Thus, we examine changes in
net insurance premiums for the accelerated life insurance and CII contracts, in (9) and (7), respec-
tively, for a woman with no BC medical record at the time of purchase based on various values of
α and β in Figs. 10 and 11.

Specifically, Fig. 10 presents the net single premiums for a whole life and 10-year life insur-
ance contract for a woman aged 35 years, Fig. 10a and c, respectively, and for a woman aged
60 years, Fig. 10b and d, where the effective rate of interest is 2% per year. As expected, for a
given α and β , higher net insurance premiums are shown as a result of a higher insured age. Our
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Figure 11. Net single premium rates for a specialized CII contract, (7), for policyholders without breast cancer at the time of
purchase, £1,000 benefit, payable at the time of event, based on the semi-Markov model M1.

results demonstrate sensitivity to the choice of α and β parameters, particularly in extreme cases.
Importantly, a poor BC diagnosis, where α < 0.4, leads to greater sensitivity in the model results,
especially in the context of limited access to BC treatment (lower values of β). However, when
BC diagnosis is reasonably high, e.g., α > 0.5, more consistent net premium rates are obtained for
different purchasing ages and maturities.

Fig. 11 shows the estimated net single insurance premiums for the accelerated CII insurance
contract at selected maturities for women aged 35 years, Fig. 11a and c, and aged 60 years, Fig. 11b
and d. Similar to the estimates in Fig. 10, an α value associated with a poor BC diagnosis seems to
be the main reason of greater sensitivity in our findings.

Our findings are also calculated at a different effective rate of interest, 4%, which corroborates
the conclusions drawn from the results presented in Figs. 10 and 11 (see Appendix G).

5.3 Net single premium results
Fig. 12 displays the estimated net single premiums for the accelerated CII contracts, in (6) and (7),
and the life insurance contracts, in (8)–(11), calculated based on M0–M2 at varying maturities,
across different policyholders aged between 35–60 for α = 0.6 and β = 1/7. We use 2% and 4%
effective rates of interest, respectively. The figure mainly compares the estimated net single pre-
miums for a woman with no BC, with those for a woman with pre-metastatic BC diagnosis at the
time of purchase or 5 years before the time of purchase. As expected, a higher age-at-purchase, a
longer maturity, or a lower rate of interest lead to higher net single premiums.

We note that additional analysis is carried out by examining specific values of α, namely 0.4
and 0.8, while keeping all other model parameters calibrated consistently, and assuming β to be 1

7 .
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Similarly, we explore selected values of β , specifically 1
5 and

1
10 , again with other model parameters

calibrated consistently, and assuming α to be 0.6. Details can be found in Appendix H.

Differences in net premiums across different models. Pricing differences across different models
can be justified with respect to the following points: (i) number of departures from State 0 and
(ii) definition of State 1. Specifically, under M1 and M2, we allow three departures from State
0. One of these three departures, to "Pre-metastatic Unobserved," is not considered under M0.
Meanwhile, one of the other two departures, to State 1, linked to cancer registrations, is defined
differently (see Section 4.1). These have two main consequences. First, the occupancy probability
tp00x , which is crucial for pricing purposes, is estimated to be lower underM1 andM2, as compared
to M0, because of the higher number of departures in the former model(s). Second, State 1 in M1
and M2 is defined to be a state involving pre-metastatic BC cases, i.e., Stages 1–3 BC, whereas
State 1 in M0 combines all BC registrations into a single state without accounting for cancer stage
information. This then implies that we have lower rates of transition to State 1, μ01

x , in M1 and
M2, in comparison to the rates used in M0 (Table 2).

Differences between CII and life insurance premiums. We can see smaller net single premiums in
Fig. 12 for the life insurance contracts for a woman with no BC, as compared to those calculated
for the CII contracts. Note that the differences between related premiums are much smaller under
M0 due to the definition of State 1 and the assumption linked to BC deaths. The main reason for
observing smaller life insurance premiums in general is that BC morbidity is a bigger risk than
BC mortality for a healthy woman, and both BC diagnosis or death from other causes lead to a
benefit payment under the CII contract. Meanwhile, only death from any cause leads to a benefit
payment under the life insurance contract.

Differences in life insurance premiums with BC diagnosis. We observe considerably higher pre-
mium estimates for a woman with BC diagnosis at the time of purchase under M0, in comparison
to the estimates for a woman with pre-metastatic BC diagnosis under M1–M2. This highlights the
importance of our more detailed modeling in M1 and M2.

