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1. Introduction and summary. There is a large body of literature on inverse
semigroups. This literature contains a considerable amount of information concerning
congruences on these semigroups, which is not surprising in view of the demonstrated fact
that congruences on inverse semigroups play a decisive role in most of the existing
structure theorems. In addition, for an inverse semigroup of known structure, finding its
congruence lattice, or even certain properties of this lattice, often gives information about
these semigroups not apparent in their structure theorems.

Congruences are naturally related to homomorphisms as well as to quotient semi-
groups. A natural offspring of such considerations is the idea of building inverse semi-
groups out of the "kernel" and the quotient, that is out of various kinds of extensions.
Besides the well-known ideal extensions, which are not specific to inverse semigroups, we
have introduced in [6] normal extensions. By definition, a full, self-conjugate inverse
subsemigroup K of an inverse semigroup S is a normal subsemigroup of S, and S is a
normal extension of K. In studying these extensions, we have arrived at the normal hull
<b(K) of K which consists of isomorphisms among subsemigroups of K of the form eKe
where e is an idempotent. Normal subsemigroups arise naturally as kernels of
homomorphisms on S.

If we consider self-conjugate inverse subsemigroups K of S, we arrive at the concept
of a conjugate extension S of K. In this study, the analogue of the translational hull il(K)
for ideal extensions and of the normal hull <&(K) for normal extensions is the conjugate
hull ^(K) of K. In fact, W(K) consists of all isomorphisms among subsemigroups of K of
the form \Kp where (A, p) is an idempotent of the translational hull of K. The conjugate
hull exhibits several properties analogous to those of £l(K) and 3>(K) for appropriate
extensions. The purpose of this paper is to explore some of these properties.

The needed notation and terminology is collected in Section 2. The definition of the
conjugate hull and the proof that it is a subsemigroup of the symmetric inverse semigroup
takes up Section 3. This is followed in Section 4 by the introduction of conjugate
extensions, inner and principal parts of the conjugate hull, and the metacenter, and their
relationship is explored. Essential conjugate extensions are briefly considered in Section 5.
The relationship of the conjugate hull and the translational hull is discussed in Section 6.
An embedding of the conjugate hull of a semilattice of groups into its endomorphism
semigroup is effected in Section 7. The next, Section 8, contains a construction of the
conjugate hull of a Brandt semigroup. The paper is concluded in Section 9 with an
example.

2. Notation and terminology. We follow in general the standard notation and
terminology of Clifford and Preston [3] and Petrich [5]. We record, however, the
following notation most frequently used in the paper.
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For any semigroup S, Cl(S) denotes the translational hull of S, U(S) the inner part of
Cl(S), and TT : a —> ira = (Aa, pa) the canonical homomorphism of S into fl(S) (or onto
II(S)). For any set X, $'{X) denotes the semigroup of all one-to-one partial transforma-
tions on X written on the right, da and ra the domain and range of a &$'{X), and tx the
identity mapping on X. For an inverse semigroup S, Es denotes the semilattice of all
idempotents of S, and Es£ the centralizer of JBS in S.

It is useful to keep in mind that we write left translations on the left and right
translations on the right. Hence the notation ASp means {Asp | s e S} where the parenth-
eses in Asp are not needed when S is an inverse semigroup. The restriction of a function <p
to a subset A of its domain is indicated by <p | A.

3. The conjugate hull. Recall that an inverse subsemigroup K of an inverse
semigroup S is self-conjugate if a^1KagLK for all aeS. In this notation, each aeS
induces a function on K denned by k —> a~1ka. This function generally fails to be
one-to-one. However, we will take a suitable restriction a of this function which is
one-to-one. The mapping a—> a associates to each aeS a one-to-one partial transforma-
tion on K. We will define below the "conjugate hull" of K which makes it possible to
prove that a—>a is actually a homomorphism. In order to do this, we need some
preparation.

3.1. NOTATION. For any inverse semigroup S, let

= {ipe $'(S) | 4i is an isomorphism of ASp onto A'Sp'forsome(A, p), (A', p') e En(s)}-

We will have occasion several times to use the following result due to Ault ([1],
Proposition 2.3).

3.2. LEMMA. In any inverse semigroup S,

\e = ep (eeEs, (A, p)eEn(S)).

We will use this lemma without specific reference.

3.3. LEMMA. Let S be an inverse semigroup. For any (A, p) e EaiS), define a function a
by

cr:a—> Aap (aeS).

Then a | Es is a right translation and

ao- = (aa~1)o-a(a~1a)cr (aeS).

(1)

(2)

Conversely, if a is a function on S such that a \ Es is a right translation on Es and (2) holds,
then there exists a unique (A, p)eEn(s) such that (1) holds.

Proof. First let (A, p)eEn(s) and define cr by (1). Then for any e,feEs,

(ef)tr = A(e/)p = (Ae)(/p) = (cp)(/p) = e(A/p) = e{fa)
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so that a \ Es e P(ES). Further, for any aeS,

an = kap = A[A(aa-1)a]p = AfXaa^paJp

= [ACaa^pftap) = (aa~1)o-[a(a-
1a)p]p = (a-

la)aa[k(a-1a)]p

= (aa~1)aa{a~1a)o;

as required.
Conversely, let a be a function with the properties enunciated in the statement of the

lemma. Define A and p by

ka = (aa~1)aa,

Then

(Aa)b = (aa-^aab = [(aa

= [(ab)(ab)"1(aa~1)cr](ab) (since (aa~1)cr e Es)

= [(a6)(a6)-1(aa-1)]cr(a6)

= [(aa-1)(ab)(ab)-1]o-(afa) = [(ab)(afc)-1]cr(ab) = \(ab),

symmetrically a(bp) = (ab)p,

a(kb) = aKbb-^ab] = a[{

= a(a-1a)<r(bb~1)b =

k2a = A(Aa) = AlXaa'^c

= [(aa~l)cr]2a = (aa^^cra = Aa,

symmetrically ap2 = ap,

kap = [(aa~x)aa]p = (aa'^aiap) = (aa~1)aa(a~1a)o- = ao-,

which establishes all the assertions of the converse except for uniqueness. If Aep = A'ep'
for some (A, p), (A', p ' )eEn ( s ) and all eeE, then

Aa = A(aa~x)a = [A(aa"x)p]a = [A'(aa J)p']a = A'(aa~1)a = k'a,

so A = A', and symmetrically p = p'.

