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1. Introduction and summary. There is a large body of literature on inverse
semigroups. This literature contains a considerable amount of information concerning
congruences on these semigroups, which is not surprising in view of the demonstrated fact
that congruences on inverse semigroups play a decisive role in most of the existing
structure theorems. In addition, for an inverse semigroup of known structure, finding its
congruence lattice, or even certain properties of this lattice, often gives information about
these semigroups not apparent in their structure theorems.

Congruences are naturally related to homomorphisms as well as to quotient semi-
groups. A natural offspring of such considerations is the idea of building inverse semi-
groups out of the “kernel” and the quotient, that is out of various kinds of extensions.
Besides the well-known ideal extensions, which are not specific to inverse semigroups, we
have introduced in [6] normal extensions. By definition, a full, self-conjugate inverse
subsemigroup K of an inverse semigroup S is a normal subsemigroup of S, and S is a
normal extension of K. In studying these extensions, we have arrived at the normal hull
®(K) of K which consists of isomorphisms among subsemigroups of K of the form eKe
where e is an idempotent. Normal subsemigroups arise naturally as kernels of
homomorphisms on S.

If we consider self-conjugate inverse subsemigroups K of S, we arrive at the concept
of a conjugate extension S of K. In this study, the analogue of the translational hull Q(K)
for ideal extensions and of the normal hull ®(K) for normal extensions is the conjugate
hull ¥(K) of K. In fact, ¥(K) consists of all isomorphisms among subsemigroups of K of
the form AKp where (A, p) is an idempotent of the translational hull of K. The conjugate
hull exhibits several properties analogous to those of (U(K) and ®(K) for appropriate
extensions. The purpose of this paper is to explore some of these properties.

The needed notation and terminology is collected in Section 2. The definition of the
conjugate hull and the proof that it is a subsemigroup of the symmetric inverse semigroup
takes up Section 3. This is followed in Section 4 by the introduction of conjugate
extensions, inner and principal parts of the conjugate hull, and the metacenter, and their
relationship is explored. Essential conjugate extensions are briefly considered in Section 5.
The relationship of the conjugate hull and the translational hull is discussed in Section 6.
An embedding of the conjugate hull of a semilattice of groups into its endomorphism
semigroup is effected in Section 7. The next, Section 8, contains a construction of the
conjugate hull of a Brandt semigroup. The paper is concluded in Section 9 with an
example.

2. Notation and terminology. We follow in general the standard notation and
terminology of Clifford and Preston [3] and Petrich [5]. We record, however, the
following notation most frequently used in the paper.
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For any semigroup S, {(S) denotes the translational hull of S, I1(S) the inner part of
Q(S), and 7w:a— m, =(A, p,) the canonical homomorphism of S into (S) (or onto
I1(S)). For any set X, $'(X) denotes the semigroup of all one-to-one partial transforma-
tions on X written on the right, da and ra the domain and range of a € $'(X), and ¢ the
identity mapping on X. For an inverse semigroup S, Es denotes the semilattice of all
idempotents of S, and Eg{ the centralizer of Eg in S.

It is useful to keep in mind that we write left translations on the left and right
translations on the right. Hence the notation ASp means {Asp | s € S} where the parenth-
eses in Asp are not needed when S is an inverse semigroup. The restriction of a function ¢
to a subset A of its domain is indicated by ¢ | A.

3. The conjugate hull. Recall that an inverse subsemigroup K of an inverse
semigroup S is self-conjugate if a 'Ka< K for all a€S. In this notation, each ac$
induces a function on K defined by k — a 'ka. This function generally fails to be
one-to-one. However, we will take a suitable restriction a of this function which is
one-to-one. The mapping a — a associates to each a € S a one-to-one partial transforma-
tion on K. We will define below the “conjugate hull” of K which makes it possible to

prove that a—a is actually a homomorphism. In order to do this, we need some
preparation.

3.1. Norarion. For any inverse semigroup S, let

Y S)={yecs (S) | dflsamsomorphlsmof)\Sp ontoA Sp’forsome (A, p),(A', p') € Eqs)}-

We will have occasion several times to use the following result due to Ault ([1]
Proposition 2.3).

3.2. LemmMma. In any inverse semigroup S,
Ae=ep (ecE;s, (A p)eEqs))
We will use this lemma without specific reference.

3.3. LemMA. Let S be an inverse semigroup. For any (A, p) € Eq,, define a function ¢
by

o:a—>Aap (ael). (1
Then o | Eg is a right translation and
ao = (aa Hoala 'a)oc (ael). (2)

Conversely, if o is a function on S such that o | Eg is a right translation on Eg and (2) holds,
then there exists a unique (A, p) € Eqs, such that (1) holds.

Proof. First let (A, p) € Eqs, and define o by (1). Then for any e, f€ Es,
(ef)a = A(ef)p = (Ae)(fp) = (ep)(fp) = e(Afp) = e(fo)
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5o that o | Es € P(Es). Further, for any a€S,

ao = Aap = AMA(aa™Yalp = A[(aa"YHpalp
=[X(aa"Ypl(ap) = (aa Yola(a " a)plp =(a 'a)oa[r(a " a)lp

=(aa Hoa(a *a)o,

as required. ;
Conversely, let o be a function with the properties enunciated in the statement of the
lemma. Define A and p by

Aa = (aa Yoa, ap=a(a 'a)o (aeh).
Then
(Aa)b = (aa Yoab =[(aa Yo (ab)(ab) *)(ab)
=[(ab)(ab) *(aa “)a}(ab) (since (aa Y)o € Ey)
=[(ab)(ab) *(aa™")]o(ab)
={(aa™")(ab)(ab) ']o(ab) = [(ab)(ab) ']o(ab) = A(ab),
symmetrically a(bp) = (ab)p,
a(Ab) = a[(bb™Yob]=al(a *a)(bb Ho]b
=a(a 'a)o(bb )b = (ap)b,
Aa=A(Aa)= A[(aa YHoa]= A(aa YHYola = (aa " Ho*(aa DNaa
=[(aa YoPa=(aa Yoa = Aaq,

symmetrically ap®= ap,
Aap =[(aa Yoalp = (aa Yo (ap) = (aa ")oa(a *a)o = ao,

which establishes all the assertions of the converse except for uniqueness. If Aep = A'ep’
for some (A, p), (A, p")€ Eqsy and all e E, then

Aa=Xaa Ha=[raa Hpla=[A'(aa Hp'la=A(aa " Ha=\a,

so A =A’, and symmetrically p=p'.

