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Bounce-averaged theories provide a framework for simulating relatively slow processes,
such as collisional transport and quasilinear diffusion, by averaging these processes over
the fast periodic motions of a particle on a closed orbit. This procedure dramatically
increases the characteristic time scale and reduces the dimensionality of the modelled
system. The natural coordinates for such calculations are the constants of motion (COM)
of the fast particle motion, which by definition do not change during an orbit. However,
for sufficiently complicated fields — particularly in the presence of local maxima of the
electric potential and magnetic field — the COM are not sufficient to specify the parti-
cle trajectory. In such cases, multiple domains in COM space must be used to solve the
problem, with boundary conditions enforced between the domains to ensure continuity
and particle conservation. Previously, these domains have been imposed by hand, or by
recognising local maxima in the fields, limiting the flexibility of bounce-averaged sim-
ulations. Here, we present a general set of conditions for identifying consistent domains
and the boundary condition connections between the domains, allowing the application
of bounce-averaged theories in arbitrarily complicated and dynamically evolving electro-
magnetic field geometries. We also show how the connections between the domains can
be represented by a directed graph, which can help to succinctly represent the trajectory
bifurcation structure.

Keywords: plasma simulation, plasma confinement, fusion plasma

1. Introduction

In a magnetic confinement device, such as those used for fusion reactors, parti-
cles typically experience fast helical motion along magnetic field lines. These motions
then form closed periodic orbits, sometimes with precession around an angular coor-
dinate. For modelling many macroscopic phenomena that occur on relatively slow
time scales compared with the orbit time scale, it is much more efficient to average
the effect of the process over the orbit, rather than to solve the full equations of
motion for the orbit, as this involves a much slower time scale calculation in fewer
dimensions. This simplification is the basis for bounce-averaged Fokker-Planck
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(BAFP) theory, which can be used to model collisional transport (Rosenbluth,
MacDonald & Judd 1957; Hager et al. 2016), quasilinear wave-particle interactions
(Stix 1975; Bernstein & Baxter 1981; Fisch 1987; Fisch & Rax 1992; Eriksson &
Helander 1994; Herrmann & Fisch 1997; Herrmann 1998), and radiation emission
(Bilbao & Silva 2023; Zhdankin, Kunz & Uzdensky 2023) and absorption (Ochs,
Milodik & Fisch 2024; Ochs 2024) in tokamak (Harvey & McCoy 1992), stellarator
(Mynick & Hitchon 1986; Nemov et al. 1999; Velasco et al. 2020; d’Herbemont
et al. 2022) and mirror (BenDaniel & Allis 1962; Marx 1970; Matsuda & Stewart
1986; Egedal et al. 2022; Frank et al. 2024) plasmas.

Each closed orbit is associated with conserved constants of motion (COMs) in
a lower dimensional space. For instance, the energy €, magnetic moment p and
azimuthal momentum py form the typical COMs for a steady-state axisymmetric
magnetic field arrangement such as a tokamak or magnetic mirror. Since they are
constant on each averaged trajectory, the COMs represent a natural coordinate
system for solving BAFP problems. Thus, the first step is often to express the dis-
tribution function as a function only of the constants of motion Z, averaging over
trajectories that differ only by the phase of the motion.

This procedure often works well for simple field arrangements without local
maxima in the fields. However, it runs into a problem if there are local maxima.
Consider, for instance, particles in the one-dimensional (1-D) double well potential
¥ (x) shown in figure 1. This 1-D arrangement (with its associated two-dimensional
(2-D) phase space) has the constant of motion € = mv?/2 + ¥ (x). For particles with
energy € > ¥, the value of € defines a single trajectory shape that traverses both
positive and negative x, and there is no problem defining f(x, v) — f(€) to aver-
age slow processes over the bounce motion. However, for € < v, the value of €
no longer contains complete information about the trajectory, which bifurcates into
two trajectories: one trapped in the well at x > 0 and the other trapped in the well
at x < 0. Since the occupancy of each well can, in general, be different, the function
f(e) is no longer well defined.

Multiple wells, however, do not mean that BAFP cannot be used to model
multi-well configurations. The resolution lies in splitting the space into three
domains, representing: (i) the passing trajectories at € > v; (ii) the trajectories
trapped in the left well; and (iii) the trajectories trapped in the right well. Boundary
conditions (Matsuda & Stewart 1986; d’Herbemont et al. 2022) then must be
enforced between the domains to ensure continuity of the distribution function and
particle conservation.

These bifurcations of trajectories are common in mirror physics and the solution of
their associated BAFP problems has appeared several times in the study of tandem
mirrors (Cohen ef al. 1980; Matsuda & Stewart 1986; Katanuma et al. 1986, 1987,
Fowler, Moir & Simonen 2017), which are characterised by internal peaks in both
the magnetic field and electric potential around the tandem end plugs. However, in
solving these problems, the boundary conditions were typically imposed by hand for
very specifically shaped fields, and were only ever attemped in two dimensions. In
moving to three-dimensional (3-D) computational modelling of modern mirrors, with
fields that can be significantly more complicated due to sloshing ion distributions
(Egedal et al. 2022; Endrizzi et al. 2023; Frank et al. 2024), multi-mirror configura-
tions (Be’ery et al. 2018; Miller, Be’ery & Barth 2021), ponderomotive plugs (Miller
et al. 2023; Rubin, Rax & Fisch 2023; Ochs & Fisch 2023; Rubin, Ochs & Fisch
2024; Kolmes & Fisch 2024; Rubin & Fisch 2025; Ochs, Kolmes & Fisch 2025)
or centrifugal forces (Bekhtenev ef al. 1980; Cho et al. 2005; Schwartz et al. 2024,
Kolmes, Ochs & Fisch 2025), determining the domains by hand at the beginning of
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FIGURE 1. A one-dimension double well scalar potential ¥ (x). The energy € uniquely defines
a single trajectory for € > vo. However, at € < v, there are two trajectories that have the same
€, corresponding to trapping in the two wells. Thus, the function f(e€) is not necessarily well
defined below € = .