3.4. LEMMA. Let cr, cr', T be functions on an inverse semigroup S satisfying the
conditions in Lemma 3.3. Let <p be an isomorphism of Scr onto Scr' and assume that
ST £ Scr. Define a function T' by

T':X—>xcr'<p~1T<p ( x e S ) .

Then T' satisfies the conditions in Lemma 3.3 and Sr<p = ST'.

Proof. First note that T' is well-defined since Scr' = r<p and ST C Sa = dcp. For any
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e,fe Es, we obtain

(ef)rr =

and hence T' | ES eP(Es). Let (A', p') correspond to <x' and (a, 0) to T as in Lemma 3.3.
Then for any x e S, we get

= {[(xx-1)<r'<p-1T](xc7'<p-1)[(x-1x)o-'<p-1T]}cP

= xo-'<p~lT<p = X T '

and T' satisfies the conditions in Lemma 3.3. Further, for any x e ST, we have

x<pr' = (x^cr ' tp""1-^ = x c p ^ " 1 ^ = XT(p = x<p

so that ST<P C ST'. Conversely, if x € ST', then

X(p-1T = XT'(P~1T = xo-'<p~1T<p<p"1T = xa'<p~1r = (xcr'cp"1^)^"1 = x<p-1

which shows that ST' C Sr<p. Consequently ST<P = ST'.

3.5. LEMMA. For any inverse semigroup S, ^(S) is a subsemigroup of $'(

Proof. Let cp, t/> e ^ ( S ) with

in the obvious notation. Then d(<pt/0 = (r<p ndi//)^"1. Here

r<p n dt^ = A'Sp' n aS/3 = A'aS/3p'

since (A', p'), (a, j3)6En(s). Hence d(<pi/>) = (A'aS^p')^'1. Now letting

a: a —>• A'ap', cr ' :a^Aap, T i a ^ A ' a a ^ p ' (aeS),

and using <p-1, we deduce from Lemma 3.4 that d((pt/0 = ST' for some T' satisfying the
conditions in Lemma 3.3. Consequently Lemma 3.3 implies that d(<pij/) is of the form |ST)
for some (£, t])eEn(s). Similarly r(<pt/f) = (A'aS/3p')t^ has such a form.
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We thus arrive at the following:

3.6. DEFINITION. For any inverse semigroup S, the subsemigroup ^P(S) of J'(S)
consisting of isomorphisms among subsemigroups of S of the form ASp with (A, p) € EniS}

is the conjugate hull of S.

In the case when the semigroup S is a semilattice X, ^(S) coincides with Ux studied
by Reilly [8]. If an inverse semigroup S has an identity element, then every bitranslation
(A, p) is inner, and hence ^F(S) consists of isomorphisms among subsemigroups of S of the
form eSe with e e Es; hence in this case ^(S) coincides with O(S) studied in [6]. If in
addition, S = E is a semilattice, ^(S) coincides with TE introduced by Munn [4].

Since the definition of ^P(S) is based upon the sets ASp with (A, p) e En(s), these sets
deserve at least one more characterization. Recall that a nonempty subset B of a
semigroup S is bi-ideal of S if BsB £ B for all seS. Let X be a partially ordered set. For
any x 6 X, the set [x] = {y e X | y < x} is the principal ideal generated by x. A nonempty
subset I of X is an (order) ideal of X if xel implies [ x ] c / ; if, in addition, [ x ] n i is a
principal ideal for all xeX, then I is a p-ideal. We consider an inverse semigroup S as
partially ordered under s < t if s = et for some e e Es.

3.7. THEOREM. Let B be a subset of an inverse semigroup S. Then B = ASp for some
(A, p)eEn(S) if and only if B is a bi-ideal and an order p-ideal of S with the property: beB
implies bb~x, b~lbeB.

Proof. Necessity. Let (A, p) e En(S), B = ASp and let x, y, z e S. Then

(Axp)y(Azp) = A[(xp)y(Az)]p e B

so that B is a bi-ideal of S. If y =£x and xeB, then y = ex for some eeEs and thus

y = ex = c(Axp) = (ep)(xp) = (Ae)(xp) = A(ex)p = Ayp

and hence y e B. Consequently B is an order ideal of S. Further,

Axp = AlXxx^Mx-^lp = [A(xx"1)]x[(x-Ix)p]< x

since A(xx~x), (x~1x)peEs so that [Axp] c £? n [x]. Conversely, if yeJB and y<x, then
y = ex for some e e Es, which implies that

y = Ayp = A(ex)p = (Ae)(xp) = (ep){xp) = e(Axp) < Axp

so that B H[x]e [Axp]. Hence B is a p-ideal of S. If x e B, then x = Ax = xp and thus

xx"1 = (Ax)x'1 = A(xx"x) = (xx-1)p

so that xx"1 eB. By symmetry, also x~1xeB.
Sufficiency. Let B have the requisite properties. We define a function a by the

requirement

[xo-] = BD[x] (xeS).
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If e e E s , then \_e] = Ese<^Es and thus e<xe.Es. For e,feEs, we obtain

[e(f<r)l = [elfa] = [e](B n [/]) = [e]B n [ef], (1)

[(e/)o-] = B n [ e / ] . (2)

Now let ge[e]B so that g = ffc for some t^e and b e B . Hence

g = tb = {bb~l)tb = b{b~xt)b e BSB c B,

which proves that [e]BgB. Conversely, let geBn[e / ] . Then g = ege[e]B so that
B n[e]c[e]B. Relations (1) and (2) now yield a \ EseP(Es).

