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MOMENTS OF RANDOM ALLOCATION
PROCESSES REACHING A BOUNDARY
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Abstract

In this paper we develop some results presented by Gani (2004), deriving moments for
random allocation processes. These moments correspond to the allocation processes
reaching some domain boundary. Exact formulae for means, variances, and probability
generating functions as well as some asymptotic formulae for moments of random
allocation processes are obtained. A special choice of the asymptotics and of the domain
allows us to reduce a complicated numerical procedure to a simple asymptotic one.

Keywords: Infective; susceptible; allocation process; urn scheme; law of large numbers;
domain boundary

2000 Mathematics Subject Classification: Primary 60G20
Secondary 92C60

1. Introduction

In this paper we develop some aspects of [1]; this article is devoted mainly to an analysis of
infective numbers by means of probability generating functions. Here, the infective numbers
are represented as a random allocation process in an urn scheme. Such an analysis allows us
to consider a detailed one-dimensional model with a single group of susceptibles or a single
kind of infection. However, a multidimensional model with a few groups of susceptibles or
a few kinds of infections becomes too complicated both numerically and analytically. So the
problem is to find a convenient approach to the multidimensional model analysis.

This article is based on the concept of moments for random allocation processes reaching
some domain boundary. Analogously to [2], these moments are represented as finite sums
of independent random variables with geometric distributions. In the one-dimensional case
this representation gives exact formulae for means, variances, and probability generating
functions as well as some asymptotic formulae for the moments of random allocation processes
when they reach the domain boundary. In the multidimensional model a special numerical
algorithm is constructed which allows us to calculate these means and variances, but in a
somewhat complicated way. So the special asymptotics and the domain are chosen to reduce
the complicated multidimensional numerical problem to a simple asymptotic one-dimensional
problem based on the law of large numbers.

2. One-dimensional model: mean, variance, and characteristic function

Suppose that n denotes the number of susceptibles, s denotes the number of infectives,
and that hs(n) denotes the probability that a new infection reaches one of the infectives,
and so does not increase the number of infectives (in the simplest case hs(n) = s/n), and
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let gs(n) = 1 − hs(n). Let Yi(n) denote the number of infectives in an initial group of
susceptibles at the moment i (when the ith infection arrives), Y0(n) = 0, and let Tl,n =
min(i : Yi(n) = l). We write

Ml,n = E Tl,n, Vl,n = var Tl,n, �l,n(z) = E zTl,n ,

and note that

Tl,n =
l−1∑
k=0

τk,n,

where τk,n, k ≥ 0, are independent random variables with the geometric distribution parameter
gk(n) : τk,n → G(gk(n)). Then it is easy to prove that

Ml,n =
l−1∑
k=0

E τk,n =
l−1∑
k=0

1

gk(n)
, Vl,n =

l−1∑
k=0

var τk,n =
l−1∑
k=0

hk(n)

g2
k (n)

, (1)

�l,n(z) = E
l−1∏
k=0

zτk,n =
l−1∏
k=0

E zτk,n =
l−1∏
k=0

gk(n)(z)

1 − hk(n)(z)
. (2)

If hs(n) = s/n then from (1)–(2) we obtain

Ml,n =
l−1∑
k=0

1

1 − k/n
, Vl,n =

l−1∑
k=0

k/n

(1 − k/n)2 , �l,n(z) =
l−1∏
k=0

kz/n

1 − z(1 − k/n)
. (3)

Now consider (3) for n → ∞.
Suppose that l = o(n); from (3) we obtain

Ml,n ∼ l, Vl,n ∼ l2

2n
,

Vl,n

M2
l,n

∼ 1

2n
→ 0. (4)

Now suppose that q = n − l ≥ 1 (where q = o(n) as n → ∞). Then

Ml,n ∼ n ln n, (5)

and, for some positive and finite numbers C1 ≤ C2, we have

C1n
2

q
≤ Vl,n ≤ C2n

2

q
∼ n ln n �⇒ C1

q ln2 n
≤ Vl,n

M2
l,n

≤ C2

q ln2 n
→ 0. (6)

Suppose that l = cn, 0 < c < 1, then

Ml,n ∼ n ln
1

1 − c
, Vl,n ∼ n

(
c

1 − c
+ ln(1 − c)

)
,

Vl,n

M2
l,n

∼ c/(1 − c) + ln(1 − c)

n ln2(1 − c)
→ 0.