the simulation may be difficult or impossible. Furthermore, while modern codes for
neoclassical transport in stellarators (Nemov et al. 1999; Velasco et al. 2020) solve
similar multi-well matching problems, they generally assume that the electrostatic
potential is constant enough on a trajectory to not influence the trapping condition,
which is distinctly untrue for mirror plasmas. Thus, it is important to formalise con-
ditions and methods for establishing solution domains for arbitrarily complicated
and arbitrarily high-dimensional multi-well BAFP problems, with wells that result
from variations in both the magnetic field and electric potential. Establishing these
conditions, particularly for mirror-like plasmas, is the goal of this paper.

To fulfil this goal, we begin in § 2, by reviewing the basics of BAFP theory. In
§ 3, we show how trajectories bifurcate for common mirror configurations, estab-
lishing notation and motivating the need for a general method to identify consistent
domains. In §4, we formalise the requirements for establishing consistent domains
and show how to fully partition COM space Z so that the distribution f(Z) is
single-valued and well defined. In § 5, we establish the boundary conditions between
these domains, allowing BAFP to be solved in the global space despite an arbitary
number of trajectory bifurcations. Because these boundary conditions can be com-
plicated, with different domains matched at different parts of the boundary, in § 6,
we show how the connections between the various domains can be simply visualised
via a directed graph. Finally, in § 7, we discuss how these ideas enable the design of
simulations for dynamically evolving multi-well plasma systems.

2. Bounce-averaged theory in COM coordinates

Here, we briefly review the basics of BAFP theory. We move quickly, with a
primary focus on magnetic mirror geometries.

In a magnetic mirror, whether simple, tandem or centrifugal, particles in the mir-
ror live on trapped trajectories. On the shortest time scale, the gyroperiod 1/£2,., the
particle gyrates around the magnetic field line. On the next longest time scale, the
bounce period 7, ~ L, /vy, the particle transits the mirror, completing a closed orbit.

Absent instabilities, particle deconfinement in such mirrors occurs due to colli-
sional processes. Thus, on a collision time scale 7, > 15, 1/£2., collisions push the
particle onto new orbits. Eventually, the particle is pushed onto an orbit that leaves
the device.
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Obviously, it is inefficient (whether analytically or computationally) to resolve the
gyroperiod, bounce time scales and complex trajectories when evaluating the slower
diffusion processes that drive particles out of the device. Suitably averaging over
these fast time scales to produce a lower-dimensional set of equations describing
these slow processes is the goal of BAFP.

The first step in deriving the theory is to transform to coordinates that are constant
along a trajectory. For an axisymmetric, non-relativistic plasma, a suitable set of

COMs are:
1 mv]
= , 2.1
n=3 Bx) (2.1)
1
€= Emvﬁ + uB(x) + ¥ (x), (2.2)
Po=m82,r +qP(x). (2.3)

Here, n is the magnetic moment of the particle, € is the energy and p, is the
azimuthal momentum. Additionally, v, and v, are the velocity components parallel
and perpendicular to the magnetic field, £2,(®) is the rotation frequency of the
magnetic surface, and g and m are the charge and mass of the particle. The potential
energy term ¥ is given by

1

where ¢, is a potential coordinate along the flux surface (Kolmes er al. 2024).
Finally, @ is the flux function, given by

@ =rAy. (2.5)
In looking at py, note that the ratio of the first term to the second is given by

mS2, 2,
CIAe ‘QC’

(2.6)

i.e. py conservation implies that particles stay on their flux surface for particles far
from the Brillouin limit (Rax ez a/. 2015). We assume in the following that we are in
this regime, taking @ as the third COM in place of py.

To reach our six dimensions of phase space, we need three other variables. These
we take to be the azimuthal angle 0, the gyro-angle o and the distance along a field
line s. These variables (0, «, s) are the variables we will integrate out to form the
bounce-averaged theory. Integrating out « is the basis for gyro or drift kinetics;
integrating out 8 makes the theory axisymmetric and integrating out s results in the
bounce average.

Now, in general, we will start with an equation of the form:

d a )
Jg_a—f = [Vex T (f, X)] + Vex S(X), (2.7)

where I (f, X) is a flux operator, S(X) is a source operator and /gy is the volume
element in the space X = (x, p). This equation is in conservation form; integrating
the left-hand side gives the total change in particle number in a given region, while
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the first term on the right-hand side reduces to a surface integral of the flux out of
the region.