Let y <(xx~1)ax(x~1x)cr. Using aEs = Esa for any aeS, we obtain

y e (JCX" V x O

= (xx-'Es nB)x(x~1xEs HB)

which implies y e BSB c B and y e EsxEs = xEs. It follows that y e [x] D B = [xcr] and
hence y < x a . We have proved that (xx"1)o-x(x"1x)o-<xa.

In order to prove the opposite inclusion, we first let y e[xx~1]x[x~1x]nB. Then
y = uxv where u = exx"1 and v = x~*xf for some e, f&Es. Hence y = exf and

yy"1 = (ex/Hex/)"1 = exfx^e e [xx"1] n B,

(exfx~1e)x(fx~1exf) = exf(x~1x){x~1ex)f=exf= y,

which shows that y e([xx"1]nB)x([x^1x]nB). Using this, we obtain

[XCT] = [x] D B = t(xx~1)x(x~1x)] n B

= [xx-^xtx"^] Pi B c ([xx"1] n B)x([x"1x] n B)

which implies xo-<(xx"1)crx(x"1x)o-.
We have proved that the conditions in Lemma 3.3 are satisfied, which gives that

B = ASp for some (X., p) e £n ( s ) .

4. Conjugate extensions. We introduce here a number of new concepts and study
their relationship.

4.1. DEFINITION. An inverse semigroup S is a conjugate extension of an inverse
semigroup K if K is a self-conjugate subsemigroup of S.

The relationship between a conjugate extension and the conjugate hull is provided by
the following result.

4.2. THEOREM. Let an inverse semigroup S be a conjugate extension of an inverse
semigroup K. Define a function d = d(S:K) by

6:a^>6a (aeS)
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where 6a is defined by

Then 0 is a homomorphism of S into

Proof. Let aeS. Define a function cr by
a-.k^-aa^kaa'1 (feeX).

It follows immediately that a satisfies the conditions in Lemma 3.3 and Ka = aKa~l. Now
a~1(aKa~1)a = a'1Ka also has the property that Ka' = a~1Ka for some a' satisfying the
conditions in Lemma 3.3. Let x, y e aKa~1 and assume that a~lxa = a~1ya. Then
aa~1xaa~1 = aa~1yaa~1, which yields x = y, since x, y e aKa'1. Further,

(x0a)(y0a) = (a^1xa)(a"1ya) = a~1x(aa~1)ya = a-1xya = (xy)0a

since x = x(aa"1). Consequently 0a

Now let a,beS. Then

d(0a0b) = (r0a nd0 b ) (0 a r 1 = a{a~xKa D

= aa~lKaa~l

and for any x ed0ab, we have

x0a0b = (a-1xa)6b = b-\a^xd)b = (ab)-xx(ab) = x0ab.

Consequently 0a0b = 0ab and 0 is a homomorphism.

The notation 6(S:K) introduced in the above theorem will be used throughout the
remainder of this paper. Recall that for a congruence p on an inverse semigroup S, the
kernel of p is denned as

ker p = {a £ S \ a p e for some e 6 Eg}.

Let the kernel of a homomorphism of S mean the kernel of the induced congruence. For
6 = 6(S: S), we have introduced in [6] the notation:

= {0 a | aeS} , M(S) = ker 0.

Call ®(S) the inner part of ¥(S) and M(S) the metacenter of S. It follows from ([6],
Proposition 1) that

M{S) = {a e S | aa~xxa = axa'xa for all x e S}.

By the same reference, we have that 0 is idempotent separating so that M(S) = Es if and
only if 0 is one-to-one (and thus an isomorphism of S onto 0(S)). After some prepara-
tion, we will prove that ^(S) is a conjugate extension of @(S).

4.3. LEMMA. Let S be an inverse semigroup, aeS and (A, p)eEn ( S ) . Then \a~1p =
(Kap)-\

Proof. Indeed, it was proved in [7] that (Aa)~J = a~1p~1 and (ap)'1 = A"1a"1 whence

(Aap)"1 =

https://doi.org/10.1017/S0017089500004067 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004067
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4 . 4 . L E M M A . L e t S be a n inverse s e m i g r o u p , a e S a n d i / > € ^ ( S ) w i t h d«/» = ASp
((A, p) 6 En(s)). Then i/r1^V = 0aap)l".

Proof. For xedf i / i " 1 ^ ) , we obtain

] ^ (since x

= [(xi//-1)(ap)(Aa"1p)]</' (by Lemma 4.3)

= [(xijj~1)a(\a~1p)]ilf (since (A, p) e En ( s ) )

= {a[a~1(xi^"1)a]p(a"1p)}'/' (since xt]/'1 e aSa'1)

= [aa~1(xi(f~1)a(a~1p)]i(i (since a ' ^ x ^ ^ a e ASp)

= [(xtp'1)(aa-1)p]ilf (since xt/r'

and an analogous argument shows that (Aap)i/>[(Aap)i/̂ ]"1x = x. Consequently x e d0(Xap)li'.
Conversely, let xed0(Xap)l// so that

x =

Since (Aap)i^ eri//, it follows that xen//. Further,

X./T1 = (Aap)(Aap)-1(x^"1) = [A(aa"1)](ap)(Aap)-1(x^-1)