Our findings for women with pre-metastatic BC under M1 and M2 point toward the signif-
icance of modeling for the time spent with observed and unobserved pre-metastatic BC. The
combined impact on the insurance premiums leads to higher premiums under M1, as compared
to M2. This is more evident for a contract with shorter maturity. We can see, e.g., in a whole life
insurance contract under M1, that the differences in the estimated premiums for women with no
BC or pre-metastatic BC diagnosis at the time of purchase get smaller with higher age-at-purchase
or age-at-diagnosis and a longer time to maturity (Fig. 12a and b). This can be because the risk
of developing a metastatic cancer, after being diagnosed with pre-metastatic BC, becomes fairly
stable after about 5 years with a peak at about the first 2 years (also see Fig. 1 in Colzani et al.,
2014), where BC risk becomes a relatively lower risk as opposed to other risk factors.

Life insurance premiums 5-year after pre-metastatic BC diagnosis. We have estimated net single
premiums for a life insurance contract for a woman diagnosed with pre-metastatic BC 5 years
ago at time of purchase, under M1. This aims to determining the impact of eliminating the high-
risk years of developing metastatic BC on the net insurance premiums, where we would expect
lower insurance premiums by allowing the insurance contract to be tailored in a way to be more
inclusive. This calculation can be carried out by modifying (11) as follows:

LI,4Āx =
∫ ∞

0
e−δt

tp11[x−5]+5μ
14
x+tdt (12)

+
∫ ∞

0
e−δu

up11[x−5]+5μ
13
[x−5]+5+u

∫ ∞

0
e−δt

tp33x+u

(
μ34
x+u+t + μ35

x+u+t

)
dt du,
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Net single premium rates for specialized critical illness, (6)–(7), and life insurance contracts, (8)–(11), and (12), for
policyholders with or without breast cancer at the time of purchase, £1,000 benefit, payable at the time of event, based on
M0–M2 in Table 1, when α = 0.6 and β = 1/7.

where the upper boundary in the integrals would be set differently for a term life insurance
contract.

Our findings suggest lower premiums for a woman after 5 years of BC diagnosis, where smaller
differences are observed with an increasing time to maturity. Our results demonstrate intuitive
outcomes, aligned withmedical observations. Yet, these premiums can be higher than expected by
considering, for instance, the premiums for a woman after 5 years of BC diagnosis under "right to
be forgotten" initiative (Insurance Europe, 2021). The difference between the estimated premiums
under M1 and the premiums, e.g., under the "right to be forgotten" initiative could be linked to
two assumptions that we maintained during our calculations: (i) the woman with pre-metastatic
BC is assumed to be in State 1 at the time of purchase, where the implicit assumption is that the
woman is not free of BC, even after 5 years, but the risk of developing metastatic BC has been
considerably reduced and (ii) we have not accounted for time trend in any of the transition rates
in our modeling, including the trend in the risk of developing metastatic BC, which may have
improved significantly as a result of medical advances (Colzani et al., 2014).

We note that a similar calculation as (12) underM2 would lead to the same results for a woman
with pre-metastatic BC diagnosis due to the lack of duration dependence assumption inM2. Also,
such calculation would not be possible under M0 since this model does not distinguish between
different cancer stages, and it does not account for duration dependence in transition intensities
after BC diagnosis.

6. Post-cancer Mortality from breast cancer under Model M0
Under M0, in the absence of data, we have assumed that the rates of transition from BC to death
could be determined using the rates based on the risk of death from BC for women withmetastatic
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Table 3. Modified rates of transition from State 1 to State 3 at different ages in the industry-basedmodel M0

Age 30–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85–89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ13x 0.00041 0.00115 0.00150 0.00182 0.00214 0.00274 0.00369 0.00497 0.00687

BC (Section 4.1). In other words, in Section 5, these transition rates have been calibrated by con-
sidering the risk of death from BC for women with metastatic BC (Zhao et al., 2020). However,
State 1 inM0 involves all BC registrations, where rates of transition from State 1 to death from BC,
μ13
x , at a given age x, should be determined by considering the risk of death from BC for women

with any type of BC.
Although we can assume that death from BC without metastatic BC is rare enough to ignore