To get our bounce-averaged Fokker—Planck equation, we first need to convert to
the six-dimensional (6-D) space Y that contains the COMs, i.e. Y = (¢, u, @, 0, a, s)
. Because the metric in phase space X = (x, v) is g;; =;;, corresponding to a unit
volume element, the volume element dV = ,/gydY in the new coordinates is

dXm X" V2
vBr=2 ‘aw TR Y = 28

Here, the factor of 2 comes from the fact that positive and negative v, are condensed
into the same portion of COM space. We also convert the flux I" to Y space. For
instance, for a Fokker-Planck flux operator:

4 A L Af
ro=A DY -, 2.9
= Ay f + DY o (2.9)
we take
) aY! aY! 9y 0
Iy A” mn Of (2.10)

T oxn X T gxmaxn X yi

Now, we assume that f is independent of (0, «, ), i.e. take f(Z), Z = (¢, u, D).
Then, we integrate the Fokker-Planck equation over the non-COM coordinates in
Y. The integrals over 6 and « are trivial, leading to two factors of 2. The integral
over s 1s more non-trivial, but results in

0
N7d

0 )
2o = 57 (VEZT'(1 2) + V8252, (2.11)

where

N /Sz ds /a7, (2.12)

S1

1 /‘“2 A
M=—|[ dsJ/gy T, (2.13)
g LY, 8z s1 8y

1 52
S E—/ ds/gy Sy, 2.14
z \/g_z ; 8y Oy ( )

and where s, and s, are the two outer limits of the orbit.
Noting that v(s) =+/2(e — uB(s) — ¥ (s))/m, we see that the volume element
/g7 is proportional to the total bounce time 7, = fY le ds/v(s), while the operators

I, and S), are averaged based on the time ds/v;(s) they spend in each region. Thus,
the phase-space volume average and temporal bounce average are equivalent.

3. Multiple wells and the need for multiple domains

Bounce-averaged theory provides a massive simplification to the collisional Vlasov
equations. However, it relies on one major assumption: that f can be written as a
function of the COM coordinates alone: f = f(Z). As we will see, this condition is
often violated in scenarios relevant for modern mirrors. When it is violated, a single
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FIGURE 2. (a) Discretised magnetic field B and potential energy v as a function of axial seg-
ment n and (b) COM-space acessibility plot for electrons in a magnetic mirror with a (typical)
outward-pointing electric field. In the COM-space accessibility plot, each line n € {0, 1, 2} rep-
resents the boundary below which particles do not have enough kinetic energy to enter that axial
segment.

function f(Z) on COM space is no longer adequate to describe the complete system.
Then, the problem must be solved on a set of bounded domains, with appropriate
boundary conditions enforced on the shared boundaries between domains.

To explore these issues, we will make two simplifications to the above mentioned
theory. First, we will look at equations for a single value of @, looking only at the
2-D COM space of (e, u). Despite this reduction in dimension, we note that the
methods presented here generalise straightforwardly to 3-D COM space.

Second, we will consider a piecewise-constant series of potentials ¥ (n(s)) and
magnetic fields B(n(s)), with the nth piece of width As,, so that the integrals in the
bounce-averaged theory become sums. Of course, this is equivalent in the limit of
As — 0 and the number of partitions going to infinity, but working with a small
discrete number of areas will allow us to develop the discussion much more clearly.

Consider, then, particle dynamics along a field line. As is often conventional, we
will take the mirror dynamics to be symmetric about the mirror midplane, and so
consider a sequence of vy (n), B(n), with n € {0, ..., N — 1}, and with n =0 corre-
sponding to the midplane and n = N — 1 corresponding to the mirror throat. We
normalise the potentials and fields to their midplane values, with ¥ (0) =0 and
B(0) =1, and arbitrary units for ¢ and e.

Given sequences ¥ (n) and B(n), we can determine the particles allowed in any
given field line segment n. For a particle to be allowed in a region, it must have
positive parallel kinetic energy, vﬁ > 0. From (2.2), we see that this requires

€ 2 uB(n) + ¥ (n). (3.1

Each pair (¥ (n), B(n)) thus determines an allowed region of (e, i) space, i.e. the
region satisfying (3.1).

The simplest case is provided by electrons in a simple mirror (which also applies
to both electrons and ions in a centrifugal mirror). An ambipolar potential generally
forms (Pastukhov 1974; Najmabadi, Conn & Cohen 1984; Ochs, Munirov & Fisch
2023), confining electrons and repelling ions. Thus, for electrons, both ¢ and B
increase as a function of line segment index n, and so particles are best trapped at
the midplane (figure 2). This is the ideal situation for BAFP theory: trajectories that
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FIGURE 3. (a) Discretised magnetic field B and potential energy ¥ as a function of axial seg-
ment n and (b) COM-space acessibility plot for ions in a magnetic mirror with a (typical)
outward-pointing electric field. Because of the decreasing electric potential towards the edge
of the device, some ions get trapped between the mirror throat and the midplane, i.e. at n = 1.
These ions are referred to as “Yushmanov-trapped’.

can access segment n =1 also access segment n =0, so the distribution function
f (e, n) is clearly single-valued. To apply a BAFP theory, operator averages are
performed over segment n = 0 for the particles above line 0 and below line 1, and
over segments n € {0, 1} for the particles that are above line 1 and below line 2.
A similar situation will occur whenever dv/ds >0 and 0B/ds > 0 for the entire
field line from the midplane to throat. Such a plasma can even be modelled using
midplane momentum coordinates, since every allowed trapped trajectory reaches the
midplane (n = 0).