= (aa-1)p(ap)(Aap)-1(x</T1) = aa~1(Aap)(Aapr1(xi/'~1) =

and symmetrically xi/*"1 = (x(^~1)aa~1, so that x^ 'ea lCa" 1 . Finally,

Ata-^xj/r-^a] = (Aa-1)(Aap)(Aap)-1aa"1(xi//-1)a

a-1[(Aap)(Aa-1p)(Aap)]a"1(x^1)a (by Lemma 4.3)

a~1(\ap)a~1(xtl/~1)a, (by Lemma 4.3)

a-1(Aap)(Aa~1)[A(x«/r1)]a

= a"1[(Aap)(Aap)-1(x^-1)]a (by Lemma 4.3)

= a-\x4i^)a,

and symmetrically [a"1(xt/>""1)a]p = a"1(x^"1)a, so that xed(ijj~10ai(j).
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We have proved that d(i//~10'» = d0(Xap><('. For any x in this set, we get

which completes the proof.

4.5. COROLLARY. For any inverse semigroup S, ^(S) is a conjugate extension of @(S).

We have introduced in [6] the following concepts. A self-conjugate, full (i.e. Es <= K)
inverse subsemigroup K of an inverse semigroup S is a normal subsemigroup of S, and S is
a normal extension of K. The subsemigroup

<&(S) = {t/f e ¥(S) | dt/f = eSe, ri(f = fSf for some e,fe Es}

of ty(S) is the normal hull of S. It seems natural to call O(S) the principal part of
Note that 0(S)cO(S) and that ^ e ^ ( S ) and di^ = eSe for e e E s implies i|»e*(S).

4.6. DEFINITION. Let an inverse semigroup S be a conjugate extension of an inverse
semigroup K. The greatest inverse subsemigroup of S containing K as a full subsemigroup
is the full closure of K in S.

It is easy to verify that if EK is an ideal of Es, the full closure of K in S is the inverse
semigroup

{seS\ss~\s~1seK}.

Note that this is also the greatest normal extension of K in S.

4.7. PROPOSITION. Let S be an inverse semigroup. Then 4>(S) is the full closure of @(S)
in ^(S), and is self-conjugate in ^(S).

Proof. Let <p e E<i>(s) with dcp = r<p = eSe where e 6 Es. Then <p = teSe = 0e which shows
that 0(S) is full in 0>(S). Conversely, let i/>e¥(S) be such that W1 = 6e and iji~1^=ef

for some e, / e Es. Then

di/f = d(4«/r *) = d0e = eSe

and thus I/>G*(S). Hence <&(S) is the full closure of 0(S) in ¥(S).
Let t^e^(S), (p6O>(S), di/< = ASp where (A, p)e£ n ( s ) , d<p = eSe, rq> = fSf where

e,feEs. We know by Theorem 3.7 that ASp is a p-ideal. Thus e and / can be denned by
the requirements

[c] = [e]nASp, [f]

Then e G ASp and hence also eC/ip"1) e ASp since ASp is an order ideal. We will show that,
for g = [e(/(p-1)M,

= [g] (1)

which suffices to prove the second part of the proposition.
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First let xediij/'1^). Then xertj/, xij/~1ed<p and xtj/~k(pGdi{f. Hence xt/r'e
[e]n\.Sp = [e] so that x i / r ^ e . Further, xt/T V e [/] n ASp = [/] which implies Ju/rV=£/
and hence xi^"1^/^"1. Consequently xtl/~1^e(f<p~1) which yields x^[e(/cp~1)]t/> = g.

Conversely, gtl/~1 = e(f<p~1)^eekSp so gil>~1ediff, also gt//^1</<p~1ed(p; finally
xi/̂  x<p < / which implies that x>f/~1<pedilf. It follows that gedO/T"1^), which establishes
(1).

5. Essential conjugate extensions. We adapt first a universal-algebraic concept to
the present situation as follows.

5.1. DEFINITION. Let S be a conjugate extension of an inverse semigroup K. Then S
is an essential conjugate extension of K if the only congruence on S whose restriction taK
is the equality relation on K is the equality relation on S. Essential conjugate extensions
of K are partially ordered by inclusion.

Note that essential conjugate extensions correspond to essential normal extensions
defined in [6] and to dense extensions for ideal'extensions, see e.g. [5]. We start with a
simple result.

5.2. PROPOSITION. Let S be a conjugate extension of an inverse semigroup K. Then
d(S: K) is one-to-one if and only if the metacenter of K is idempotent and S is an essential
conjugate extension of K.

Proof. The argument here is identical to that in [6, Proposition 2].

We now come to one of the cardinal properties of the conjugate hull.

5.3. THEOREM. Let S be an inverse semigroup with idempotent metacenter. Then
is a maximal essential conjugate extension of @(S). Every inverse subsemigroup of
containing @(S) is an essential conjugate extension of ®(S). Every essential conjugate
extension of S is isomorphic to a subsemigroup of ^(S) containing @(S).

Proof. The argument here goes along the same lines as in the proof of the corres-
ponding statement for normal extensions in [6, Theoreme 1], with slight modifications
which are left to the reader.

As we just mentioned the corresponding result is valid for normal extensions using
4>(S) instead of ^(S) under the same hypothesis that the metacenter of S be idempotent.
The same type of result is valid for dense (ideal) extensions with H(S) taking the place of
^P(S) under the hypothesis that S be weakly reductive. See [5]. Inspired by this latter
example, and the corresponding case in groups and their automorphisms, we propose the
following:

5.4. CONJECTURE. If an inverse semigroup S has a maximal essential conjugate exten-
sion, then S has idempotent metacenter.
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6. Relationship to the translational hull. Not only is the very definition of the
conjugate hull based on the idempotents of the translational hull, but, as we will see in
this section, there are many interesting relations between these two hulls. It seems useful
to introduce the following concepts.