3.4. Lemma. Let o, o', T be functions on an inverse semigroup S satisfying the
conditions in Lemma 3.3. Let ¢ be an isomorphism of So onto So' and assume that
St < So. Define a function 7' by

x> xo'e e (x€8).
Then 1’ satisfies the conditions in Lemma 3.3 and St¢ = S7'.

Proof. First note that 7' is well-defined since So’'=r¢ and S7c So=de¢. For any
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e, f e Eg, we obtain
(ef)r' = (ef)a’ ¢ 1e = [(e0”)(fo") o T
=[(ed’e™)(fa' ¢ Ve =[(ed’ e ") (fo'¢ 7 1)]e
= (ec’)(fo' ¢ '1¢) = e(fo' ¢ 100’
= e(fo'¢ ™ '1¢) = e(fr'),

and hence 7’| Es € P(Es). Let (X', p’) correspond to o’ and (o, 8) to 7 as in Lemma 3.3.
Then for any x € S, we get

(x D' x(x ' x)r = [(xx oo e Ix[(x T x)o'e ]
=[(xx"Do'e ' relp'xA [(x ' x)o"¢ 1 7e]
=[(xx"No'e e )(xo)(x " x)0" ¢ 10 ]
={{(xx HYo'e ' r](xa' e H(x 'x)a'e T}
={a[(xx "o J(xa’ o N(x'x)o’ ¢ 1B}e
={{(xx"Ho'e  Wxa'o H(x x)a’¢ Tire
= {{(xx Mo lxaN(xx)o'Tre 1o
=x0'¢ 1 = x1'

and 7’ satisfies the conditions in Lemma 3.3. Further, for any x € St, we have
xp1 = (x@)0' @7 10 = Xp@ 7@ = XT0 = X
so that Stp < S7'. Conversely, if x € S/, then
xe lr=xt'o M r=xa'¢ o M r=x0'e it =(x0'o 1)t =x¢ !

which shows that S7' < St¢. Consequently St¢ = S7'.

3.5. Lemma. For any inverse semigroup S, Y(S) is a subsemigroup of $'(S).

Proof. Let ¢, € ¥(S) with
@ :ASp — A'Sp’, Y:aSB — o'SB’
in the obvious notation. Then d(¢y) = (r¢ Ndy)e . Here
roNdy=A'Sp' NaSB =\ aSBp’
since (A, p'), (o, B) € Eqs),- Hence d(g) = (A'aSBp’)¢ . Now letting
o:a—\Nap', o':a— Aap, T:a—>NaaBp' (ac?l),

and using ¢~ ', we deduce from Lemma 3.4 that d(¢ys)=St’ for some 7’ satisfying the

conditions in Lemma 3.3. Consequently Lemma 3.3 implies that d(¢y) is of the form &Sy
for some (& m) € Eqs,. Similarly r(ey) = (A'aSBp')¢ has such a form.
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We thus arrive at the following:

3.6. DerintTioN. For any inverse semigroup S, the subsemigroup W(S) of $'(S)
consisting of isomorphisms among subsemigroups of S of the form ASp with (A, p) € Eq,
is the conjugate hull of S.

In the case when the semigroup S is a semilattice X, W(S) coincides with Uy studied
by Reilly [8]. If an inverse semigroup S has an identity element, then every bitranslation
(A, p) is inner, and hence W(S) consists of isomorphisms among subsemigroups of S of the
form eSe with e € Eg; hence in this case W(S) coincides with ®(S) studied in [6]. If in
addition, S = E is a semilattice, ¥(S) coincides with Ty introduced by Munn [4].

Since the definition of ¥(S) is based upon the sets ASp with (A, p)e Eqs), these sets
deserve at least one more characterization. Recall that a nonempty subset B of a
semigroup S is bi-ideal of S if BsB < B for all s€ S. Let X be a partially ordered set. For
any x € X, the set [x]={ye X |y=x} is the principal ideal generated by x. A nonempty
subset I of X is an (order) ideal of X if x eI implies [x]< I; if, in addition, [x]NI is a
principal ideal for all x € X, then I is a p-ideal. We consider an inverse semigroup S as
partially ordered under s =t if s = et for some ¢ € Eg.

3.7. THEOREM. Let B be a subset of an inverse semigroup S. Then B = ASp for some
(A, p) € Eqys if and only if B is a bi-ideal and an order p-ideal of S with the property: be B
implies bb™*, b~ 'b € B.
Proof. Necessity. Let (A, p)€ Eqsy, B=ASp and let x, y, z€ S. Then
(Axp)y(Azp) = A[(xp)y(Az)]pe B
so that B is a bi-ideal of S. If y=<x and x € B, then y = ex for some e € Eg and thus
y = ex = e(Axp) = (ep)(xp) = (Ae)(xp) = A(ex)p = Ayp
and hence y € B. Consequently B is an order ideal of S. Further,
Axp = AL(xx " Dx(x7'x)]p = [ACex M Ix[(x " x)p]=x

since A(xx™Y), (x*x)pe Es so that [Axp]< B N[x]. Conversely, if ye B and y=<x, then
y = ex for some e € Eg, which implies that

y = Ayp = A(ex)p = (Ae)(xp) = (ep)(xp) = e(Axp) = Axp
so that BN[x]<[Axp]. Hence B is a p-ideal of S. If x € B, then x =Ax = xp and thus
xxt=(Ax)x" = AGxx ) =(xxYp

so that xx~ '€ B. By symmetry, also x 'x & B.
Sufficiency. Let B have the requisite properties. We define a function o by the
requirement

[xc]=BN[x] (xe8).
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If e € Eg, then [e]= Ege < Eg and thus eo € Eg. For e, f € Eg, we obtain
[e(fo)]=[ellfo]=[e]l(BN[f]) =[e]B N[ef], (1
[(ef)o]= B N[ef].
Now let ge[e]B so that g =1tb for some t=<e and be B. Hence
g=th=(bb \)tb=b(b"*t)be BSB<B,

which proves that [e]B < B. Conversely, let ge BN{ef]. Then g=egec[e]B so that
B N[e]<[e]B. Relations (1) and (2) now yield o | Eg € P(Es).
Let y=(xx "ox(x 'x)o. Using aEg = Ega for any a € S, we obtain
y e (xx HNox(x " x)oEg = [(xx YoEg Ix[(x x)oEs]
= (xx"'Eg N B)x(x 'xEs N B)
which implies ye BSB< B and y e EgxEg = xEg. It follows that ye[x]NB =[xo] and
hence y =xo. We have proved that (xx™ )ox(x"*x)o =x0.