(7)
Consequently, from the asymptotics (4), (6), and (7), we have

Tl,n

Ml,n

p−→ 1 as n → ∞, (8)

where Ml,n satisfies (4), (5), and (7). Here ‘
p−→’ denotes convergence in probability.
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3. Multidimensional model with one-sided boundary

Model 1. Suppose that the initial group of n susceptibles consists of subgroups with sizes
n1, . . . , nm, where n1 + · · · + nm = n. Each new infection arises in these subgroups with
the probabilities p1, . . . , pm, where p1 + · · · + pm = 1. Set n = (n1, . . . , nm), and let
Yi,n = (Y

j
i,n, j = 1, . . . , m) be the vector of infective numbers in these subgroups at the

moment i. We define
Tl,j,n = min(i : Y

j
i,n = l),

and writing

Ml,j,n = E Tl,j,n, Vl,j,n = var Tl,j,n, �l,j,n(z) = E zTl,j,n ,

then we obtain

Tl,j,n =
l−1∑
k=0

τk,j,n,

where τk,j,n, k ≥ 0, are independent random variables with the geometric distribution para-
meter pjgk(nj ) : τk,j,n → G(pjgk(nj )). By analogy with (1)–(2), it is easy to prove that

Ml,j,n =
l−1∑
k=0

1

pjgk(nj )
, Vl,j,n =

l−1∑
k=0

1 − pjgk(nj )

[pjgk(nj )]2 ,

�l,j,n(z) =
l−1∏
k=0

pjgk(nj )(z)

1 − z(1 − pjgk(nj ))
.

(9)

So, if, for some j, 1 ≤ j ≤ m (where lj = o(nj ) as nj → ∞) and ni is a constant, where
1 ≤ i 	= j ≤ m, then by analogy with (8), we obtain

Tl,j,n

Ml,j,n

p−→ 1. (10)

Model 2. Now suppose that the initial group of n susceptibles is uniform but that there are
m types of infections arising with the probabilities p1, . . . , pm, where p1 + · · · + pm = 1.
Denote by Zi,n = (Z

j
i,n, j = 1, . . . , m) the vector of the infective numbers, and set

R
j
l,n = min(i : Z

j
i,n = l),

M
j
l,n = E R

j
l,n, V

j
l,n = var R

j
l,n, �

j
l,n(z) = E z

R
j
l,n ,

then we obtain

R
j
l,n =

l−1∑
k=0

α
j
k,n,

where α
j
k,n, k ≥ 0, are independent random variables with the geometric distribution parameter

pjgk(n) : α
j
k,n → G(pjgk(n)). Then, by analogy with (9), it is easy to prove that

M
j
k,n =

l−1∑
k=0

1

pjgk(n)
, V

j
k,n =

l−1∑
k=0

1 − pjgk(n)

[pjgk(n)]2 ,

�
j
k,n(z) =

l−1∏
k=0

pjgk(n)(z)

1 − z(1 − pjgk(n))
.
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So, if, for some j, 1 ≤ j ≤ m (where lj = o(n) as n → ∞), then similarly to (10), we obtain

R
j
l,n

M
j
l,n

p−→ 1.

4. Numerical algorithms in the multidimensional model with multisided boundary

Without loss of generality, consider Model 2 and introduce the set

� =
m⋂

j=1

(0 ≤ xj < lj ).

For simplicity suppose that m = 2, denote by R�,n(x1, x2) the first moment when the chain Zi,n

exits from � provided that Z0,n = (x1, x2), and set R�,n = R�,n(0, 0). Now, if (x1, x2) ∈ �,
it is easy to show that, for M�,n(x1, x2) = E R�,n(x1, x2),

(p1g
1
x1

(n) + p2g
2
x2

(n))M�,n(x1, x2)

= 1 + p1g
1
x1

(n)M�,n(x1 + 1, x2) + p2g
2
x2

(n)M�,n(x1, x2 + 1). (11)

This recurrent formula is to be complemented by the following boundary conditions:

M�,n(x1, l2) = 0, 0 ≤ x1 < l1, M�,n(l1, x2) = 0, 0 ≤ x2 < l2. (12)

So, to find M�,n(0, 0) = E R�,n, it is necessary to use (11) and the boundary conditions, (12),
sequentially at the points

(x1, x2) = (l1 − 1, l2 − 1), (l1 − 2, l2 − 1), . . . , (0, l2 − 1),

(l1 − 1, l2 − 2), (l1 − 2, l2 − 2), . . . , (0, l2 − 2),

and so on. As a result, it is possible to obtain E R�,n. This algorithm may also apply to
calculations of E R2

�,n, var R�,n, etc. Therefore, the calculation of E R�,n and var R�,n requires
a complicated numerical procedure, and the problem is how to simplify this procedure in some
asymptotic cases.