6.1. DEFINITION. For any inverse semigroup S, the elements of

(i) >f(S) are local automorphisms of S,
(ii) <&(S) are principal local automorphisms of S,

(iii) @(S) are inner local automorphisms of S.

Furthermore, if K is an inverse subsemigroup of S, and il/e"W(S), then K is invariant
under \\i if (d<// CiK)i(/cK.

It is easy to verify that an inverse subsemigroup K of S is invariant under all inner
local automorphisms if and only if it is self-con jugate in S. Letting S be an inverse
semigroup with the semilattice of idempotents E, we recall the following notation:

EC = {s e S | se = es for all e e E},

sx = xs for all x e EC},

se = e for some e e E}.Ea> = {seS

Recall also that a congruence p on S is idempotent separating if e p / with e,feE implies
e = f. Observe that EC is the centralizer of idempotents and EC = ker JA, where /u. = pts is the
greatest idempotent separating congruence on S. Further, ECC is the second centralizer of
idempotents of S. Finally, Ea> = ker <r, where o~ = o-s is the least group congruence on S.
Note that

E c M(S) c ECC = Z(EC) S EC,

where Z(T) is the center of any semigroup T.

6.2. PROPOSITION. For any inverse semigroup S with the semilattice E of idempotents,
E, M(S), ECC, EC and Eu> are invariant under all local automorphisms.

Proof. Let ^e^CS) with ip:kSp-±aSp where (k, p), (a, /3)eEn(s). The assertion is
trivial for E. Let a e M(S) n \Sp and seS. Then

1 a'1

which shows that
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Next let ae£(nASp. Then for any eeE, we get

(aijj)e = [(ai/r)/3]e = (#<A)(ae) = [a(ae)i//~

= (ae)(ai//) = (e/3)(ai/0 = e[a(ai}ij\
so that ai{/eEC.

Now let aeE££[~lASp. Then for any xeE£, it follows from [5, V. 6.4] that
ax = ax/3 = x/3 since E£ is a semilattice of groups. Using this, the same argument which
gave (ai//)e = e(ai(j) now yields (atp)x = x(ai/>). Consequently aipeECC-

Finally, let a € ECJ n ASp. Then ae = e for some e e E and thus

where (Xe)ipeE. Hence aif/eEco.

The next lemma makes it possible to single out a particular subsemigroup of
using the elements of il(S).

6.3. LEMMA. Let S be an inverse semigroup. For any (A, p)eCl(S), define a function

c -» A"Jxp if

Then 8(Kp)eV(S).

Proof. First note that

with (AA~X, pp-1)eEn(S); analogously r8(Xp) = A-1ASp~1p with (A'U, p"1p)e£n(S)- For
any x, y edS(x>p), we obtain

= X.~\xy)p = (xy)S(x,p).

This shows that S(Xp) is a homomorphism; it is clear that 5(Xp) is one-to-one and maps
ASp"1 onto A-1Sp. Consequently 5(x,p)e

6.4. NOTATION. For any semigroup S, let

It is easy to verify that 8: (A, p) -» 6(x p) is actually a homomorphism of ft(S) onto
fl'(S) so that the latter is actually an inverse subsemigroup of ^(S). However, this will
follow easily from the next result. Also note that for any seS, 5^ = 6s where 6 = 6(S: S).
Recall that TT:S—*fl(S) is denned by TT:S —> TTS = (As, ps) with Asx = sx, xps = xs for all
xeS.

6.5. THEOREM. Let K be an inverse subsemigroup of an inverse semigroup S. Then K is
invariant under all i/> in ft'(S) if and only if KTT is self-conjugate in fl(S). If this is the case,
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then the diagram

ft(S)-
t•I1
,s- 9(S:

:K-ir)

K)

is commutative, where v is the isomorphism of ty(K) onto W(KTT) induced by TT\K. If K is
also full in S, then both 6(S:K) and 0(£1(S):KTT) are idempotent separating.

Proof. For any (A, p) e ft(S), we obtain

(dS(x>p) n K)8CKp) = A-^ASp"1 n K)p = A^Kp c K

O(A,p)-1(K7r)(A,p)cK7r,

which proves the first assertion.
Note that for any «/>e^(S),

d(t/>v) = (di/Ow, ipv.s-* sv~1i]jTr if s e d(^v).

Assume that Kir is self-conjugate in ft(S). Let 0t = 0(K:S) and 02= e(n(S):Kir). Then
for any aeS, we get

where

and for any fc e aKa

which establishes the commutativity of the above diagram.
Now suppose that K is full in S. First let e,feEs be such that 6\ = 6{. Then

eKe = fKf which implies that e = ef since e e Es s K, and analogously / = fe, so that e = /.
Consequently 01=0(S:K) is idempotent separating.

Next let (A,p),(a, |3)eEn ( s ) be such that 0^-p) = 0^p ) . Hence (A, p)(Kir)(A, p) =
(a, /3)(K7r)(a, j3) so that AKp = aKfi. For eeE s , there exists keK such that Aep = ak(5. It
follows that Ae = aAe, and since this holds for an arbitrary idempotent of S, we obtain
A = aA. By symmetry, a = Aa and hence A = a, and by symmetry p = (3. Hence (A, p) =
(a, (3) and 02

 = 0(il(S): KTT) is idempotent separating.

6.6. THEOREM. For any inverse semigroup S, the function

8:(A,p)->S(x.p) ((A,p)en(S))
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is an idempotent separating homomorphism of il(S) onto ft'(S) with the kernel M(ft(S)).