In order to prove the opposite inclusion, we first let ye[xx ]x[x 'x]N B. Then
y = uxv where u=exx™ "' and v =x"'xf for some e, f€ E,. Hence y = exf and

yy '=(exfiexf) ' =exfx leec[xx']NB,
y 'y = (exf)"'(exf) = fx 'exfe[x 'x]NB,
(exfx re)x(fx texf) = exf(x 'x)(x tex)f = exf=y,
which shows that y e ([xx~']N B)x([x*x]N B). Using this, we obtain
[xa]=[x]INB=[(xx")x(x"'x)]NB
=[xx""Ix[x x]NB < ({xx 1N B)x([x"'x]N B)
=[Cex Do lx[(x'x)o] =[(xx"")ox(x"'x)o]

which implies xo < (xx™ Y)ox(x"'x)o.
We have proved that the conditions in Lemma 3.3 are satisfied, which gives that
B= )\Sp for some (/\, p)EEQ(s).

\

—_—

4. Conjugate extensions. We introduce here a number of new concepts and study
their relationship.

4.1. DerINITION. An inverse semigroup S is a conjugate extension of an inverse
semigroup K if K is a self-conjugate subsemigroup of S.

The relationship between a conjugate extension and the conjugate hull is provided by
the following result.

4.2. THEOREM. Let an inverse semigroup S be a conjugate extension of an inverse
semigroup K. Define a function 6 = 6(S: K) by

0:a—> 0% (ael)
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where 8¢ is defined by
‘ 0%°:k—>a‘ka (keaKa™).

Then 8 is a homomorphism of S into WV (S).

Proof. Let a e S. Define a function o by

o:k—aakaa™! (keK).
It follows immediately that ¢ satisfies the conditions in Lemma 3.3 and Ko = aKa™'. Now
a*(aKa™Y)a = a 'Ka also has the property that Ko’ = a 'Ka for some ¢’ satisfying the
conditions in Lemma 3.3. Let x,ycaKa™' and assume that a 'xa=a '‘ya. Then
aa"'xaa'=aa 'yaa™?, which yields x =y, since x, y € aKa™'. Further,
(x0%)(y0*) = (a *xa)(a *ya)=a *x(aa ")ya = a *xya = (xy)6*

since x = x(aa™"). Consequently 6° € ¥(K).

Now let a, be S. Then

d(0°6°) = (r6° Nd6®)(6*) *=a(a ‘KaNbKb Ha*
=aa *Kaa *NabKb 'a = (ab)K(ab) ' =d9*
and for any x € d9*®, we have
x6%0° = (a 'xa)8® = b~ (a"'xa)b = (ab) 'x(ab) = x6°°.
Consequently 6°0° = 0*® and 6 is a homomorphism.

The notation 6(S:K) introduced in the above theorem will be used throughout the
remainder of this paper. Recall that for a congruence p on an inverse semigroup S, the
kernel of p is defined as

kerp={aeS|ape for some ec Eg}.
Let the kernel of a homomorphism of S mean the kernel of the induced congruence. For
9=0(S:S), we have introduced in [6] the notation:

O(S)=1{6%|ae S}, M(S)=ker 0.
Call O(S) the inner part of ¥(S) and M(S) the metacenter of S. It follows from ([6],
Proposition 1) that

M(S)={aeS|aa*xa=axa 'a for all x € S}.

By the same reference, we have that 6 is idempotent separating so that M(S)= Eg if and

only if 8 is one-to-one (and thus an isomorphism of S onto ©(S)). After some prepara-
tion, we will prove that ¥(S) is a conjugate extension of O(S).

4.3. LemMA. Let S be an inverse semigroup, a€S and (A, p)€ Eqs,. Then Aa™'p=
(Aap)~*.
Proof. Indeed, it was proved in [7] that (Aa)"*=a " *p~! and (ap) ! = A"'a~! whence
(Aap)t=(ap)lp'=A"tatp T =rap.
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4.4. LemMA. Let S be an inverse semigroup, acS and yeW(S) with dy=ASp
(A, P)G E_Q(s)). Then ¢p_10“¢ = grae)y

Proof. For x ed(y %)), we obtain

x(Aap)yl(Aap)y]™" = [(xy ™) (Aap)(Aap) ' Tus
=[(x¢'p)(ap)(rap) T
=[x~ ) (ap)(Aap) 'l (since x¢y~' € AKp)
=[(x¢"Yap)(Aa 'p)}¢y (by Lemma 4.3)
=[(x¢a(da'p)]¥ (since (A, p)€ Eqs))
={ala ' (x¢ alp(a "p)}¢ (since x¢p~'caSa™")
=[aa Y(x¢ HNa(a 'p)ly (since a '(x¢ Y)a e ASp)
=[x Y aa Yply (since xYy ‘e aSa~?)
={{(x¢"Yaa p}¢
=(x¢ Ny =xp My =1x,

and an analogous argument shows that (Aap)y[(Aap)¥] 'x = x. Consequently x € dg***,
Conversely, let x €d§**®" so that

x = (Aap)Y[(Aap)y] 'x(Aap)[(Aap)y]~'.

