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UNIQUELY COLOURABLE GRAPHS WITH
LARGE GIRTH

BELA BOLLOBAS AND NORBERT SAUER

Tutte [1], writing under a pseudonym, was the first to prove that a graph
with a large chromatic number need not contain a triangle. The result was
rediscovered by Zykov [5] and Mycielski [4]. Erdos [2] proved the much
stronger result that for every k = 2 and g there exist a k-chromatic graph
whose girth is at least g.

A graph is said to be umniquely k-colourable if it is k-colourable and any k-
colouring of the vertices gives the same colour classes. Harary, Hedetniemi
and Robinson [3] proved that a uniquely k-colourable graph need not contain
a complete graph of order k. The aim of this note is to prove a common ex-
tension of these results.

The vertex set of a graph H is denoted by V(H). C'is a cycle of length I
and P'isa path of length [. Two edges are independent if they are not adjacent.
In the proof of our theorem we shall make use of some straightforward in-
equalities involving binomial coefficients. For convenience we list them here.

If 0 < b < a then Stirling’s formula gives

w () <(g)

{0 = x <band b + x < a then by expanding the coefficients we obtain

@ (“77) () s (5 <o
and
@ (22 =)

THEOREM. For all k = 2 and g = 3 there is a uniquely k-colourable graph
whose girth is at least g.

Proof. Let Vi, Vs, ..., V; be disjoint n-sets. Let ¥ be the set of all k-partite

graphs with vertex sets Vi, Vo, ..., Vi, containing m = [(g) n“”] edges,
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where 0 < ¢ < 1/4g. Note that

|%| = (g)”2

m

We shall find it convenient to adopt the language of probability theory. From
now on by a graph we mean a member of %, and each graph is supposed to
occur with the same probability. In all subsequent inequalities # is supposed
to be sufficiently large. The proof is based on estimating three different
subsets of ¥.

(¢) The expected number of cycles C' (I = 3 is fixed) in a graph G € ¥ is

at most
(b =) ()Y
N (Im) ui\2 2 :
TN aAN m—1 m
|
since there are (kln) l2—l ways of choosing a cycle C!'with V(CY) C V =

U+ V4, and a cycle C'is contained in 0 or

(5o

m—1

of the graphs belonging to .
Note that by (3)

l -1
N, < (k;l) m’((g)nz) < (bn)'n ' = kil

SO

g—1

-€/2
Z Nz <n ¢/ ﬂo(.
=3

This implies, in particular, that if &, denotes the set of all graphs with at
most f = [n?¢] cycles of length less than g then |%,| = (1 — n~*/2) |¥|.

(11) Let us estimate now the number of graphs in & that do not contain
two cycles of length less than g having a vertex in common. Suppose G € ¥
does contain two such cycles. Then it also contains a cycle C'1, [, < g, and a
path P’z [, < g, joining two vertices of C't such that C'* and P have no
edge in common. The expected number of such pairs is at most

-1
{2 ()
N(ll, 12) = ll(kn) (lm) 2 2 .

m—ll—lz m
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Applying (3) we see that
N(Z], lz) < llkll+12ne(l1+12)n_1.
Since 2ge < 3 we obtain that

Z N(ll, lz) < n_l/2.
3= u<yg
1< 1p<g

In particular, if %, is the set of all graphs in %, that do not contain two cycles
of length less than g with a vertex in common, then

@) |Fal > A —n) [F].

(741) Let us show now that most graphs G € % have the property that if we
omit a set Ey of at most n?¢ independent edges, then the obtained graph G’ is
uniquely k-colourable.

Suppose G € ¥ and G — E, has a k-colouring whose colour classes are not
Vi, Vo, ..., Vi. Let W be a colour class of maximal cardinality different from
the V's. We distinguish two cases according to the sizes of the intersections
WN V. Let 0 <7 < 1/2k.

(a) There are at least two colour classes, V; and V;, say, such that

[WN V] >nm and |[WNV,] > .

This implies that there exist sets W, W,;,, W, DV, W; D V,, |W,4| = |[W,| =
t = [qn] such that G has ¢ < n’¢ edges joining W; to W;,. Denote by M (g) the
expected number of pairs W;, W, joined by exactly ¢ edges, ¢ < n?¢. Our aim
is to show that M = > ,<,’¢ M(q) is small. We have

o - (3 (Y () (=) ()

2
t q m — q m

Replacing | \2 with { \2 and applying (2) we get
m—q m

2 2\¢
en'n*\? _ 1+ _ 1
M(g) < & (6/77)2""(-——77q ) eI Ak O 1t

Hence
(B) M < exp(—n'te?2 4 2n’<logn) < e™

b)Y [WN V,l < nnunless j =1. Leta; = |W,| = |[WMN V| for [ 5 i and
let W, CWNVy Wil =n—>1cia;,=n—A. Then 0 < 4 < kngn and
G contains

g < min{4, n’¢

edges joining the W's.
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Denote by L(z, (a;), ¢) the expected number of subgraphs with vertex

classes Wi, Wy, ..., W, and exactly ¢ edges (|W,| = a;, [ # i and |[W,| =
n—A=mn—,.a;). Then
LG, (ap), q)

A () () () (s mm)(C)Y

< nu(eAn)q e—A/Zne.
q

In the estimate above we used that

e Co

Denoting by L(4) the sum of all L(7, (a;), g)’s for which 3" ;.;a; = A we have

q €
L(4) < k 4F (en)™ (6‘47”) e

< (9%)(] exp (—— %n‘ + 34 log n) < w4,
Nowif 1 £ 4 = n¢theng = 4 so
L(A) < ndde—4r3ne L g1/,
Similarly, if A = n?¢ and g < n?¢ then

log L(4) < 3n?¢logn — in@tbe < — pe,
)
L(4) < e™",

Consequently if L = 3., L(A4) where the summation is over all values of 4,
1 < A =< yn, then

(6) L <em

In particular, if ¥ ; denotes the set of graphs in & which are such that no
matter which f = [n?¢] independent edges of it we omit, the resulting graph is
still uniquely k-colourable, then (5) and (6) imply

() 1% > @ —e9)|F|.

Armed with inequalities (4) and (7) the theorem follows easily. Put ¥, =
Gy Y. Then (4) and (7) give

|94 =z 0 —n9|F].
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Let G € % .. Then, since G € %, we can omit a set of f = [n’¢] independent
edges such that the resulting graph G* has girth at least g. Since G € %, this
graph G* is uniquely k-colourable.

Call a graph G of at least & + 1 vertices critically uniquely k-colourable if it
is uniquely k-colourable but no proper subgraph of it is. Clearly G cannot
have k + 1 vertices and it is not trivial that for a given k& = 3 there are
critically uniquely k-colourable graphs with arbitrarily many vertices. How-
ever, if G is uniquely k-colourable and its girth is at least ¢ > %k then its
minimal uniquely k-colourable subgraph (which must be critically uniquely
k-colourable) must have at least (B — 2)@“=2/2 or, trivially, at least g vertices.
Thus we have the following corollary of our theorem.

COROLLARY. For every k = 3 and n there is a critically uniquely k-colourable
graph with at least n vertices.
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