5. Some asymptotics in the multidimensional model with multisided boundary

In this section we consider multidimensional Models 1 and 2 with multisided boundaries. In
Model 1 suppose that n1/n → r1, . . . , nm/n → rm, n1+· · ·+nm = n, where r1, . . . , rm, r1+
· · · + rm = 1, are fixed. Then it is possible to write Yi,n = Yi,n and T�,n = min(i : Yi,n /∈ �),
where

T�,n = min(Tlj ,j,n, 1 ≤ j ≤ m). (13)

In Model 2 let R�,n = min(Zi,n /∈ �). Then we obtain

R�,n = min(R
j
lj ,n, 1 ≤ j ≤ m).

Theorem 1. Suppose that, for n → ∞ and 1 ≤ j ≤ m,

lj → ∞, lj = o(n), 1 ≥ gk(n) ≥ 1 − k

n
, 0 ≤ k ≤ n. (14)

https://doi.org/10.1239/jap/1197908819 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908819


994 G. S. TSITSIASHVILI

Then, for n → ∞, we have
T�,n

F

p−→ 1,
R�,n

F

p−→ 1, (15)

where

F = min

(
lj

pj

, 1 ≤ j ≤ m

)
.

Proof. We introduce the random variables

τ+
k,j,n → G

(
pj

(
1 − lj

nj

))
, τ−

k,j,n → G(pj ), (16)

so that the random vectors (τ−
k,j,n, τk,j,n, τ

+
k,j,n), k ≥ 0, are independent and

τ−
k,j,n ≤ τk,j,n ≤ τ+

k,j,n, 0 ≤ k, n, 1 ≤ j ≤ m, (17)

almost surely. Let

nε = max

(
qj

p2
j (1 − lj /nj )2ε3

,
lj

rj ε
, 1 ≤ j ≤ m

)
, T ±

l,j,n =
l−1∑
k=0

τ±
k,j,n,

then from Chebyshev’s inequality and (16), we obtain

P

(∣∣∣∣
T −

lj ,j,n

lj
− 1

pj

∣∣∣∣ > ε

)
<

qj

p2
j lj ε

2
.

So, from condition (14), for n > nε and 1 ≤ j ≤ m,

P

(
lj (1 − ε)

pj

< T −
lj ,j,n <

lj (1 + ε)

pj

<
lj (1 + ε)

pj (1 − ε)

)
> 1 − ε, (18)

and analogously

P

(
lj (1 − ε)

pj

< T +
lj ,j,n <

lj (1 + ε)

pj (1 − lj /nj )
<

lj (1 + ε)

pj (1 − ε)

)
> 1 − ε. (19)

Now, (18) and (19) give the inequality

P

(
lj (1 − ε)

pj

< Tlj ,j,n <
lj (1 + ε)

pj (1 − ε)
, 1 ≤ j ≤ m

)
> 1 − 2mε,

and consequently, from (13) and (17), we obtain

P

(
F(1 − ε) < T�,n <

F(1 + ε)

(1 − ε)

)
> 1 − 2mε.

The first part of (15) is proved; the proof of the second part is similar. It is necessary to introduce
only the random variables

α+
k,j,n → G

(
pj

(
1 − lj

n

))
, α−

k,j,n → G(pj ),

so that the random vectors (α−
k,j,n, αk,j,n, α

+
k,j,n), k ≥ 0, are independent and

α−
k,j,n ≤ αk,j,n ≤ α+

k,j,n, 0 ≤ k, n, 1 ≤ j ≤ m,

almost surely.
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Remark 1. The statement of Theorem 1 may be generalized to the case

� =
⋂
k∈K

⋃
j∈Jk

(0 ≤ xj < lj,k),

where

T�,n = min
k∈K

max
j∈Jk

Tlj,k,j,n, F = min
k∈K

max
j∈Jk

lj,k

pj

.
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