Since (Aap)y ery, it follows that x ery. Further,

x¢p ' = (Aap)(Aap) ' (x¢~ ") =[A(aa"M)](ap)(Aap) "(xyp~)
= (aa Yp(ap)(Aap) ' (x¢™") = aa " (Aap)(Aap) (x¢™ ") = aa (xpY),

and symmetrically x¢~ ' = (x¢y "aa™', so that x¢y '€ aKa™"'. Finally,

Ala ' (x¢y M al=(Aa"")(Aap)(Aap)taa " (xp ™ N)a
= Ala"'(Aap)(Aap) ala (x4 Va
= a"'(Aap)(Aap) N(ap)a~'(x¢ Va
=a '[(Aap)(Aa~'p)(Aap)la '(x¢y ")a (by Lemma 4.3)
=a YAap)a '(x¢ Ya, (by Lemma 4.3)
= a"'(Aap)Aa " H[A(x¢™)]a
=a '(Aap)Aa'p)(xy Va
=a '[(Aap)(Aap)'(x¢"]a (by Lemma 4.3)
=a ' (xp a,

and symmetrically [a "(x¢ Dalp=a xy Ya, so that x cd(y16%).
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We have proved that d(y %) =d6***, For any x in this set, we get
x(10%) =[a " (xp Haly = {Ma A Nplate}y
=[(Aa" p)(xyp™ ) (Aap) ]y = [(Aap) ™' (xp ") (Aap) I
=[(Aap)¥] " x[(Aap)¥] = x6*,
which completes the proof.
4.5. CoroLLARY. For any inverse semigroup S, V(S) is a conjugate extension of @(S).

We have introduced in [6] the following concepts. A self-conjugate, full (i.e. Eq < K)
inverse subsemigroup K of an inverse semigroup S is a normal subsemigroup of S, and S is
a normal extension of K. The subsemigroup

®(S) ={y € ¥(S) | dy = eSe, ry = fSf for some e, f e Eg}
of W(S) is the normal hull of S. It seems natural to call ®(S) the principal part of V(S).
Note that ©(S) = ®(S) and that ¢ e ¥(S) and diy = eSe for e € Eg implies € (S).

4.6. DeFINITION, Let an inverse semigroup S be a conjugate extension of an inverse
semigroup K. The greatest inverse subsemigroup of S containing K as a full subsemigroup
is the full closure of K in S.

It is easy to verify that if Ex is an ideal of Eg, the full closure of K in S is the inverse
semigroup
{seS|ss™!, s 'seK}.
Note that this is also the greatest normal extension of K in S.
4.7. PropOSITION. Let S be an inverse semigroup. Then ®(S) is the full closure of O(S)
in WU(S), and is self-conjugate in V(S).

Proof. Let ¢ € E4sy With dp =r¢ = eSe where e € Es. Then ¢ = ¢, = 6° which shows
that @(S) is full in ®(S). Conversely, let y € ¥(S) be such that Yoy ' = 9° and ¢ "¢ = 6f
for some e, f € Eq. Then

Ay = d(np ') = d6° = eSe
and thus € (S). Hence ®(S) is the full closure of B(S) in ¥(S).

Let yeW¥(S), ¢ c®(S), dy=ASp where (A, p)€ Eqs), de =eSe, ro =fSf where
e,f e Es. We know by Theorem 3.7 that ASp is a p-ideal. Thus € and f can be defined by
the requirements

[e]=[e]lNASp,  [fl=[f1NASp.
Then & € ASp and hence also &( fo 1) e ASp since ASp is an order ideal. We will show that,
for g=[e(fo )14,
A ey) =g] (1)

which suffices to prove the second part of the proposition.
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First let xed(y '@¢). Then xery, xy ‘edey and x¢p ‘¢ edy. Hence xy'e
[e]N ASp =[€] so that x:[/‘1<é Further, xtlf”l(p e[flNASp = [f] which implies xy~ lo<f-
and hence x¢ 1=fo! . Consequently xi~ 1< &(fe~1) which yields x<[e(f<p Y=g

Conversely, gy =é(fo~ 1)<ee)\Sp so gy ledy; also gy '=fo lede; finally
xy ‘¢ =< f which implies that xy ' edy. It follows that ged(¢ o), which establishes
(1).

S. Essential conjugate extensions. We adapt first a universal-algebraic concept to
the present situation as follows. /

5.1. DerFmNtTION. Let S be a conjugate extension of an inverse semigroup K. Then §
is an essential conjugate extension of K if the only congruence on S whose restriction to K
is the equality relation on K is the equality relation on S. Essential conjugate extensions
of K are partially ordered by inclusion.

Note that essential conjugate extensions correspond to essential normal extensions
defined in [6] and to dense extensions for ideal extensions, see e.g. [5]. We start with a
simple result.

5.2. ProrosITioN. Let S be a conjugate extension of an inverse semigroup K. Then
0(S:K) is one-to-one if and only if the metacenter of K is idempotent and S is an essential
conjugate extension of K.

Proof. The argument here is identical to that in [6, Proposition 2].
We now come to one of the cardinal properties of the conjugate hull.

5.3. TueEOREM. Let S be an inverse semigroup with idempotent metacenter. Then ¥(S)
is a maximal essential conjugate extension of O(S). Every inverse subsemigroup of V(S)
containing O(S) is an essential conjugate extension of ©(S). Every essential conjugate
extension of S is isomorphic to a subsemigroup of W(S) containing O(S).

Proof. The argument here goes along the same lines as in the proof of the corres-
ponding statement for normal extensions in [6, Théoréme 1], with slight modifications
which are left to the reader.

As we just mentioned the corresponding result is valid for normal extensions using
®(S) instead of ¥(S) under the same hypothesis that the metacenter of S be idempotent.
The same type of result is valid for dense (ideal) extensions with (S) taking the place of
W(S) under the hypothesis that S be weakly reductive. See [S]. Inspired by this latter
example, and the corresponding case in groups and their automorphisms, we propose the
following:

5.4. ConsecTURE. If an inverse semigroup S has a maximal essential conjugate exten-
sion, then S has idempotent metacenter.
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6. Relationship to the translational hull. Not only is the very definition of the
conjugate hull based on the idempotents of the translational hull, but, as we will see in
this section, there are many interesting relations between these two hulls. It seems useful
to introduce the following concepts.

6.1. Dernrtion. For any inverse semigroup S, the elements of

(i) W(S) are local automorphisms of S,
(ii) D(S) are principal local automorphisms of S,
(iii) O(S) are inner local automorphisms of S.