Proof. All assertions except the last one follow from Theorem 6.5 by observing that

Let w = (A, p) e H(S). Then

o) e ker 8 O 5 u = Se for some e = (a, j3) e £sn(S)

€>ASp~1 = eS8 and A~1ap = a if aeeSe

O a = AA.~1app"1 implies k~1ap = a. (1)

Assume that the (equivalent) conditions in (1) hold. Since 8 is idempotent separating, we
have ker 8 c .E n ( s ) f which implies that (I)U^1 = (I)"1W since -En<s)£ is a semilattice of
groups. Hence for any aeS, first b = \k~1app~l has the property b = k\~xbpp~l so that
A~Jbp = b. It follows that

A ~1(AA~1app~1)p = AA~1app~1

which implies that A~*ap = AA"1 app'1. Consequently,

In-ft(S), this can be written as COM'1 Trao) = oiTTaio'1^) for all aeS. Now let refl(S) and
aeS. Then

= &)TWO)~1('7raa-iaWl)~1)7T-a = WTWW'V,, = (u)T<U~1ft>)7Ta

which implies that (a)w~1T&))a = (wTa)""1^))^ and analogously a(axo~lro))= a(a)T&)~1<w),
This means that WOJ"1TW = WTCO^1^ SO that oi£M(ft(S)).

Conversely, let weM(fi(S)). Then for any aeS, we have A(A-Ia)p = A(ap~x)p and
(oo)^1 = <o~1<o since M(il(S))sEn(S)£. For any a e S such that a = AA~1app~1, we get

A "xap = A~1[A(A~1a)p] = A"1[A(ap^1)p] = AA ̂ a p p " 1 = a,

which in view of (1) yields w e k e r S .

6.7. COROLLARY. For any inverse semigroup S, 0(ft(S):ft(S)) and 0(fl(S):II($)) in-
duce the same congruence on H(S). Moreover, M(D,(S)) C\U(S) = M(II(S)).

Proof, The first statement follows from the theorem since

ker 0(ft(S): fl(S)) = Af(n(S)) (by definition)
ker 6(Cl(S): H(S)) = ker 8 (since v is an isomorphism),

so the two homomorphisms have the same kernel. Since they are both idempotent
separating, the induced congruences must coincide.
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For any a e S, we obtain

TTa e M(H(S)) O ir^Z^oiTTa = irawTTa-i7Ta for all u> 6 O(S)

Oa(a"1p)<i = fl(Aa"1)a for all (A, p)eO(S)

O a a ~ 1 s a = a s a ~ 1 a f o r a l l s & S

If aeM(S), then aeEs£ so that aa~1 = a- 1a, which for any (A., p)efl(S) gives

a (a~V)a = aa~1[a(a~1p)a] = aa^faCAa'^a] = aCAa"1)^

In view of the above, this establishes the equivalence

i r a eM(f l (S))«aeM(S)

which proves the last assertion of the corollary.

6.8. COROLLARY. For any inverse semigroup S, M(S) = Es if and only if M(ii(S)) =

Proof. If M(S) = Es, then M(II(S)) = Erics) which by the theorem and the above
corollary implies that 8 | II(S) is one-to-one. Since il(S) is a dense extension of I1(S) (see
[S, III. 5]), 8 must be one-to-one, so M(fl(S)) = £n(S) . The converse follows directly from
the above corollary.

The next result essentially coincides with [8, Theorem 4.4]; we provide here a
different setting for it as well as a different proof.

6.9. THEOREM. For any inverse semigroup S, | = 0(fl(S): EniS))v~1 is a homomorphism
of O,(S) into ty(Es) which induces the greatest idempotent separating congruence on

Proof. Theorem 6.5 gives that £ is an idempotent separating homomorphism of O(S)
into ^(Es). Let <a = (A, p) e En(s)£. Then we = ew for all e e E n ( s ) and, in particular,
ft)ire = TTe<o for all e e Es. The latter is equivalent to Ae = ep for all e e Es. It follows that for
any e € Es,

Now $: oi -* 4, where dl^ = AEp"1 and

^-.e-^K^ep (eeAEp'1).

Using what we just proved, we get d ^ = AA~XE and £„ : e —» AA-1e if e e AA"1ES, which
evidently implies that £„ is the identity mapping on its domain. Hence 4, 6 E^(s) which
yields that £f t ( s )( £ ker £ Since ^ is idempotent separating and En(s)^ is the kernel of the
greatest idempotent separating congruence on fl(S), we must have En(s )£ =

It follows from Theorem 6.5 that TT£:S—»\P(Es) is the usual representation of S
by its idempotents.
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6.10. PROPOSITION. With the notation of Theorem 6.9, we have

Proof. For any a e S, we get d l ^ = aEsa^ and r|Wa = a~1Ea which shows that
Conversely, let w = (A, p)efi(S) be such that £we$>(Es). Then d£,=

\Esp~1 = eEs and r£w = \~1Esp = fEs for some e,feEs. In particular, \~1ep = f whence

ep = epp~1p = A(A"1ep) = A/= a.

For any x € S, we obtain

xp = x[(x-1x)pp-1]p = xCAA-Hx-'xXlp

= x[(x-1x)pp-1]p/= (xp)/= x(A/) = xa

and analogously Ax = ax, which gives w = ixa e I1(S).

6.11. PROPOSITION. For any inverse semigroup S,

Proof. Let <o = (A, p)eft(S) be such that 8we<P(S). Then dS^ = \Sp~1 = eSe and
= A-1Se = fSf for some e,feEs. Letting a = ep, we obtain

1 = (ep)(A"xe) = (epp'^e = epp'1 = e,

since e e ASp"1 implies e = epp"1; and for x e eSe,

xS^ = A-1xp = A-1(exe)p = (A~1e)x(ep) = (ep)"1x(ep) = a~*ea.