(Redig & McAllister, 2013), this assumption suggests that everyone in State 1, under M0, has the
same risk of death from BC, similar to a woman with metastatic BC. Thus, this leads to unrealistic
net premiums, as compared to M1. We therefore consider the sensitivity of the main findings to a
different set of μ13

x values.
Giannakeas et al. (2020) estimate the risk of death from BC for women diagnosed with primary

ductual carcinoma in situ (DCIS) between 1995 and 2014, based on the SEER database. DCIS is
the appearance of cancer cells or tumors within the breast area without showing any presence
beyond that area. Hereby, this type of cancer can be associated with early stage BC, such as Stage 1
BC. The risk of dying from BC has been found to be approximately threefold greater than that for
women at the same age with no BC in the general population (Giannakeas et al., 2020). Following
this study, we can determine μ13

x by using the population mortality from BC in England (Fig. 3b).
In particular, we use average mortality from BC between 2001 and 2019, with this being increased
by a factor of 3 for all ages (Table 3). Note that the rates in Table 3 accept that everybody in State
1 would be exposed to the same risk of death from BC similar to a woman with DCIS at the time
of diagnosis. Although this would lead to lower estimates than expected, we could consider these
rates to be, perhaps, a lower boundary to define μ13

x .
Changing rates of transition to death from BC has a significant impact on k̂x values. As a result

of using the rates of transition in Table 3, we have found that the proportion of estimated BC
deaths over all deaths has dramatically declined to a level that is lower than that obtained under
M1 (Fig. I22 in Appendix I). This result is aligned with the medical literature. The risk of death
from BC with DCIS within 20 years is very low, such that approximately 3% of the women with
DCIS would be expected to die from BC (Narod et al., 2015). This clearly demonstrates that the
rates of transition to death from BC, μ13

x , under M0 have a crucial role in identifying kx values,
and they should be determined with caution.

It is also important to highlight the impact of the change in μ13
x values, on net cancer sur-

vival (Fig. I21). As expected, setting μ13
x with respect to the women with DCIS leads to higher

cancer survival rates, which is more in line with net cancer survival from a pre-metastatic BC.
However, the model seems not to be able to capture the adverse pattern in age-specific cancer
survival observed in Fig. 8a.

The impact on life insurance premiums is also relevant, with premiums obtained with μ13
x in

Table 3 under M0 being shown in Fig. I23, along with the related insurance premiums under
M1 and M2, when α = 0.6 and β = 1/7. As a result of having considerably fewer BC deaths
due to the change in μ13

x (see Table 3), the estimated premiums for a life insurance contract,
with or without BC diagnosis at the time of purchase, based on M0, are estimated to be con-
siderably lower. For example, they are lower than the premiums for a woman after 5 years of
pre-metastatic BC diagnosis under M1. Note that the impact on CII insurance pricing is not dis-
cussed here, since the definition of μ13

x is not relevant to the pricing of the CII contract under
M0 (see, e.g., (6)).
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7. Discussion
We have examined actuarial net premiums for two important insurance products by considering
three related models: an industry-based Markov model (M0), a semi-Markov model (M1), and
a Markov model (M2), which represents a simplified case of the semi-Markov model. We have
obtained net single premiums for a specialized CII contract for healthy women and have compared
the estimated premiums under these models. Alongside, we have examined net single premiums
for a specialized life insurance contract for women with and without (pre-metastatic) BC. The
differences in premiums for a given insurance contract across different models seem to be reduced
with increasing age and longer time to maturity.

Our findings under the semi-Markov model are broadly in agreement with the empirical evi-
dence related to net cancer survival from pre-metastatic or metastatic BC, and the proportion of
BC deaths over all deaths (Figs. 9, H17 and H20). Furthermore, our work shows that the semi-
Markov model has demonstrated insightful results by combining important information, such
as cancer stage and the availability of BC diagnostic and treatment services, in a pragmatic way.
Our results also show the significance of assuming duration dependence in the modeling, i.e.,
accounting for the time spent with pre-metastatic BC.

We also note that the overall impact of the COVID-19 pandemic years on insurance premiums
is considered by including observations from 2020 to 2022 whilst defining the rates of transition
from State 0 to State 1 and State 4, i.e.,μ01

x andμ04
x , under M1 andM2 (Section 3). We have found

that net single premiums would only differ by less than 1% in all cases, as compared to the earlier
results based on the dataset between 2001 and 2019.