Furthermore, if K is an inverse subsemigroup of S, and ¢ €W (S), then K is invariant
under ¢ if (dy NK)y < K.

It is easy to verify that an inverse subsemigroup K of S is invariant under all inner
local automorphisms if and only if it is self-conjugate in S. Letting S be an inverse
semigroup with the semilattice of idempotents E, we recall the following notation:

E{={scS|se=es for all ec E},
E{l={seS|sx=xs for all xe E{},

Ew={seS|se=e for some ecE}.

Recall also that a congruence p on S is idempotent separating if e p f with e, f € E implies
e =f. Observe that E{ is the centralizer of idempotents and E{ = ker p, where p = pg is the
greatest idempotent separating congruence on S, Further, E{{ is the second centralizer of
idempotents of S. Finally, Ew = ker o, where o = oy is the least group congruence on S.
Note that

EcM(S)c E{ =Z(E{) < EL,

where Z(T) is the center of any semigroup T.

6.2. ProrosrTioN. For any inverse semigroup S with the semilattice E of idempotents,
E, M(S), E¢¢, E¢ and Ew are invariant under all local automorphisms.

Proof. Let e W(S) with ¢ : ASp— aSB where (A, p), (o, B)€ Eqs)- The assertion is
trivial for E. Let ae M(S)NASp and se S. Then

(ayp)(ag) " s(ag) = (a)[(a™ ¢)BIs[a(ap)] = (ay)(a~"¢) (asB)(ay)
=[aa " asB)y taly =[a(asB)dy "a  aly
= (ay)(asB)(a™ ) (ap) = [(ap) Bls[a(ay)  N(ay)
= (ay)s(ay)  (ap)

which shows that ayre M(S).

2.
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Next let a € E{ N ASp. Then for any e € E, we get

(ap)e = [(ap)Ble = (av)(ae) = [a(ae)y™ "}y =[(ae)y™ alds
= (ae)(ay) = (eB)(a) = e[a(ay)]= e(u),

so that ay € EL

Now let aeE{{NASp. Then for any xeE{, it follows from [5, V. 6.4] that
ax = axP = xf since E{ is a semilattice of groups. Using this, the same argument which
gave (ay)e = e(ay) now yields (af)x = x(ay). Consequently ayre E{L.

Finally, let a € Ew N ASp. Then ae = e for some e € E and thus

(Ae)y =[A(ae) Iy =[(Aap)elr = [a(re)]y = (ap)(Ae)y

where (Ae)y € E. Hence ay e Ew.

The next lemma makes it possible to single out a particular subsemigroup of ¥(S)
using the elements of (S).

6.3. LeMMmA. Let S be an inverse semigroup. For any (A, p) € Q(S), define a function
Soe by

Sy :X—=>ATxp if xed,,,=ASp~h

Then 6()\,0) € ‘I’(S).

Proof. First note that
a5, =ASp~'=AA""Spp™!
with (ALY, pp™') € Eys; analogously 8, ,,= A 'ASp™'p with (A™'A, p~'p)€ Eqs). For
any x, y €dd,, ,y, we obtain
(X800 (¥80,0)) = (A" xp)(A " yp) = A~ (xpp ™ )(yp)
=A"Yxy)p= (xy)8(x.0)-
This shows that &, ,, is a homomorphism; it is clear that 8, ,, is one-to-one and maps
ASp™* onto A7'Sp. Consequently 8, € ¥(S).
6.4. NotaTioN. For any semigroup S, let
Q(S) = {800 | (A,p) e US)}.

It is easy to verify that 8:(A, p) — 8, , is actually a homomorphism of ((S) onto
Q'(S) so that the latter is actually an inverse subsemigroup of ¥(S). However, this will
follow easily from the next result. Also note that for any s€ S, 8, = 6° where 6 =6(S:S).
Recall that 7:S — Q(S) is defined by m:s — m, = (A, p,) With Ax = sx, xp, =xs for all
xeSs.

6.5. TueoreM. Let K be an inverse subsemigroup of an inverse semigroup S. Then K is
invariant under all  in (V'(S) if and only if Kn is self-conjugate in Q(S). If this is the case,
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then the diagram

8(Q(S):Km)

US) ————— V(Km)

6(S:K)

S§—————— > ¥(K)

is commutative, where v is the isomorphism of W(K) onto W(Kmr) induced by 7 | K. If K is
also full in S, then both 6(S:K) and 0(US): Km) are idempotent separating.

Proof. For any (A, p) € Q(S), we obtain
@8 NK)Spy=A"'(ASp ' NK)p=A"'Kpc K
& (A, p) (Km)(A, p) = K,

which proves the first assertion.
Note that for any s € ¥(S),

d(yv) = (dy), gvis—sTim it sed(y).
Assume that K is self-conjugate in (S). Let 6,=6(K:S) and 6, = 6((S): Kw). Then

for any a € S, we get

ar e, .
a—> 7, —> 034,

9 a__ V¥ a
a—> 87— 01y,

where

407 = 7 (Km)w," = (aKa ) w = d(63v),

and for any k € aKa™,

w o . —1 . — —_ a
W03 = W, MM, = W10 = Moo = kéiv,

which establishes the commutativity of the above diagram.

Now suppose that K is full in S. First let e, fe Eg be such that 0c=6Y. Then
eKe = fKf which implies that e = ef since e € Eg c K, and analogously f = fe, so that e =f.
Consequently 8, = 6(S: K) is idempotent separating.

Next let (A, p),(a, B)€ Eqis, be such that 652 = 6%, Hence (A, p)(Km)(A, p)=
(o, B)(Kmr)(a, B) so that AKp = aKB. For ¢ € Eg, there exists k € K such that Aep = akB. It
follows that Ae = ake, and since this holds for an arbitrary idempotent of S, we obtain
A =aA. By symmetry, @ = Aa and hence A =, and by symmetry p = 8. Hence (A, p)=
(a, B) and 6, = 0(Q)(S): K=) is idempotent separating.

6.6. THEOREM. For any inverse semigroup S, the function

8:(Ap)—=8u, (A p)eXS))
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is an idempotent separating homomorphism of QU(S) onto '(S) with the kernel M(XS)).