A somewhat more complex case is provided by ions in a simple mirror. Because
the potential is repulsive, ¥ now decreases as a function of n (figure 3). Thus, a class
of ions can develop which are trapped off the midplane in the potential well, despite
the higher magnetic field there. These are known as “Yushmanov-trapped’ particles
(Yushmanov 1966; Post 1987). In a plasma with Yushmanov-trapped particles, a
midplane-momentum coordinate theory becomes insufficient, because these particles
exist in the plasma but do not reach the midplane. However, the distribution function
f(Z) is still clearly single-valued, so BAFP theory can still be used, solved on a
single domain in COM space. The operator averages are performed over n =1 for
the Yushmanov particles, over n =0 for the particles above line 0 and below line 1,
and over n € {0, 1} for the passing particles that traverse both segments.

As the magnetic geometry and potentials become more complex, the single-
valuedness can quickly break down. For instance, consider a case where the
magnetic field is constant, but the potential has an intermediate peak (figure 4).
Now, as in the 1-D double well in figure 1, € and u are not sufficient to define a par-
ticle trajectory, since a particle with insufficient € to traverse the peak can be trapped
on one side or the other. For instance, in figure 4, in region r; where (€, ) is below
line 1 and above line 2, the particle can either be on a trajectory that is trapped
in segment n =0 or a trajectory trapped in segment n = 2. There is no reason for
particles on these different trajectories to share a value for the distribution function;
thus, f (e, u) fails to be single-valued in this region. (A similar bifurcation occurs for
a local maximum of the magnetic field; the only difference is that changing B would
change the slope of the lines in (e, @) space, rather than their e-intercept.)
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FIGURE 4. (a) Discretised magnetic field B and potential energy v as a function of axial seg-
ment n and (b) COM-space acessibility plot for a scenario with a constant magnetic field and
an internal potential maximum. This scenario exhibits a bifurcation of trajectories around n =1,
and thus the bounce-averaged theory for this space requires three solution domains.

d;

d; ds

FIGURE 5. Directed graph structure of boundary conditions for the field configuration in
figure 4.

When such a bifurcation of the trajectory happens, the domain on which the
BAFP equations are solved must be split, to keep f(e, u) single-valued on each
domain. Each domain consists of (a) an area in (¢, u) space and (b) a continu-
ous subset of the field line segments n over which the bounce-average is taken.
For the case in figure 4, three domains are required: the domain d; consisting of
region r,, bounce-averaged over field line segments n € {0, 1, 2}; the domain d, con-
sisting of regions ry and r;, bounce-averaged over field line segments n € {0}; and
the domain d; consisting of region r;, bounce-averaged over field line segments
n € {2}.

To solve the problem, the domains must be stitched together. This requires two
boundary conditions at the boundary (line 1). First, f (e, u) must be continuous at
the boundary. Second, the phase-space flux must be continuous, i.e.
+n[F’Z|d3, (3.2)

_ i
4 —n,-FZ

n; FIZ ’d2
where n; is a shared normal vector to the surface in (e, u) space.

We can see from the flux conservation equation that the two domains ¢, and
d; merge into d;. This suggests a representation of the relationship between the
domains as a directed graph, with the directionality going from the domain repre-
senting a single passing trajectory to the domains representing bifurcated trajectories
(figure 95).
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FIGURE 6. (a) Discretised magnetic field B and potential energy v as a function of axial
segment n and (b) COM-space acessibility plot for a scenario exhibiting trajectory bifurca-
tion without a local maximum in either potential or magnetic field. This “Yushmanov trajectory
bifurcation’ process is discussed in more detail in Appendix A.

3.1. Ambipolar fields and the need for an automatic method

Historically, especially in the study of tandem mirrors with thermal barriers, these
domain relations have been imposed at the beginning of the problem and left fixed
for the computation (Matsuda & Stewart 1986). However, this is likely to be insuffi-
cient for accurate simulations of modern mirrors, which often have potential profiles
determined by sloshing kinetic ion distributions (Egedal er al. 2022; Endrizzi et al.
2023; Frank et al. 2024). Correctly determining the resulting potentials requires solv-
ing for the electric potential in each region self-consistently over the course of the
simulation so as to enforce quasineutrality, i.e. to enforce

ZZS/fs dZ =0 (3.3)

for each region (Frank et al. 2024; Kolmes et al. 2025). As a result, it might not
be known at the beginning of the simulation where the potential peak might occur,
and thus over which field line segments and regions of (e, ) to define the domains.
Thus, dynamic detection of such domains is a necessity.

Making matters worse, the bifurcation of trajectories does not generally require
such an easy-to-spot feature as a local peak in the electric or magnetic field (which is
the basis for such calculations in stellarator neoclassical transport codes (Nemov et
al. 1999; Velasco et al. 2020)). Consider the field arrangement in figure 6. In segment
n =1, this has neither a local maximum in the magnetic or electric field, and thus
does not seem like it would represent a barrier between local wells. Nevertheless,
as can be seen in figure 6, there is a region of (e, u) space that can be accessed by
particles with n € {0, 2}, but not for n = 1. Thus, this field set-up also has a trajectory
bifurcation and must be solved using multiple grids.