There are three major strengths of this study. First, we have demonstrated how to imple-
ment a recently developed semi-Markov modeling approach (Arık et al. 2024) in the context of
life insurance. Second, we have provided comparisons between this modeling approach and an
industry-based model in terms of pricing of BC risk. Last, we have provided separate estimates
of net insurance premiums associated with availability of cancer diagnosis and treatment in the
semi-Markov model. Our findings point out sensitivity to the model parameters associated with
BC diagnosis and treatment only in extreme cases, such as significantly lower BC diagnosis, e.g.,
10%, among all BC cases. While overinterpretation of the absolute numerical results should be
avoided, our findings suggest that the industry-based model should be approached with caution,
since it is particularly sensitive tomodel assumptions, such as the risk of death fromBC for women
with BC diagnosis (i.e., definition ofμ13

x ). Besides, the industry-based model is not able to capture
the relationship between age and BC survival in general. Thus, the semi-Markov model, together
with our findings, can help life insurers understand the impact of different modeling assumptions
on insurance cash flows and pricing calculations. This is relevant when considering new insurance
products developed to meet the needs of individuals with medical history of BC.

There are ongoing efforts to develop new medical technologies, such as liquid biopsy, or
increase the availability of – and access to -–cancer screening programs in order to improve early
cancer diagnosis. In this context, the semi-Markov model can serve as a valuable tool, for instance
in quantifying the effect of early BC diagnosis on BC survival. The model could also be extended
to include a separate state representing eligibility for a cancer screening program, with clinical
diagnosis determined in the model as a separate state (e.g., see Bhatt et al., 2024). This approach
would help to estimate the age of onset and quantify the impact of screening on cancer risk. Such
extension would be particularly relevant to medical underwriting for related insurance contracts.
In particular, the semi-Markov model can help insurers implement a more inclusive approach for
underwriting related life insurance as demonstrated in Section 5.3.

Our study has certain limitations. First, in the absence of comprehensive data, we have grouped
ages 30–49 to be a single age group, and Stages 1–3 BC to represent pre-metastatic BC. These
groupings may be too broad given the nature of BC. Second, we note that our modeling has not
taken into account BC potential recovery from pre-metastatic BC, which could have an impact on
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exposure in State 0 "No BC." This implies that the exposure in the initial state used in the mod-
eling may have been lower than expected. Furthermore, we have not accounted for a time trend
in cancer incidence, type-specific mortality, or the risk of developing metastatic BC. This is par-
ticularly relevant in understanding the impact of the COVID-19 pandemic on insurance pricing,
as the pandemic significantly affected overall mortality and indirectly influenced cancer incidence
in 2020 and 2021. Also, it will be useful to consider competing risks when assessing COVID-19
and its broader implications on the insurance prices. Thus, further research needs to be carried
out for incorporating a possible time trend in these aspects of the models. Additionally, we cal-
ibrated the models primarily using general population data from England. This may introduce
additional risk, as BC risk could differ in insured populations. Insured individuals may belong to
higher socioeconomic groups, which are typically associated with better access to healthcare ser-
vices. This could lead to higher cancer awareness and earlier diagnoses, together with better access
to cancer treatment, potentially influencing BC incidence and mortality.

We further highlight the challenge posed by the lack of comprehensive data in determining
transition rates within the models under consideration. As a result of this constraint, we rely on
point estimates derived from publicly available data in England andmedical literature. It is impor-
tant to acknowledge the uncertainty surrounding transition intensities, which contributes to the
overall uncertainty in calculating net single premium rates for insurance contracts. To address
uncertainties surrounding BC diagnoses and availability of any treatment, and their implications
for insurance premiums, we employ a scenario-based approach. While scenario-driven methods
have inherent limitations, we have reinforced our analysis by grounding assumptions in the exist-
ing literature and comparing results with available empirical evidence, such as net cancer survival
rates provided by the ONS. Last, we have used a constant interest rate when determining net
premium rates, rather than variable rates. This is driven by the need to focus on the impact of
uncertainty linked to incidence and mortality rates across different models, together with varying
modeling assumptions.