Proof. All assertions except the last one follow from Theorem 6.5 by observing that
8=0(QS):TI(S)v .
Let w =(A, p)€Q(S). Then
weker8&5,=35, for some &={(a,B)eEqg,
S ASpt=eSe and A l'ap=a if aeceSe
& a=A\"tapp”" implies A"'ap=a. 1)
Assume that the (equivalent) conditions in (1) hold. Since & is idempotent separating, we
have ker 8 € Eq )¢ which implies that we '=w '@ since Eqgg){ is a semilattice of

groups. Hence for any a €S, first b=AA"'app™! has the property b= A\ "'bpp~' so that
A" 'bp = b, It follows that

ATY AN tapp )p=AA"rapp™!
which implies that A~ ap = AA"app~'. Consequently,
AA"a)p=A%A""app ' = A" hap o = A(ap ™ Hp.

In. Q(S), this can be written as wo™ ‘7,0 = om0 ' for all aeS. Now let 7€ (S) and
a<8S. Then

(wo ™ ltw)T, = wo 1o 0)m, 7, = oo e, 1w o,
= (00 T paa-te-1®) T, = (OT ppa-10-10 @),
= wT(WTaa 10 ') 7, = wr(we ', ,10)0™ T,
= wTew Y7, w0 )T, = otee T, = (0T0 " 'w)T,

which implies that (ww '7rw)a = (wrew '®)a, and analogously a(ww™ ‘tw)= a(wre ).
This means that ww 'rw = wtw e so that w e M(Q(S)).

Conversely, let w € M()(S)). Then for any a€ S, we have A(A"'a)p=A(ap™")p and
0o =0 ' since M(Q(S)) < Eqs)¢ For any a€S such that a=A\A""app™", we get

Alap=A"A(Ata)p]l=A"{A(ap Dp]l=Ar"tapp ' =aq,
which in view of (1) yields w € ker 8.

6.7. CoroLLARY. For any inverse semigroup S, 6(Q(S):Q(S)) and 0((S):II(S)) in-
duce the same congruence on Q(S). Moreover, M(£(S)) NIL(S) = MIL(S)).

" Proof. The first statement follows from the theorem since

ker 8(Q(S) : Q(S)) = M(EX(S)) (by definition)
ker 8(Q(S):TI(S))=ker & (since v is an isomorphism),

so the two homomorphisms have the same kernel. Since they are both idempotent
separating, the induced congruences must coincide.
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For any a €S, we obtain
7, € M(Q(S)) & m, 7, o, = Twm, T, for all  we US)
S ala pla=araNa for all (A, p)eQ(S)
& aa 'sa=asa'a forall seS
& ae M(S).
If a e M(S), then a e Eg{ so that aa™*= a 'a, which for any (A, p) € Q(S) gives

a(a 'p)a=aa [a(a p)al=aa [a(la YHa]l=a(ra Ha.
In view of the above, this establishes the equivalence
m, € M(Q(S)) & a e M(S)

which proves the last assertion of the corollary.

6.8. CoroLLARY. For any inverse semigroup S, M(S)= Eg if and only if M((KS))=
Proof. If M(S)=Es, then M(II(S})) = Eps, which by the theorem and the above
corollary implies that & | TI(S) is one-to-one. Since ()(S) is a dense extension of T1(S) (see

[5, ITL. 5]), & must be one-to-one, so M(£X(S)) = Eqs,- The converse follows directly from
the above corollary.

The next result essentially coincides with [8, Theorem 4.4]; we provide here a
different setting for it as well as a different proof.

6.9. Tueorem. For any inverse semigroup S, ¢ = 0(Q(S): Epys))v ™" is a homomorphism
of (US) into Y(Eg) which induces the greatest idempotent separating congruence on {I(S).

Proof. Theorem 6.5 gives that ¢ is an idempotent separating homomorphism of )(S)
into W(Es). Let w=(A, p)e Egi)¢ Then we=sw for all ee Egg, and, in particular,
om, = 7w for all e € Eg. The latter is equivalent to Ae = ep for all e € Eg. It follows that for
any e € Eg, -

Ale=(ep) t=(re) t=ep .
Now £:w— &, where d£, = AEp™" and
£, :e—>\lep (ecAEp™).

Using what we just proved, we get d¢, =AA"'E and £, :e —> AL ""e if e € AA"*Eg, which
evidently implies that £, is the identity mapping on its domain. Hence £, € Eq,s, which
yields that Eq,{ < ker & Since £ is idempotent separating and Eqs,( is the kernel of the
greatest idempotent separating congruence on {(S), we must have Eq,{ = ker &

It follows from Theorem 6.5 that w¢:S — W(Eg) is the usual representation of S
by its idempotents.
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6.10. ProposrTioN. With the notation of Theorem 6.9, we have II(S) = ®(Eg)¢ .

Proof. For any a€S, we get d¢, =aEsa™' and r(, =a 'Ea which shows that
£, e D(Es). Conversely, let w=(A, p)eQ(S) be such that &,e®(Eg). Then dE, =
AEgp~'=eEg and r£, = A 'Egp = fE; for some e, fe Eg. In particular, A *ep = f whence

ep=epp 'p=A(A"lep)=Af=a.
For any x € S, we obtain

xp=x[(x"*x)pp™Jp = x[AA " (x"'x)]p
= (xp)[A 1 (x 7 x)plf = x[AA T (x " x)]of
= x[(x"'x)pp~"1of = (xp)f = x(Af) = xa

and analogously Ax = ax, which gives © = =, € II(S).

6.11. ProrosriTiON. For any inverse semigroup S,
D(S)NQ'(S) = 6(S).

Proof. Let w = (A, p)e(S) be such that §,6e®(S). Then d8,=ASp~'=eSe and
ré, = A" 'Se = fSf for some e, fe Eg. Letting a = ep, we obtain

1_

aa™' = (ep)(ep) ' = (ep)(A'e)=(epp e =epp ' =,
a'a=(ep) (ep)=(A""e)(ep)=A""ep=Tf
since e € ASp~! implies e = epp™*; and for x € eSe,
x8, =A"'xp=A"Yexe)p=(A"te)x(ep) = (ep) 'x(ep)=a 'ea.