The conditions required for the particular situation in figure 6, which we term
a ‘“Yushmanov trajectory bifurcation’, can actually be solved for (Appendix A); it
turns out that such a bifurcation will occur when

oy 0%y
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Nevertheless, in anticipating arbitrary field arrangements involving multiple wells
and, particularly, in looking forward to non-relativistic plasmas in three COM dimen-
sions, it is clearly useful to have a generalisable method that can take the allowed
regions (in COM space) for each part (in x) of the plasma, and return the requisite
domains and boundary conditions. The development of such a method is the subject
of the next sections.

4. Formalising the requirements for cohesive domains

As a starting point, we assume that we have a set of segments N’ ={0, ..., N — 1},
with allowed areas of (e, u) space defined for each segment n € N, of the form
€ > b,(w). This will in general chop the (e, ) space up into a number of different
regions r;, with edges defined by the boundary functions b, (1).

We note that in formulating the problem in this way, the generalisation to 3-D
(e, u, @) space is straightforward, since each allowed region will now be given by
€ > b,(u, @), with the boundaries between regions given by 2-D surfaces rather than
1-D curves. The following discussion thus applies immediately to more complicated
and higher-dimensional problems, though to keep things clear, we will restrict the
discussion to non-relativistic (e, u) space.

Now, consider a specific region r;. This region will have a set N; CN of the
segments for which r; is an allowed region. Ordering the set ; in terms of increasing
n, we can in general then split \V; into maximal continuous subsequences C!", defined
such that each C!" has no breaks in the integer sequence of n values. The set of all
C" for a given region r; we denote C;. For a given r;, the size (cardinality) of the
set C; represents the number of distinct trajectories in that region. For instance,
returning to figure 6, the indicated region in (e, ), which we can label as region ry,
has AV ={0,2}, C) =0, Cj =2 and C, = {C), Cj} = {{0}, {2}}. The fact that |Co| =2
means that there are two distinct trajectories; namely, those trapped in axial segment
n =0 and those trapped in axial segment n = 2.

At this point, it is helpful to define a population, denoted p, as the combination
of the region r; (a volume in COM space) and a maximal continuous subsequence of
allowed axial segments C!" in that region. The population defines everything other
than the boundary conditions about the bounce-averaged Fokker—Planck problem
in COM space: namely, it defines the region over which the problem is to be solved
and the axial segments over which the bounce average is to be taken. Boundary
conditions then come from stitching together connecting populations.

However, solving the Fokker-Planck problem for each population so defined
would be extremely inefficient, since there can be many regions even for problems
(such as those in figures 2 and 3) that can be solved on a single domain. Thus,
our goal will be to build up collections of compatible populations into maximal
simulation domains.

Thus, define a domain d as a collection of connected and pairwise-compatible
populations {p!"}. To define ‘connected’ and ‘pairwise-compatible’, it is helpful to
consider what happens as we try to extend the domain to a new population. Thus,
consider a population p!" in domain d, with region r; and continuous sequence C!".
Then, try to extend the domain d by adding a population with region r; bordering
r;. What are the conditions that allow this to happen?

First, it only makes sense to extend the domain if there is a population on r; that
contacts trajectories from p; i.e. if

3CT €C;: (r; borders r;) and (C7NC" # (D). 4.1)
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If this condition is not satisfied, then trajectories in region r; are located in a spatially
distinct part of the plasma from those trajectories described by p!" and thus do not
interact in a Fokker-Planck manner with the population p!. Thus, populations p!"
and p’ are said to be connected if

(r; borders r;) and (C7NC" #{D. 4.2)

However, connectedness is not sufficient to ensure that the domain can be
extended. Consider, for instance, the regions r; and r, on either side of line 1
in figure 4. Then, consider the population p) = (r,, {0, 1, 2}). Going to region r,
we see that there are two populations that are connected to p3: p) = (ry, {0}) and
pi=(r1, {2}). Precisely because there are multiple connected populations in region
r1, the domain cannot be extended, because this multiplicity means that trajectories
bifurcate at this point and a boundary condition (3.2) must be enforced at line 1.
Thus, for p;" in region r; to be compatible with a population p} in region r;, we
must have

Bl #n) and (€ NC"# (). (4.3)

However, this is still not sufficient, since this compatibility relation must be recip-
rocal; condition (4.3) shows that p) is incompatible with the p? and p| in figure 5,
but not that p{ and p| are incompatible with p). Thus, for p in region r; to be
compatible with a population p’ in region r;, we must also have

Al:(#m) and (C/NC) #{D. 4.4)

If, for populations p! and p”, conditions (4.3)—(4.4) hold, then the populations are
compatible and can exist in the same domain.

Unfortunately, it can be shown (Appendix B) that the compatibility property is
not transitive. Thus, to add a population to the domain, connectedness must only
be checked for one region, but compatibility must be checked with all populations
already in the domain. This non-transitivity is why the domain was defined to be a
connected and pairwise-compatible set of populations.

To completely partition the space for solution of the Fokker-Planck problem,
we must assign every population to a domain. These domains are then connected
by boundary conditions along shared boundaries. As shown in Appendix B, this
decomposition is not, in general, unique. Nevertheless, an example algorithm for
performing a valid decomposition is described in Appendix C.