Data availability statement. All models in the manuscripts are implemented using our own-developed R code. No other
specific package has been used. To help with replicating calculations independently, we provide in the manuscript all rele-
vant transition intensities, along with corresponding assumptions, that would be inputs in related (modified) Kolmogorov
equations outlined in the Appendices. Relevant code can be available on request, following publication of the work.
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Appendix
A. Kolmogorov equations in the alternative model
Kolmogorov equations for the industry-based Markov model are given as follows:

d
dt t

p00x = −tp00x
(

μ01
x+t + μ02

x+t

)
d
dt t

p01x = tp00x μ01
x+t − tp01x

(
μ12
x+t + μ13

x+t

)
d
dt t

p02x = tp00x μ02
x+t + tp01x μ12

x+t

d
dt t

p03x = tp01x μ13
x+t

d
dt t

p11x = −tp11x
(

μ12
x+t + μ13

x+t

)
d
dt t

p12x = tp11x μ12
x+t

d
dt t

p13x = tp11x μ13
x+t

The appropriate boundary conditions are 0p00x = 0p11x = 1; 0p01x = 0p02x = 0p03x = 0; and 0p12x =
0p13x = 0.

B. Modified Kolmogorov equations with duration dependence in the Semi-Markov
model
Modified Kolmogorov equations for the semi-Markov BC model are given as below. Note that
more details can be found in CMI (1991), based on a 3-state multiple model, allowing recov-
ery from the disease under inspection along with duration dependence. Here, in order to make
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integrals clearer, we introduce actuarial selection notation. For instance, μ13
x,t is shown based on

select attained age [x] with duration t, specifically μ13
x,t = μ13

[x]+t .

d
dt t

p00x = −tp00x
(

μ01
x+t + μ02

x+t + μ04
x+t

)
d
dt t

p01x = tp00x μ01
x+t − tp01x μ14

x+t −
∫ t

u=0
up00x μ01

x+u t−up11[x+u] μ13
[x+u]+t−u du

d
dt t

p02x = tp00x μ02
x+t − tp02x μ24

x+t −
∫ t

u=0
up00x μ02

x+u t−up22[x+u] μ23
[x+u]+t−u du

d
dt t

p03x =
∫ t

u=0
up00x μ01

x+u t−up11[x+u] μ13
[x+u]+t−u du+∫ t

u=0
up00x μ02

x+u t−up22[x+u] μ23
[x+u]+t−u du− tp03x

(
μ34
x+t + μ35

x+t

)
d
dt t

p04x = tp00x μ04
x+t + tp01x μ14

x+t + tp02x μ24
x+t + tp03x μ34

x+t

d
dt t

p05x = tp03x μ35
x+t

We note that the select notation on age [x] is kept in the equations below, where this is based
on the assumption of being in the relevant initial state.

d
dt t

p11[x] = −tp11[x]

(
μ13
[x]+t + μ14

[x]+t

)
d
dt t

p13[x] = tp11[x] μ13
[x]+t − tp13[x]μ

34
[x]+t − tp13[x]μ

35
[x]+t

d
dt t

p14[x] = tp11[x] μ14
[x]+t + tp13[x]μ

34
[x]+t

d
dt t

p15[x] = tp13[x]μ
35
[x]+t

d
dt t

p22[x] = −tp22[x]

(
μ23
[x]+t + μ24

[x]+t

)
d
dt t

p23[x] = tp22[x] μ23
[x]+t − tp23[x]

(
μ34
[x]+t + μ35

[x]+t

)
d
dt t

p24[x] = tp22[x] μ24
[x]+t + tp23[x] μ34

[x]+t

d
dt t

p25[x] = tp23[x] μ35
[x]+t

d
dt t

p33[x] = −tp33[x]

(
μ34
[x]+t + μ35

[x]+t

)
d
dt t

p34[x] = tp33[x] μ34
[x]+t

d
dt t

p35[x] = tp33[x] μ35
[x]+t

The appropriate boundary conditions are 0p00x = 0p11[x] = 0p22[x] = 0p33[x] = 1; 0p01x = 0p02x = 0p03x =
0p04x = 0p05x = 0; 0p13[x] = 0p14[x] = 0p15[x] = 0; 0p23[x] = 0p24[x] = 0p25[x] = 0; and 0p34[x] = 0p35[x] = 0.
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C. Runge–Kutta method for breast cancer model in Fig. 2
Runge–Kutta methods estimate function values in a given small interval, and then use those val-
ues to obtain a better estimate of the function under inspection. A fourth-order Runge–Kutta
scheme is based on four recursive estimates of the increment in the function value per time step
(Macdonald et al., 2018).