Consequently Su = 6a €@(S). This proves that $(S) nD,'(S)£ @(S); the opposite inclusion
is obvious.

7. The conjugate hull of a semilattice of groups. The only result here is that the
conjugate hull of a semilattice of groups is embeddable into the endomorphism semigroup
of the latter. We have introduced the full closure for inverse semigroups in Definition 4.6;
we now extend this concept as follows.

7.1. DEFINITION. Let A be a subsemigroup of a semigroup S. If there exists a
subsemigroup B of S containing A such that JBB = EA and B is the greatest subsemigroup of S
with this property, then B is the full closure of A in S.

It is well-known that a semigroup S which is a semilattice of groups can be given by a
system of homomorphisms among these groups, and we use the notation S = [ Y; Ga, <pai&\.
See e.g. [5]. We denote by £(S), P(S), A(S) the semigroups of all endomorphisms, all right
translations, and all inner right translations of any semigroup S. For a semilattice Y, we
write [a] = {/3 e Y113 < a} for any aeY, and call an ideal /of Ya retract ideal if I n [a] is
a principal ideal of Y for all aeY. Denote by 3ftY the set of all retract ideals of Y under
intersection. For these concepts, consult [5, V.6].
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7.2. THEOREM. Let S = [Y; Ga, <pa>3] be a semilattice of groups. Define a function x by

where A^i = ASp, (A, p) e E n ( S ) . Then x is on isomorphism of ^P(S) into 3?(S) such that
V(S)x is the full closure of EP ( S ) , <&(S)x is the full closure of EA(S), and

X--ea^Paa->0a (aeS).

Proof. Let ^e^(S) and (A, p)eEms) be such that di/r = ASp. It follows from [S, V.6]
that for some retract ideal I of Y,

xp = x<pa,<i if

For any x e Ga, y € G3, we obtain

(xp)(yp) = (x(p

so that pe i (S) . It is now clear that pi]se%(S).
Also let j / r 'e^S) with d<//' = A'Sp', (A', p')eEft(s), and let I' be the retract ideal of Y

associated with p' as above. Let J and J' be the retract ideals of Y associated with r«̂  and
ri '̂, respectively, and let

[d] = J n [ a ] (aeY).

The functions p, «//, p', »//' induce on Y the following functions:

Pi'.a-^a, pi :a —» a,

Î J : a —» |3 if ap = b with a e Ga, b e Gp,

and i//'! is defined analogously. It is clear that p1; pi e P(Y) and i//x, t/fi e ¥(Y), etc. For any
a, (3 6 Y, we obtain

(3 < ap^ ip ' ^ i o (3 e / ' , P^r 1 < a P l ^ l P i

O/3eJ ' ,

where d(W) = CTST, (<T, T)eEn(s ) and T induces TX as above. It follows that
T^jt/r1!. Let K = YTX.

We return now to S. Since i/» is an isomorphism of [I; Gm <pa>3] onto [/; Ga, <patfs],
according to [2] there exists a system of isomorphisms
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such that
aif/ = ao)a^l if aeGa,aeI

and all the diagrams

<"B,g*i n

Crp > Crpj,,

are commutative for a s (3, a e 7. The same type of statement is valid for t// with
isomorphisms w«,aa,;.

Let a e Y. Since K^I, we get aTi^ap!. We have seen above that a T i ^ i / ^
o'li^ij but aTj^i/fj = ar1i/'1pit/'i and thus ar1</'1pii/'i = ap^ip^^. This implies that
3i = ap^jp'!. We have the following scheme of mappings.

I J ,
Now substituting G3 for each element /3 in this diagram, and using the properties of wa

and w'a p, we get for any a e Ga,

apif/p ifj = fl*pa>apiwO(PijC,p1j,I'pc<p1j/1,ap1ij/1p',wcp1ij.1pi,c<p1i//1p!>(/;

Wtp ot,otp1x otPi.art aT^aTitJf^ QTjilri.OTiiifiPi aT1i/*1pl,cKT1i//1i//J

since oLT^iSl', so that arii/^ = a T ^ P i . We have proved that x is a homomorphism.
With the same notation, assume that pi/> = p'i{i'. Let a el. Then ap\ =

since the idempotents of H(S) commute, and hence ap\ e I. It follows that

ap\ =
= (api)(pi</'i)</'r1 = a(p1^1)t/^ix = ap1 = a

and hence a si'. Consequently / c / ' and by symmetry also Z'c/ . Now the equation
p«/c = pV' yields if/ = 4>'• Hence x is one-to-one.

Clearly idempotents of ^(S)x coincide with the right translations of S. Let C be an
inverse subsemigroup of &(S) with the set of idempotents £P(S), and let £ e C. Then
aa~1 = p and a~xa = p' for some p, p' 6 EP(S). Let î  = 11 Sp. If x, y e Sp and xt/> = yijj, then
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xi = y£ so
x = xp = xll"1 = y^'1 = yp = y

and ip is one-to-one. Further, di/f = Sp and r^ = S£ = Sp' which shows that t ^ e ^ S ) .
Finally pif/ = £ which proves that £ e ^P(S)x. Consequently C £ ^(S)x which establishes the
maximality of ^P(S)\-.

Substituting pe and pf for p and p', respectively, in this argument shows that <&(S)x is
the full closure of EMS). The last assertion of the theorem is trivial.

Sirjajev [9] made the elements of an inverse semigroup S act on the entire semilattice
Es by: e —» aea~x, and on the basis of this developed a theory of fundamental inverse
semigroups. He also established the existence of the full closure of EMS) in "S(S). The link
with the usual treatment of fundamental inverse semigroups through TE = <J>(ES) is
provided by the preceding theorem applied to Es.