At the end, each domain d, (which is a set of populations) will be associated with
a set of connected regions R, and a single continuous set of axial segments C,. Thus,
for each domain d,, the BAFP problem is to be performed over the area in Z that
is spanned by R,, with the bounce average taken over the axial segments contained
in C,.

5. Enforcing boundary conditions

Now that the space is partitioned into domains, we must define boundary con-
ditions for each domain. As in §3, we need to enforce continuity and particle
conservation at each boundary; the key aspect will be to identify which populations
must be matched.

There are two types of boundaries. External boundaries are defined by the edge
of accessible Z for the total modelled space. These boundaries are either reflect-
ing, if they represent the boundary of 0 kinetic energy that defines accessibility,
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or approximately absorbing (Dirichlet with a value of 0), if they represent the loss
cone. (Though it may be noted that in more collisional mirrors (Mirnov & Riutov
1979; Rognlien & Cutler 1980) or mirrors with significant secondary electron emis-
sion from the walls (Konkashbaev, Landman & Ulinich 1978; Skovorodin 2019), a
non-zero loss cone boundary may be appropriate.)

The remaining boundaries are internal, representing matching conditions between
domains. In general, if we look at a domain d,, each internal boundary can be
defined by two regions; the region r; (with population p!" in domain d,) and the
region r;. If r; does not represent a region within the domain d,, then this represents
an outer boundary of the domain d,,, where the boundary conditions must be applied.
We can denote this boundary by by;.

Now, note that of the two regions r; and r;, one of these regions will always have
a set of accessible axial segments that is a strict superset of the other region; i.e.:

N:CN; or N;CN. (5.1)

Thus, we can define region r; to be ‘higher access’ than r; if A; DN, and ‘Tower
access’ if the reverse holds. In general, trajectories can bifurcate in going from the
higher-access region to the lower-access region, but not vice versa.

Now let us establish the boundary conditions for boundary b, between region r;
(in domain d,) and r; (not in domain d,). We start by identifying the higher-access
region. Then, taking the population for region r; in domain d, to be p!", we start by
finding the connected populations in region r;. This set of populations will define
a set D¢, of domains connected to domain d, at that boundary, i.e. the domains
which contain those connected populations. If 7; is the higher-access region, then the
boundary conditions now take the form:

f(Z) e = f(Z)|b?de =... (5.2)
dbED,("j
mil |y 4, = > "fF’z\b;.,db- (5.3)
dbG'D‘-I-

Note that if ; has no populations that are connected to p;", then Df; = {} and the
boundary conditions reduce to the reflecting boundary conditions of an external
boundary.

If, instead, r; is the lower-access region, then there will be only one population
p’j that is connected to p;" in domain d,. Denote the domain associated with p’ as
d,. Then, we can establish the boundary conditions as in the previous paragraph
but starting with p’ in d,. Explicitly, we first find all the populations pi in region
r; connected to p and thus construct the set of domains D containing those con-

nected populations. Note that Dj?l. will, by definition, include d,. Then, the boundary
conditions are

F@ly 4= F Dy g=-- (5.4)
dceDh;
Ly 0= 2 1Tl 4 (5.5)
dceD?i

The above mentioned procedure defines all internal boundary conditions for the
BAFP problem.
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6. Graph structure of domain connections

The rules outlined in § 4 and § 5 are sufficient to properly set up a BAFP problem,
to solve it either analytically or (more likely if application is necessary) computa-
tionally. However, it is also useful when thinking about a problem to be able to
quickly visualise how the various domains fit together. The abovementioned rules,
which are focused on conditions at each boundary (of which each domain can have
quite a number), do not make developing this intuition particularly straightforward.
The goal, then, is to quickly encode the boundary condition connections into the
connections between domains, which can then be visualised.

The condition for two domains to be connected is simple: domains d, and d;, will
be connected if

dp!" €d,, pj €dy: (p;" and p are connected). (6.1)

Furthermore, we can establish a ‘direction of connection’, based on whether p!"
or p} is in a higher-access region. We draw the direction from the higher-access
region to the lower-access region, representing the direction in which trajectories
can bifurcate. In other words, if N; DM, the direction of connection is from d,
to d,. Note that if two domains connect at multiple boundaries, the direction of
connection can, in principle, be bi-directional.

With such connections established, the boundary condition structure of a BAFP
problem can then be represented as a graph. This graph can help to clarify the
multi-well structure of the BAFP problem, in particular, encoding the bifurcation
structure of trajectories.

For instance, figure 7 shows a ‘tiered well’, where as € decreases, trajectories first
bifurcate at the local potential and magnetic maximum at n = 3, and then bifurcate
again at the local potential and magnetic maxima at n = 1 and n = 5. Although there
are only three resulting regions in (€, i) space, the separate wells mean that there
are seven separate domains (figure 8). The boundaries between these domains are
connected as shown in figure 9. Domain ds represents the domain of trajectories
which transit the entire device. Then, this bifurcates into domains ds and ds, which
represent the trajectories trapped on either side of n =3, but which pass over the
potential maxima at n =1 and n =15. Finally, the trajectories bifurcate again at
these final potential maxima. In this way, the graph structure succinctly encodes the
domain connections that result from the well structure.