We have a 6-state model in Fig. 2, and hence, in full, a 6× 6 matrix of occupancy probabilities
denoted by hp

ij
x ≡ yt as

yt =

⎡
⎢⎢⎢⎢⎢⎣

tp00x
tp01x
tp02x
...

tp55x

⎤
⎥⎥⎥⎥⎥⎦ ,

d
dt
yt =

⎡
⎢⎢⎢⎢⎢⎢⎣

d
dt tp

00
x

d
dt tp

01
x

d
dt tp

02
x

...
d
dt tp

55
x

⎤
⎥⎥⎥⎥⎥⎥⎦

= f (t, yt).

Now, suppose we would like to solve d
dt yt = f (t, yt), yt0 = y0. Then, we could write

ytn+1 = ytn + h
6

(
k1 + 2k2 + 2k3 + k4

)
,

for tn+1 = tn + h and
k1 = f (tn, ytn)

k2 = f
(
tn + h

2
, ytn + h

k1
2

)

k3 = f
(
tn + h

2
, ytn + h

k2
2

)

k4 = f
(
tn + h, ytn + hk3

)
.

Here, the four intermediate steps, denoted by k1, k2, k3, and k4, are also vector quantities such
that

k1 =

⎡
⎢⎢⎢⎢⎢⎣

k001
k011
k021
...

k551

⎤
⎥⎥⎥⎥⎥⎦ , k2 =

⎡
⎢⎢⎢⎢⎢⎣

k002
k012
k022
...

k552

⎤
⎥⎥⎥⎥⎥⎦ , k3 =

⎡
⎢⎢⎢⎢⎢⎣

k003
k013
k023
...

k553

⎤
⎥⎥⎥⎥⎥⎦ , k4 =

⎡
⎢⎢⎢⎢⎢⎣

k004
k014
k024
...

k554

⎤
⎥⎥⎥⎥⎥⎦ .

D. Computation of insurance premiums in the Semi-Markovmodel
We take the net single premium for the CII contract, without a death rider, described in (7), as an
example, that is

CI,2Āx =
∫ ∞

0
e−δt

tp00x μ01
x+tdt

+
∫ ∞

0
e−δu

up00x μ02
x+u

∫ ∞

0
e−δt

tp22[x+u]μ
23
[x+u]+tdt du.

The first component in the equation above is straightforward to carry out. That is why we focus
on the second component between time zero and nh which is∫ T=nh

u=0
e−δu

up00x μ02
x+u

∫ nh−u

t=0
e−δt

tp22[x+u]μ
23
[x+u]+tdt du,
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where we can simplify this expression by denoting the inner integral by g(x+ u, T − u) as∫ T=nh

u=0
e−δu

up00x μ02
x+u g(x+ u, T − u)du,

and we can approximately calculate this part of the premium by choosing each time step to be
equal to h, e.g., based on trapezoidal rule, as follows:∫ T=nh

u=0
e−δu

up00x μ02
x+u g(x+ u, T − u)du ≈ h

2

(
e−δ0

0p00x μ02
x g(x, nh)

+ 2e−δh
hp00x μ02

x+h g(x+ h, nh− h)

+ 2e−δ2h
2hp00x μ02

x+2h g(x+ 2h, nh− 2h)+ . . .

+ e−δnh
nhp00x μ02

x+nh g(x+ nh, nh− nh)

)
.

Here, the important thing to notice is that g(x+ u, T − u) shows different net single premiums to
be paid at the time of diagnosis for policyholders with unobserved BC at selected ages [x+ u].

E. Net single premiums for different insurance contracts under M2
Section 5.1 explains how to calculate the net single premiums for a special CII contract and a
couple life insurance contracts based onM0 andM1. This section further explains how to calculate
net single premiums for these contracts under M2.

The net single premium for the CII contract, formulated in (7), can be redefined under M2 as

CI,2Āx =
∫ ∞

0
e−δt

tp00x
(

μ01
x+t + μ04

x+t

)
dt (E1)

+
∫ ∞

0
e−δt

tp02x
(

μ23
x+t + μ24

x+t

)
dt.

The net single premiums for the life insurance contracts for a woman without BC, (9), and with
pre-metastatic BC, (11), can be redefined under M2, as well, where (E2) shows the premium for a
healthy woman at the time of purchase as

LI,2Āx =
∫ ∞

0
e−δt

tp00x μ04
x+t + tp01x μ14

x+t + tp02x μ24
x+t + tp03x

(
μ34
x+t + μ35

x+t
)
dt, (E2)

whereas (E3) shows the premium for a woman with a pre-metastatic BC diagnosis at the time of
purchase as

LI,4Āx =
∫ ∞

0
e−δt

tp11x μ14
x+tdt (E3)

+
∫ ∞

0
e−δt

tp13x
(

μ34
x+t + μ35

x+t

)
dt.