8. The conjugate hull of a Biandt semigroup. We construct below a semigroup T
and a homomorphism of T onto the conjugate hull of a Brandt semigroup and characterize
the induced congruence.

8.1. NOTATION. For a nonempty set / and a group G, denote by G1 the set of all
functions mapping the subsets of I (including the empty subset) into G with the
multiplication <p . ijj where

for all i ed(cp. t̂ ) = d

Denote by s£(G) the group of automorphisms of a group G and, for ge G, let eg denote
the inner automorphism x >-» g-1xg (xe G) of G.

8.2. THEOREM. Let S = M°(I, G, I; A) be a Brandt semigroup. Then

T = {(£ w, Tj)e^ \I)xM(G)xGI | d | = dr)}U0

with the multiplication: 0 acts as the zero and

(£ co, T,)(f, a>', V) = (£ ' , <**', TJO/ • fV)

is a semigroup. Define a function \ on T by

X:(£, to, v)^> [&<»,?}]
where

«![£ to,-n] = {(«, g, /) e S | i, j e df} U 0

[£<o,T,]:(i,g,/)^(i4(iT,rHg<o)GT)Wa 0 ^ 0 . (1)

Then ^ i s a homomorphism of T onto ^P(S) and

if ied£ for some ce G, or £ = f = 0. (2)

Proof. The associativity of the multiplication in T follows by a straightforward
| verification and is omitted.

https://doi.org/10.1017/S0017089500004067 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004067


122 MARIO PETRICH

Let (£, to, rj)e T. Define mappings A and p on S by

&]) i f

_ . 3
0 otherwise

and A0 = Op = 0. It follows directly from [5, V.5] that (A, p) e En ( s ) and clearly d[|, «, T|] =
ASp. Similarly, using r£, we can define (A', p ' ) e£ n ( s ) such that r[£ w, -q]= A'Sp'. A simple
verification shows that [£, a>, 17] is an isomorphism of ASp onto A'Sp'. Consequently

Let (fc o>, r,), (£', a/, r,') e T. If i, / E d(&'), then

(i, g, /)[£ a), T,][f, ft)', T, ' ]= (fc (^)^(gw)(/T,), #)[£', a,', T,']

=a
and if i, /' e d(|^') does not hold, then

(i, g, ;)[& to, T,]K', o,', V] = 0 = (i, g,

Consequently ^ is a homomorphism.
Now let iffeV(S) with dip = \Sp, ri^ = A'Sp' where (A, p), (A',p')eft(S). It follows

from [5, V.5] that A and p are of the form (3) with d£ substituted by some subset A of I,
and analogously for A' and p'. In view of [3, Theorem 3.11], specialized to Brandt
semigroups, we deduce that ip can be represented as in (1) for appropriate i-, a> and 17. It
follows that i(i = [£, to, T)] which proves that x maps T onto

Let (£ co, TJ), (£', »', TJ') e T where | ^ 0 and £' ̂  0. Then

O (i, g, /)K, ft), TJ] = (i, g, j)W, w', i,'] if i, j
O { = f and (iT,r1(ga>)(/T,) = (iT,r1(gw')(yT,') if i,

Let this be the case. Then letting g be the identity of G, we get
which implies that OVX"))"1 = (h'Xiv)1 • 1° t n e las t equation, the left hand side depends
only upon i and the right hand side only upon /, so both are equal to a constant c in G. It
follows that

gco = («|)(iVr1(gft)')(/i7')(/irir1 = C^gftOc = go>'ec

and hence w = w'ec. Furthermore, OVX"?)"1 = c implies IT, = c-1(iT,'). We have proved the
direct implication in (2); the opposite implication can be verified without difficulty.

9. It is instructive to compute the complete inverse images of 0(S), <&(S) and ft'(S)
under x in the above theorem. For this we need some notation. For any set X, let \X\
denote its cardinality. If geJ'(I) has domain {/} and range {/}, write £ = £,. Denote by
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the group of inner automorphisms of G (eg:x—»g~xxg for all xeG). For any
subset A of I, denote by i the function which maps A onto the identity of G.

Let (i, g, /) e S. Then a simple argument shows that

d0a & i ) = {(i, h, i ) | h e G } U 0 ,

which imply that

It now follows without difficulty that

Now let (A, p)efl(S). According to [5, V.3 and V.5], there exists pe#'(I) and a
function \\i: d/3 —» G such that

10 otherwise,

(i, g (/t//), j/3) i f / edp ,

otherwise,

whence, by a straightforward argument, we get

«I8(x.p) = {(», g, / ) eS | i, j € dp} UO

8(x,P): (i, g, /) -* (i|3, (i</')~1g0'^)J /P) i f '» / e d ' 3

which implies that

1 = {(!, «>, T,) e T | <o e

9.1. EXAMPLE. Let Y = {a, b, c} be a semilattice with ab = c. Then with the following
notation and multiplication we obtain

(a c\ (b c\ (c\

\a c! \b c) \cJ

o=l , (3=1
\b c) \a cl

_ (a b c\ _ la b c\
S~\a b cF J~\b a c)'
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Eb

Ec

a

P

y

£

Ea

Ea

Ec

Ec

ec

P

Ea

Eb

Ec

Eb

Ec

a

Ec

a

Eb

Ec

Ec

Ec

Ec

Ec

Ec

Ec

Ec

a

a

Ec

£C

Ec

Eb

Eb

a

ft

Ec

/3

Ec

Ea

Ec

Ea

P

y

a

P

Ec

£ a

Eb

E

y

e

Ea

Eb

Ec

a

P

y

B

= {£o,eb,ec},

= 0(Y)U{e},
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