Consequently §, = 8° € ©(S). This proves that ®(S) N Q'(S) < B(S); the opposite inclusion
is obvious.

7. The conjugate hull of a semilattice of groups. The only result here is that the
conjugate hull of a semilattice of groups is embeddable into the endomorphism semigroup
of the latter. We have introduced the full closure for inverse semigroups in Definition 4.6;
we now extend this concept as follows.

7.1. DerFINITION. Let A be a subsemigroup of a semigroup S. If there exists a
subsemigroup B of S containing A such that E; = E, and B is the greatest subsemigroup of §
with this property, then B is the full closure of A in S.

It is well-known that a semigroup S which is a semilattice of groups can be given by a
system of homomorphisms among these groups, and we use the notation S=[Y; G,, ¢.gl.
See e.g. [S]. We denote by &(S), P(S), A(S) the semigroups of all endomorphisms, all right
translations, and all inner right translations of any semigroup S. For a semilattice Y, we
write [a]={B € Y|B=a} for any @ € Y, and call an ideal I of Y a retract ideal if I N[a]is
a principal ideal of Y for all a € Y. Denote by Ry the set of all retract ideals of Y under
intersection. For these concepts, consult [§, V.6].
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7.2. THEOREM. Let S=[Y; G, ¢, ] be a semilattice of groups. Define a function x by
X:¢—=>pp (Ye¥(S))

where dr = ASp, (A, p)€ Eqs). Then x is an isomorphism of W(S) into €(S) such that
V(S)x is the full closure of Ep,, ®(S)x is the full closure of Eys,, and

X:0%—>p,.10% (ae8).
Proof. Let ¢y ¥(S) and (A, p) € Eqs, be such that dyy = ASp. It follows from [5, V.6]
that for some retract ideal I of Y,
Xp=X@,s if xe€G,, [al=1IN[a].
For any x € G,, y € Gz, we obtain
(xp)(yp) = (X005 )(YPs,5) = (X0 0 26) (VP apap)
= [(%¢ 0,06)(Y95.00) 10 apas = (XY)Pupzs
=(xy)p

so that p € &(S). It is now clear that pyr € E(S).

Also let ' € ¥(S) with d¢’ = A'Sp’, (A, p'ye Eqs), and let I’ be the retract ideal of Y
associated with p’ as above. Let J and J' be the retract ideals of Y associated with ry and
ry’, respectively, and let

[@]=TN[a] (acY).
The functions p, ¢, p’, ¢’ induce on Y the following functions:
pia—a, piia—a,
Y:a—>B if ap=b with aeG,beGg,

and ¢, is defined analogously. It is clear that p,, p} € P(Y) and ¢, ¢, € ¥(Y), etc. For any
a, BeY, we obtain

B=oapp 1S Bel, BYT < ap.ip)
& Bel, BY = ap., By el
& pel, By W =ap,, By el
& Bel, B ) '=a, By el By el
© By ' =amy, Bel, Byitel, Bnhyy) el
& B=anih )

where d(nf') = oS7, (0, 7)€ Eq(sy and 7 induces 7, as above. It follows that p,yp" Y] =
. Let K= Yr,.

We return now to S. Since ¢ is an isomorphism of [I; G,, ¢, ] onto [J; G,, ¢.gl,
according to [2] there exists a system of isomorphisms

wa,culu: Ga d chlll
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such that
, AP = A0 o oy, if a€G,a€l
and all the diagrams

©o o0l

Gmlu

‘Fa‘ﬂl l(?mlq.&bq

Gp s Gy,
are commutative for a =B, acl The same type of statement is valid for ¢' with
isomorphisms |

a,onf*

Let acY. Since K<, we get ar,<ap,. We have seen above that ar ¢, ;=
ap 1 p1P; but ar Yt = arfp 1Yy and thus ar, g piY) = ap, P pid). This implies that
ar11py = apPp). We have the following scheme of mappings.

[+

ap———>ap i,

AT —> AT llll

l

at iy = ap i piYy < aTidypi = apdpl
Now substituting G, for each element B8 in this diagram, and using the properties of w4
and w/ g, we get for any a€ G,,
APYUP" Y = AP o 0, P ap,,cp;un P apitn.ap et @ apdnp ap1bpiw]
= a‘Pa,apl‘Papl,unwa-rl,u'ruln‘\oa'ruln,a-rlthpiw'an-lnpi.an-lnw{
= a¢u‘a’l'lwa'fl,a‘rﬂ!’lwé"']'bha'rl"’l‘l’l'
= aminlf

since at,Y, € I', so that ary, = ar,;p. We have proved that x is a homomorphism.
With the same notation, assume that pyy = p'yy’. Let a € I. Then ap’ = ap;p} = (ap})p,
since the idempotents of (}(S) commute, and hence ap; €I It follows that

api it = (apy) i ¥7 ' = (ap)(py )Y "
(ap'l)(P'ﬂ!/i)'!/Il = a(Pl ll’1)l!/;1 o)1=

and hence ael'. Consequently I<I' and by symmetry also I'c I Now the equation
py=p'Y yields ¢=4¢'. Hence y is one-to-one.

Clearly idempotents of W(S)x coincide with the right translations of S. Let C be an
inverse subsemigroup of €(S) with the set of idempotents Epe,, and let £e€ C. Then
aa”'=p and a 'a=p’ for some p, p'€ Epes,. Let ¢y =£| Sp. If x, y € Sp and x¢p = yy, then

r
ap;

]
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xé=y¢ so
x=xp=x¢ =y =yp=y

and ¢ is one-to-one. Further, dys=Sp and rf = S¢ = Sp’ which shows that ¢ e ¥(S).
Finally pys = £ which proves that £ € ¥(S)x. Consequently C = ¥(S)x which establishes the
maximality of ¥(S)x.

Substituting p, and p; for p and p’, respectively, in this argument shows that ®(S)y is
the full closure of E,,. The last assertion of the theorem is trivial.

§irj ajev [9] made the elements of an inverse semigroup S act on the entire semilattice
Es by: e > aea™’, and on ‘the basis of this developed a theory of fundamental inverse
semigroups. He also established the existence of the full closure of E,, in €(S). The link
with the usual treatment of fundamental inverse semigroups through Ty =®(ES) is
provided by the preceding theorem applied to E.