F. Deriving an expression for µ02x in the absence of cause of death data
All-cause mortality, denoted by μ̂x, can be estimated as follows:

μ̂x = Dx
E0x + E1x

,
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with Dx =D02
x +D12

x +D13
x based on M0. Let us accept that deaths from BC at age x, D13

x , are a
percentage (kx%) of all deaths, such that D13

x = kxDx. Thus,

D02
x +D12

x =Dx − kxDx.
Provided our assumption under M0 in Section 4.1, we can write

μ̂12
x = μ̂02

x ⇒ D12
x
E1x

= D02
x
E0x

⇒D12
x =D02

x
E1x
E0x

,

and

D02
x +D12

x =Dx − kxDx ⇒D02
x +D02

x
E1x
E0x

= (1− kx)Dx

D02
x
E0x

= (1− kx)
Dx

E0x + E1x
,

that leads to
μ̂02
x = (1− kx)μ̂x,

where rates of transition to death from other causes, μ̂02
x , are indirectly determined by using all-

cause mortality, μ̂x, and kx.

G. Different diagnosis and treatment considerations when i= 4%
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Figure G13. Net single premium rates for a specialized life insurance contract, (9), for policyholders without breast cancer at
the time of purchase, £1,000 benefit, payable at the time of death, based on the semi-Markov model M1 with i= 4%.
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Figure G14. Net single premium rates for a specialized CII contract, (7), for policyholders without breast cancer at the time
of purchase, £1,000 benefit, payable at the time of event, based on the semi-Markov model M1 with i= 4%.

H. Further findings in Section 5.3

(a) (b)

(c) (d)

(e) (f)

Figure H15. Net single premium rates for specialized critical illness, (6)–(7), and life insurance contracts, (8)–(11), and (12),
for policyholders with or without breast cancer at the time of purchase, £1,000 benefit, payable at the time of event, based
on M0–M2 in Table 1, when α = 0.4 and β = 1/7.
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(a) (b)

(c) (d)

(e) (f)

Figure H16. Net single premium rates of specialized critical illness, (6)–(7), and life insurance contracts, (8)–(11), and (12), for
policyholders with or without breast cancer at the time of purchase, £1,000 benefit, payable at the time of event, based on
M0–M2 in Table 1, when α = 0.8 and β = 1/7.

(a) (b)

Figure H17. Estimated k̂x values for a policyholder aged 30 years, with no breast cancer, at time zero, based on M1 and M2,
when α = 0.4 or α = 0.8 and β = 1/7.
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(a) (b)

(c) (d)

(e) (f)

Figure H18. Net single premium rates for specialized critical illness, (6)–(7), and life insurance contracts, (8)–(11), and (12),
for policyholders with or without breast cancer at the time of purchase, £1,000 benefit, payable at the time of event, based
on M0–M2 in Table 1, when α = 0.6 and β = 1/5.

(a) (b)

(c) (d)

(e) (f)

Figure H19. Net single premium rates for specialized critical illness, (6)–(7), and life insurance contracts, (8)–(11), and (12),
for policyholders with or without breast cancer at the time of purchase, £1,000 benefit, payable at the time of event, based
on M0–M2 in Table 1, when α = 0.6 and β = 1/10.
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(a) (b)

Figure H20. Estimated k̂x values for a policyholder aged 30 years, with no breast cancer, at time zero, based on M1 and M2,
when β = 1/5 or β = 1/10 and α = 0.6.

I. Further findings in Section 6
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Figure I21. Estimated net cancer survival for a woman diagnosed with breast cancer at different ages under M0.
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Figure I22. Estimated k̂x values based on M0 and M1, when α = 0.6 and β = 1/7.

(a) (b)

(c) (d)

(e) (f)

Figure I23. Net single premium rates for specialized critical illness, (6)–(7), and life insurance contracts, (8)–(11), and (12), for
policyholders with or without breast cancer at the time of purchase, £1,000 benefit, payable at the time of event, based on
M0–M2 in Table 1, when α = 0.6 and β = 1/7, andμ13x under M0 based on Table 3.
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