Of course, the ‘tiered well’ is a very straightforward example with a very clear logic
to the domain connections. The established rules for establishing cohesive domains
and determining the connections between domains really prove their value when con-
sidering more complicated scenarios. For instance, consider the field arrangement
in figure 10. One might scratch their head for quite a while coming up with a set of
consistent domains to describe this problem, but the rules in §4, as implemented in
the algorithm in Appendix C, can quickly come up with a set of consistent domains
(figure 11). Furthermore, the methods described here can also quickly reveal the
connections between these domains (figure 12). Thus, it can be seen that formulat-
ing the problem in this way opens up the possibility of solving arbitrarily complicated
multi-well BAFP problems.

7. Conclusion

In this paper, we have shown how to construct consistent domains for the solu-
tion of BAFP problems, so that in each domain, a single point in COM space
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FIGURE 7. (a) A ‘tiered well’ field arrangement and (b) COM accessibility plot. In this scenario,
in order of decreasing €, trajectories first bifurcate around axial segment n = 3, then bifurcate
again around segments n =1 and n = 5.
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FIGURE 8. Domain decomposition for the ‘tiered well” in figure 7. Each domain d,consists of a
list of populations, and as a result has an associated set of regions R, (the shaded area in each
plot) and continuous set of axial segments C,, given in the title of the plot. Here, several domains
(e.g. do, di, dy and d3) share the same region in (€, i), but represent different populations
because they occur at different positions along the field line.

d4/d6\d5
]

do dl d2 d3

FIGURE 9. Graph structure of domain connections for the ‘tiered well’ in figure 7, with the
domains defined in figure 8. The forks in the graph are associated with the trajectory bifur-
cations, first at n =3 (splitting dg into ds and ds), then again around segments n =1 and
n=>3.
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FIGURE 10. An arbitrary complicated field arrangement, with many crossings in the accessibil-
ity boundary lines.

do:C={0,1} dr:Cc=4{2,3} dy:C={5} d;:C={2,3,4,5}
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FIGURE 11. An algorithmically solved consistent domain decomposition of the scenario in
figure 10, showing the shaded set of regions R, and continuous set of axial segments C, for

each domain d,,.
ds
ds ds %d 3
d d>

FIGURE 12. Graph structure of domain connections for the scenario in figure 10, with the
domains defined in figure 11. The graph structure is much more complicated than for the tiered
well scenario in figures 7, 8 and 9, but if one chooses any set of connected nodes, it is possible
to identify the boundary where the conditions are enforced.

do
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corresponds to a single trajectory. We also showed which boundary conditions
were enforced between the resulting domains and how these boundary connections
(associated with trajectory bifurcations) could be succinctly summarised via directed
graphs.

Though the focus was primarily on magnetic mirrors, the generality of the derived
conditions should allow bounce-averaged theories to be applied to a variety of
plasma systems with well-defined COM, including tokamaks and quasisymmetric
stellarators. Crucially, the clear rules for identifying consistent domains should
enable the gridding and boundary-matching process to be automated, allowing
bounce-averaged theories to be applied even in systems where wells (and their asso-
ciated trajectory bifurcations) arise dynamically and unpredictably over the course
of the simulation. This is the case, for instance, in the simulation of magnetic mirrors
with highly kinetic sloshing ion distrbutions or arrangements in which Yushmanov
trapping becomes significant. Of course, there are other issues to be solved in mak-
ing bounce-averaged simulations work efficiently for such plasmas, including the
development of stable and efficient methods for the ambipolar solve discussed in
§ 3.1, as well as efficient methods for choosing between the various possible domain
decompositions so as to retain maximal efficiency and continuity. Nevertheless,
the present work provides a crucial stepping stone towards enabling BAFP codes
to simulate these more complicated and relevant modern systems, providing a
self-consistent alternative to much more expensive codes that resolve the parallel
dynamics.
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Appendix A. Differential condition for Yushmanov trajectory bifurcation

Here, we derive the non-relativistic condition for a trajectory bifurcation to occur
when the potential is increasing and the magnetic field is decreasing as a function of
axial coordinate s (or vice versa); i.e. when

B\ _ [
sgn <¥) = —sgn < 35 ) . (A.1)

We call this a “Yushmanov trajectory bifurcation’ because it is closely related to
the off-midplane “Yushmanov-trapped’ ions that are well known from mirror theory
(Yushmanov 1966; Post 1987).

Thus, recall figure 6. The reason a trajectory bifurcation occurs in this case is that
lines 0 and 2 intersect below line 1. We can easily write this condition in terms of
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B, and v,. The intersection point u* of lines 0 and 2 is given by

WZ_wO
By— B,

W By +Yo=u By + VY= p' = (A.2)

Then, the value of the accessibility boundary at this ©* must be lower for line 0 than
for line 1:

W Bo+ Yo < W By + Y. (A.3)

We can turn the condition into a differential condition by taking the axial segments
to be equally spaced with spacing As, and taking As — 0. This requires working to
second order in As:

Yo = Vo (A4)
oy a2y

Y= W0+8—AS+EW(A $)*: (A.5)

V=t t an + S L asy (A6)

The same expansion is enforced for B. With this prescription, (A.3) becomes

8°B/ds> _ 9y/ds’
0B/ds oy /os

(A.7)

Thus, if (A.1) and (A.7) hold at a point, there will be a trajectory bifurcation there.