8. The conjugate hull of a Brandt éemigroup. We construct below a semigroup T
and a homomorphism of T onto the conjugate hull of a Brandt semigroup and characterize
the induced congruence.

8.1. NotaTion. For a nonempty set I and a group G, denote by G’ the set of all
functions mapping the subsets of I (including the empty subset) into G with the
multiplication ¢ . ¢ where

ile. ¥)=C(ip)(iy) forall ied(e.y)=deNdy.

Denote by #(G) the group of automorphisms of a group G and, for g€ G, let ¢, denote
the inner automorphism x+> g 'xg (xe G) of G.

8.2. THEOREM. Let S=M°(I, G, I;A) be a Brandt semigroup. Then
T={¢ w,n)eS'(DXA(G)X G |dt=dn}U0
with the multiplication: 0 acts as the zero and
(& o, )¢, o', )= (£, vw', no' . &)
is a semigroup. Define a function x on T by

X: (g’ , n) _>'[§’-w7 ’fl]
where

(¢ 0, n]={(, & )eS|i jed&u0
[£ o, m]:(, g §) = (&, (in) ' (gw)(in), j&), 0—0. (1)
Then x is a homomorphism of T onto VY(S) and
[&o,n]=[¢, 0, n]@i=E#0, w=o's, in=c'(n)
if icd¢ forsome ceG,or £=¢&=0. (2)

Proof. The associativity of the multiplication in T follows by a straightforward
verification and is omitted.
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Let (¢, w, n)e T. Define mappings A and p on S by

T (i,gj) if ijed¢
A, g =0, g,l)p={ &1 . I
0 otherwise

(3)

and A0 =0p = 0. It follows directly from [5, V.5] that (A, p) € Eqs, and clearly d[£, w, n]=
ASp. Similarly, using r& we can define (X', p’) € Eqs, such that (£, w, n]=A'Sp’. A simple
verification shows that [€ w, ] is an isomorphism of ASp onto A’Sp’. Consequently
[€ w, n]e¥(S).
Let (§ w,n), (£, o', n)eT. It i, jed(&f'), then
(i, & DI& o, mIE, o', n']= (i (in) " (gw)(jn), JONE', 0, ']
= (ig€', (ifn") Ninw') ' (gow')(jnw")(jén'), jE€)
= (ig¢, [(inw')(ién" )] (gwo M (inew")(€n "], j€¢)
=(i, g NIEE, wo', nw'. '],
and if i, jed(¢£') does not hold, then

(i, & NI& o, n][€, o', n']1=0=(, g NI&E', wo', nw'. &n'].
Consequently x is a homomorphism.

Now let e ¥(S) with dyy = ASp, ry = A'Sp’ where (A, p), (X', p )€ Q(S). It follows
from [5, V.5] that A and p are of the form (3) with d£ substituted by some subset A of I
and analogously for A’ and p’. In view of [3, Theorem 3.11], specialized to Brandt
semigroups, we deduce that iy can be represented as in (1) for appropriate & «» and 7. It
follows that ¢ =[¢, w, ] which proves that y maps T onto ¥(S).

Let (¢, w, 1), (£, w',n')e T where £¢#0 and & # (. Then

[& w,n]=[¢, o', 7]
& (G, g NE w,n]=0, g DE, o', n'] iti jedé=d¢
& ¢=¢ and (in) '(gw)(in)=(in")""(gw')(m") it i jedE
Let this be the case. Then letting g be the identity of G, we get (in)~*(jn) = (in")~*(jn"
which implies that (in")(in)"* = (jn’)(jn)~". In the last equation, the left hand side depends

only upon i and the right hand side only upon j, so both are equal to a constant ¢ in G. It
follows that

go = (in)(in") (g )(jn)(jn) ' = ¢ (go)c = gw's,
and hence w = w's,. Furthermore, (in')(in)™' = ¢ implies in = ¢ '(in’). We have proved the

direct implication in (2); the opposite implication can be verified without difficulty.

9. It is instructive to compute the complete inverse images of @(S), ®(S) and Q'(S)
under x in the above theorem. For this we need some notation. For any set X, let |X|
denote its cardinality. If £ €. $'(I) has domain {i} and range {j}, write £ = &;. Denote by
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#(G) the group of inner automorphisms of G (g,:x — g 'xg for all xe G). For any
subset A of I, denote by ¢ the function which maps A onto the identity of G.
Let (i, g, j)€ S. Then a simple argument shows that

d6%=> ={(i, h, i)| h e G}UO,
0=’ ={(j, h, j)| he G}UO,
0%V : (i, h, i) — (j, he,, j) (heG),
which imply that
[£; &g, L]= 0550,

| OS)x " ={(& v, M e T|ldE|=1, we $(G)}

=M°(I, $(G), I; A}.
It now follows without difficulty that

®(S)x 7 ={(¢ w, m) e T|14¢|=1y=M°(L A(G), I; A).
Now let (A, p)e Q(S). According to [5, V.3 and V.5], there exists Be$'(I) and a

function ¢ :dp — G such that
(87, (B 'Yg, i) ifierB,
0 otherwise,

(i, g (j¥),jB) if jedp,

0 otherwise,

AG, g, i)={

(i g f)p={

whence, by a straightforward argument, we get
45,,,={(, g NeS|ijedBIUO
8()\,0) . (l’ 8, ]) -> (135 (ldj)_lg(]d})’ ]B) if ly jEdB
which implies that

| [B, Zel 'J’] = 8(A,p)5
YES)x '={¢ o, MeT|wed (G

9.1. ExampLE. Let Y ={a, b, ¢} be a semilattice with ab = ¢. Then with the following
notation and multiplication we obtain ¥(Y):

9wl )
£ aC 9

_(abc) =<abc>
7 \a b ) Y"\b a ¢/

I

a
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€, | eple. | [B| v | &

€, | €a | Ec| & | |&.| a | &g

€ € Ec | & | & € & €

o | e |ole & |& | €| @

€|l e, |||l B vl €

O(Y) ={s,, &, .},
@(Y)=0(Y)U{e, 8},
Q(Y)=0(Y)U{e},
Y(Y)=0(Y)U{e, B, v, €}.
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