Alternatively, conditions (A.1) and (A.7) can also be put into s-independent form
by treating v as a function of B and expanding v (B), yielding the equivalent but
simpler conditions for a trajectory bifurcation:

0 RE
—l//<0 and v

Yo A8
9B 9B (A-8)

To see these conditions in action, we can take fields of the form:
B =cpe®; Y=cy(l —e"), (A.9)

with ag > 0 and a,, > 0 to satisfy (A.1). Then, (A.7) and (A.8) reduce to the condition
that ap > ay.

The accessibility boundaries for fields of the form of (A.9) are shown in figure 13
for s € {0, 1, 2}. It can be seen that the condition a > a,, corresponding to (A.7),
correctly describes the onset of the bifurcation.

Appendix B. Non-transitivity of compatibility and non-uniqueness of domain
decomposition

In this appendix, we show that the compatibility conditions are not necessarily
transitive and that the domain decomposition is not necessarily unique. To show
this, an example field configuration suffices.
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FIGURE 13. Accessibility region boundaries in COM space for s =0, 1, 2 for fields of the
form in (A.9), demonstrating the Yushmanov trajectory bifurcation condition ((A.1) and (A.7)
or (A.8)). In panel (a), ap =ay =1, and the lines all intersect at a single point, so there is
(marginally) no bifurcation. In panel (b), ap =1 <ay = 1.2, and so there is no bifurcation.
In panel (¢), ap =1.5>ay =1, and so (A.7) (or (A.8)) is satisfied and there is a trajectory
bifurcation. For all plots, cg =1 and ¢y, = 2.
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FIGURE 14. Example field configuration and COM-space accessibility plot demonstrating non-
transitivity of population compatibility and non-uniqueness of the domain decomposition.

Thus, consider the field arrangement in figure 14. This grid is characterised by six
populations:

po :{ro. € = {0}};
Py, €Y =1}

p3 i {r, 3 =1{0, 1}};
py:{r. €3 =1{0,1,2}};
Py {rs, €3 = {0});

py{ra, Cy={2}}. (B.1)

There is a clear incompatibility between the populations p{ in region r;, and the
populations p§ and p; in region r,. However, every other population is compatible
with both population p and pJ. Thus, the compatibility condition is seen to be
non-transitive.
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This non-transitivity also leads to non-uniqueness of the domain set. Due to the
bifurcation in trajectories between regions r; and r,, three domains are required.
However, which populations go into these domains is a matter of choice. For
instance, we can simply assign each of the troublesome bifurcated populations in
region ry to their own domain:

do=1{py, P\, p3, P3Ys i =1{p}}; do={p,}. (B.2)
Alternatively, however, we can also isolate population pJ instead of pJ. Then, we
get

dy={po. pi- PY. i di=1{p5k  dy={p;}. (B.3)

Either of the domain decompositions are equally valid according to the conditions
laid out in §4 and thus the decomposition is not generally unique.

Appendix C. Algorithm to find a complete set of domains

A complete partitioning of the populations into domains can be performed as
follows.

(i) Define U = {p!"}, the set of unsorted populations.

(i1)) Define D = {}, the set of domains.
(ii1) If |U| > 0, initialise a new domain d = {}; otherwise, terminate.
(iv) Remove a population p!" from U, add it to d.

(v) Construct R;, the set of neighbouring regions of region r;, where r; is the
region associated with populations p.

(vi) Choose an r; € R;.

(vii) Check if a population from r; is already in d; if yes, go to the next region in
Ri.

(viii) Check if a population p € U with region r; is connected to population p;

1

(condition (4.2)) and compatible with all populations in d (conditions (4.3),
(4.4)).

(ix) If step (viii) is true, remove p’j from ¢ and add p’ to d.
(x) Repeat steps (vi)—(ix) until all regions in R; have been checked.
(xi) Repeat steps (v)—(x) for each population p!" in d.

(xii) When all neighbouring regions of all populations have been checked, and no
new populations can be added, add d to D, and go to step (iii).

It is also useful to have a computer-friendly algorithm for step (viii) to deter-
mine compatibility and connectedness. To determine whether p" has a compatible
population in region r;, one can do the following.

(i) Count the number a of elements C; of C; such thatC; NC" # {}.
(i) If @ =1, then choose the single C7 that intersects C;".

(iti) Count the number b of elements C} of C; s.t. Cf NC' # {}.
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(iv) Then:
(a) if a =0, p!" is compatible with all populations in r;, but not connected;

(b) if a > 1, then p!" is connected to multiple populations in r;, so there is no
compatible population in r; (there is a trajectory bifurcation going from
ritor;);

(c) if a=1 but b> 1, then p" is connected to multiple populations in r;,
so p; and p;" are not compatible (there is a trajectory bifurcation going
from r; to r;);

(d) if a=1 and b =1, then p;" is compatible with p’ in region r;, with C'
given by step (ii). If r; borders r;, these populations are also connected.

If one wants to check whether a specific population pi. in region r; is compatible with
p!", then one must additionally check that the compatible population p’ identified

in step (ivd) is the same as the queried population pi..
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